
8-bit
Microcontroller

Application
Note

Rev. 1497D–AVR–01/04
AVR035: Efficient C Coding for AVR

Features
• Accessing I/O Memory Locations
• Accessing Memory Mapped I/O
• Accessing Data in Flash
• Accessing Data in EEPROM
• Creating EEPROM Data Files
• Efficient Use of Variables and Data Types
• Use of Bit-field and Bit-mask
• Use of Macros and Functions
• Eighteen Ways to Reduce Code Size
• Five Ways to Reduce RAM Requirements
• Checklist for Debugging Programs
• Updated to Support IAR Version 2 Compilers

Introduction
The C High-level Language (HLL) has become increasingly popular for programming
microcontrollers. The advantages of using C compared to Assembler are numerous:
Reduced development time, easier maintainability and portability, and easier to reuse
code. The penalty can be larger code size and as a result of that often reduced speed.
To reduce these penalties the AVR architecture is tuned to efficiently decode and exe-
cute instructions that are typically generated by C compilers.

The C Compiler development was done by IAR systems before the AVR architecture
and instruction set specifications were completed. The result of the co-operation
between the compiler development team and the AVR development team is a micro-
controller for which highly efficient, high performance code is generated.

This application note describes how to utilize the advantages of the AVR architecture
and the development tools to achieve more efficient C code than for any other
microcontroller.

Architecture Tuned for C Code
The 32 working registers is one of the keys to efficient C coding. These registers have
the same function as the traditional accumulator, except that there are 32 of them. In
one clock cycle, AVR can feed two arbitrary registers from the Register File to the
ALU, perform an operation, and write back the result to the Register File.

When data are stored in the 32 working registers there are no need to move the data
to and from memory between each arithmetic instruction. Some of the registers can
be combined to 16-bits pointers that efficiently access data in the data and program
memories. For large memory sizes the memory pointers can be combined with a third
8-bit register to form 24-bits pointers that can access 16M bytes of data, with no
paging.
1

Addressing Modes The AVR architecture has four memory pointers that are used to access data and Pro-
gram memory. The Stack Pointer (SP) is dedicated for storing the return address after
return from a function. The C compiler allocates one pointer as parameter Stack. The
two remaining pointers are general purpose pointers used by the C Compiler to load and
store data. The example below shows how efficiently the pointers are used for typical
pointer operations in C.

char *pointer1 = &table[0];

char *pointer2 = &table[49];

*pointer1++ = *--pointer2;

This generates the following Assembly code:

LD R16,-Z ; Pre-decrement Z pointer and load data

ST X+,R16 ; Store data and post increment

The four pointer addressing modes and examples are shown below. All pointer opera-
tions are single-word instructions that execute in two clock cycles.

1. Indirect addressing: For addressing of arrays and pointer variables:
*pointer = 0x00;

2. Indirect addressing with displacement: Allows accesses to all elements in a
structure by pointing to the first element and add displacement without having to
change the pointer value. Also used for accessing variables on the software
stack and array accesses.

3. Indirect addressing with post-increment: For efficient addressing of arrays and
pointer variables with increment after access:

*pointer++ = 0xFF;

4. Indirect addressing with pre-decrement: For efficient addressing of arrays and
pointer variables with decrement before access:

*--pointer = 0xFF

The pointers are also used to access the Flash Program memory. In addition to indirect
addressing with pointers, the data memory can also be accessed by direct addressing.
This gives access to the entire data memory in a two-word instruction.

Support for 16-/32-bit
Variables

The AVR instruction set includes special instructions for handling 16-bit numbers. This
includes Add/Subtract Immediate Values to Word (ADIW, SBIW). Arithmetic operations
and comparison of 16-bit numbers are completed with two instructions in two clock
cycles. 32-bit arithmetic operations and comparison are ready in four instructions and
four cycles. This is more efficient than most 16-bit processors.
2 AVR035
1497D–AVR–01/04

AVR035
C Code for AVR

Initializing the Stack
Pointer

After Power-up or RESET the Stack Pointer needs to be set up before any function is
called. The linker command file determines the placement and size of the Stack Pointer.
The configuration of memory sizes and Stack Pointer setup is explained in application
note “AVR032: Modifying Linker Command Files”.

Accessing I/O Memory
Locations

The AVR I/O Memory is easily accessed in C. All registers in the I/O Memory are
declared in a header file usually named “ioxxxx.h”, where xxxx is the AVR part number.
The code below shows examples of accessing I/O location. The assembly code gener-
ated for each line is shown below each C code line.

#include <io8515.h> /* Include header file with symbolic names */

__C_task void main(void)

{

char temp; /* Declare a temporary variable*/

/*To read and write to an I/O register*/

temp = PIND; /* Read PIND into a variable*/

// IN R16,LOW(16) ; Read I/O memory

TCCR0 = 0x4F; /* Write a value to an I/O location*/

// LDI R17,79 ; Load value

// OUT LOW(51),R17 ; Write I/O memory

/*Set and clear a single bit */

PORTB |= (1<<PIND2); /* PIND2 is pin number(0..7)in port */

// SBI LOW(24),LOW(2) ; Set bit in I/O

ADCSR &= ~(1<<ADEN); /* Clear ADEN bit in ADCSR register */

// CBI LOW(6),LOW(7) ; Clear bit in I/O

/* Set and clear a bitmask*/

DDRD |= 0x0C; /* Set bit 2 and 3 in DDRD register*/

// IN R17,LOW(17) ; Read I/O memory

// ORI R17,LOW(12) ; Modify

// OUT LOW(17),R17 ; Write I/O memory

ACSR &= ~(0x0C); /* Clear bit 2 and 3 in ACSR register*/

// IN R17,LOW(8) ; Read I/O memory

// ANDI R17,LOW(243) ; Modify

// OUT LOW(8),R17 ; Write I/O memory

/* Test if a single bit is set or cleared */

if(USR & (1<<TXC)) /* Check if UART Tx flag is set*/

{

PORTB |= (1<<PB0);

// SBIC LOW(11),LOW(6) ; Test direct on I/O

// SBI LOW(24),LOW(0)
3
1497D–AVR–01/04

while(!(SPSR & (1<<WCOL))) ;/* Wait for WCOL flag to be set */

// ?0003:SBIS LOW(14),LOW(6); Test direct on I/O

// RJMP ?0003

/* Test if an I/O register equals a bitmask */

if(UDR & 0xF3) /* Check if UDR register "and" 0xF3 is non-zero

{

}

// IN R16,LOW(12) ; Read I/O memory

// ANDI R16,LOW(243) ; "And" value

// BREQ ?0008 ; Branch if equal

//?0008:

}

/* Set and clear bits in I/O registers can also be declared as macros */

#define SETBIT(ADDRESS,BIT) (ADDRESS |= (1<<BIT))

#define CLEARBIT(ADDRESS,BIT) (ADDRESS &= ~(1<<BIT))

/* Macro for testing of a single bit in an I/O location*/

#define CHECKBIT(ADDRESS,BIT) (ADDRESS & (1<<BIT))

/* Example of usage*/

if(CHECKBIT(PORTD,PIND1)) /* Test if PIN 1 is set*/

{

CLEARBIT(PORTD,PIND1); /* Clear PIN 1 on PORTD*/

}

if(!(CHECKBIT(PORTD,PIND1))) /* Test if PIN 1 is cleared*/

{

SETBIT(PORTD,PIND1); /* Set PIN 1 on PORTD*/

}

4 AVR035
1497D–AVR–01/04

AVR035
Accessing Memory
Mapped I/O

Some AVR devices include an external Data memory interface. This interface can be
used to access external RAM, EEPROM, or it can be used to access memory mapped
I/O. The following examples show how to declare, write and read memory mapped I/O:

#include <io8515.h>

#define reg (* (char *) 0x8004)/* Declare a memory mapped I/O address*/

__C_task void main(void)

{

 char temp; /* Local temp variable */

 reg = 0x05; /* Write a value to the memory mapped address*/

 temp = reg; /* Read the memory mapped I/O address */

}

If consecutive memory mapped addresses are accessed, the most efficient way to
access them is to declare a constant pointer and add an displacement value to this off-
set. The example below shows how to access memory mapped I/O this way. The
generated assembly code for each instruction is shown in italic.

/* Define the memory mapped addresses */

#define data 0x0003

#define address_high 0x0002

#define address_low 0x0001

__C_task void main(void)

{

 /* Start address for memory map */

 unsigned char *pointer = (unsigned char *) 0x0800;

// LDI R30,LOW(0) ; Init Z-pointer

// LDI R31,8

 (pointer+address_low) |= 0x40; / Read and modify one address*/

// LDD R18,Z+1 ; Load variable

// ORI R18,LOW(64) ; Modify

// STD Z+1,R18 ; Store Back

 (pointer+address_high) = 0x00; / Write an address*/

// STD Z+2,R30 ; Store zero

 PORTC = *(pointer+data); /* Read an address*/

// LDD R16,Z+3 ; Load variable

// OUT LOW(21),R16 ; Output to port

}

Note that the Z-pointer is initialized before the memory is accessed, and the LDD and
STD (Load and Store with Displacement) instructions are used to access the data. LDD
and STD are one-word instructions that execute in two cycles. The pointer is only
loaded once. Memory mapped I/O locations can be declared as volatile, this indicates
that the variable locations may be modified by hardware and the access will not be
removed by optimization.
5
1497D–AVR–01/04

Accessing Data in
EEPROM

The internal EEPROM in the AVR can be read and written during normal operation. For
the IAR compiler macros to read and write the EEPROM are included in the file ina90.h.
The following macros are normally defined to read and write the EEPROM:

#define _EEGET(VAR,ADR)/* Read data in EEPROM address ADR into variable VAR
*/ \

{ \

 while(EECR & 0x02); /* Check if EEPROM is ready*/ \

 EEAR = (ADR); /* Write EEPROM address register*/ \

 EECR |= 0x01; /* Set the read strobe*/ \

 (VAR) = EEDR; /* Read the data into variable in the next cycle */ \

}

#define _EEPUT(ADR,VAL) /* Write data in VAL into EEPROM address ADR*/\

{\

 while(EECR&0x02); /* Check if EEPROM is ready*/ \

EEAR = (ADR); /* Write EEPROM address register*/ \

 EEDR = (VAL); /* Write EEPROM data register*/ \

 EECR |= 0x04; /* Set master write enable signal*/ \

 EECR |= 0x02; /* Set write strobe*/ \

}

Example code for reading and writing to EEPROM using predefined macros:

#include <io8515.h>

#include <ina90.h>

#define EE_ADDRESS 0x010 /* Define address constant for EEPROM data*/

__C_task void main(void)

{

 char temp; /* Local variable for temporary storage */

 _EEGET(temp,EE_ADDRESS); /* Read data from EEPROM*/

 temp += UDR; /* Add UART data to temp variable */

 _EEPUT(EE_ADDRESS,temp); /* Write data to EEPROM*/

}

Note that if interrupts are enabled, they need to be disabled while the EEPROM write is
in progress to avoid a time-out for the Master Write Enable (EEMWE) bit. If the program
includes access to the EEPROM inside interrupt routines, interrupts should be disabled
also before reading the EEPROM to avoid corruption of the EEPROM Address Register.
6 AVR035
1497D–AVR–01/04

AVR035
Creating EEPROM
Data Files(IAR v2)

Access of variables in EEPROM is greatly improved in version 2 of the IAR compiler.
This chapter explains use of EEPROM variables. For use of EEPROM variables in older
versions of the IAR compiler, please see next chapter.

To use the method described below, the “Use inbuilt EEPROM” option must be enabled,
and the size must be specified in the compiler options setup. The segment EEPROM_I
must be defined in the linker file

EEPROM variables should be declared as global variables.

Example: To declare a EEPROM variable:

__eeprom volatile unsigned char ee_var = 0xff;

To access this variable in the code, simply read or write the variable like any other
variable:

__C_task void main(void)

{

unsigned char temp;

temp = ee_var;

// LDI R20,LOW(ee_var)

// LDI R21,(ee_var) >> 8

// CALL __eeget8_16

PORTB = temp;

// OUT 0x18,R16

ee_var = TCNT0;

// IN R16,0x32

// LDI R20,LOW(ee_var)

// LDI R21,(ee_var) >> 8

// CALL __eeput8_16

}

When EEPROM variables are declared with initial values, these values can be extracted
into a seperate hex file for programming into the EEPROM using any AVR programmer.

A special program is provided with the IAR compiler to make the seperate file. It is called
“postlink.exe” and is located in the “\bin” directory under the IAR installation. Run the
program without argument for explaination how to use it.

To use the postlink.exe program, the XLINK output format must be set to generate sim-
ple format. This is controlled from the XLINK options setup.
7
1497D–AVR–01/04

Creating EEPROM
Data Files(IAR v1)

For access of EEPROM using IAR compiler v2, please see previous chapter. The
method in this chapter describes methods for accessing EEPROM efficiently using IAR
compiler v1.

In some cases it may be convenient to place initial data in the EEPROM and access
them from the C code. The IAR tools can be used for generating initial data for the
EEPROM. By using header files for defining the structures, it can be assured that the
structures are addressable from the C program itself.

The EEPROM data and the program code are two separate projects that must be com-
piled and linked separately. A header file describing the structure of the EEPROM
memory is used by both projects to ensure that the data in the EEPROM memory can
be referenced by their symbolic names.

Example The feature will be illustrated through an example. In this example, assume the following
setup of the EEPROM:

1. A character array (100 bytes).

2. An integer (two bytes).

3. Two unsigned characters (two bytes each).

The EEPROM Header File The EEPROM header file is included both by the program defining the contents of the
EEPROM data and the C program accessing the EEPROM. The EEPROM header file is
defined as follows:

#define EEPROMADR(x) (unsigned int) (&((TypeEEPROMStruct *)0x0000)->x)

typedef struct

{

 char cArray[100]; /* The character array */

 int iNumber; /* The integer */

 unsigned char uMinorVersion; /* The first unsigned character */

 unsigned char uMajorVersion; /* The second unsigned character */

} TypeEEPROMStruct; /* Just a type name */

The #define directive contains a macro to be used in the C program to get the
addresses of the structure variables. It contains a constant pointer (0x0000). In order to
displace the EEPROM data contents, this pointer, needs to be changed (this will also
require a change in the EEPROM linker file, see below).

The EEPROM Program
File

The EEPROM Program File (eeprom.c) contains the initialization of the structure
defined in the EEPROM Header File.

#include "eeprom.h" /* Include the structure type definition */

#pragma memory=constseg(EEPROM) /* Make it a named segment */

const TypeEEPROMStruct __EEPROMInitializationData =

 {"Testing ", /* Initialize cArray */

 0x100 , /* Initialize iNumber */

 0x10 , /* Initialize uMinorVersion */

 0xFF }; /* Initialize uMajorVersion */
8 AVR035
1497D–AVR–01/04

AVR035
The EEPROM Linker File A very simple Linker File (eeprom.xcl) is required for the EEPROM Program File:

-ca90 -! Define CPU (AVR) -!

-Z(CODE)EEPROM=0-1FF -! EEPROM address space(internal EEPROM memory-!

The address range is here set to 0-1FF (e.g. AT90S8515) and must be changed to the
match the range of the microcontroller being used. The name of the segment is
EEPROM and that matches the #pragma memory=constseg(EEPROM) line in the
“eeprom.c” sourcefile.

In order to displace the contents of the EEPROM, the start address in the EEPROM
segment must be changed (see also the comment in the EEPROM header file section).

Building the EEPROM
Intel-Hex Data File

In order to generate an Intel-Hex file with this content, the following commands are
required:

icca90 eeprom.c (note that -v1 -ms etc. are of no importance)

xlink -f eeprom.xcl -B -Fintel-standard eeprom.r90 -o eeprom.hex

During linking, the following error message is generated:

Error[46]: Undefined external ?CL0T_1_41_L08 referred in eeprom (eeprom.r90
)

The C program references an external dummy symbol to make sure that a compiled
program is linked with the correct version of the library. Since we do not have any library
to link with, we can ignore this error, and the -B option ensures that the “eeprom.hex” file
is generated even if we do have an error. Alternatively, the file can be linked with the fol-
lowing options:

xlink -f eeprom.xcl -D?CL0T_1_41_L08=0 -Fintel-standard eeprom.r90 -o
eeprom.hex

The defined symbol is dependent on the processor version (-v0, -v1 etc), the memory
model (-mt, -ms, etc) and the compiler version, so the symbol can vary from installation
to installation (just try to link it, check which undefined symbol it reports and use -D=0).
The generated “eeprom intel-hex” file looks like this (eeprom.h):

:1000000054657374696E67202000000000000000D2

:1000100000000000000000000000000000000000E0

:1000200000000000000000000000000000000000D0

:1000300000000000000000000000000000000000C0

:1000400000000000000000000000000000000000B0

:1000500000000000000000000000000000000000A0

:0800600000000000000110FF88

:00000001FF
9
1497D–AVR–01/04

Accessing the EEPROM
Data Structure from a C
Program

The following program uses the defined EEPROM structure to access the EEPROM
(main.c):

#include "eeprom.h" /* We use the structure and macro */

#include <io8515.h> /* Defines the EEPROM locations */

void error(void) /* An error routine to catch errors */

{

for(;;) /* Do nothing */

 ;

}

void C_task main(void)

{

 int i; /* Used for readback of integer */

 EEAR = EEPROMADR(cArray); /* Set up address to 1st element */

 EECR |=1; /* Start EEPROM Read */

 if(EEDR != 'T') /* Check towards initialization */

 error(); /* If not as expected -> error */

 EEAR = EEPROMADR(iNumber); /* Set up address to 2nd element */

 EECR |=1; /* Start EEPROM Read */

 i = EEDR ; /* Set low byte of integer */

 EEAR = EEPROMADR(iNumber)+1; /* Set up address to second byte */

 EECR |=1; /* Start EEPROM Read */

 i |= EEDR<<8; /* Set high byte of integer */

 if(i!=0x100) /* Check towards initialization */

 error(); /* If not as expected -> error */

 EEAR = EEPROMADR(uMinorVersion); /* Set up address to 4th element */

 EECR |=1; /* Start EEPROM Read */

 if(EEDR != 0x10) /* Check towards initialization */

 error(); /* If not as expected -> error */

 EEAR = EEPROMADR(uMajorVersion); /* Set up address to 3rd element */

 EECR |=1; /* Start EEPROM Read */

 if(EEDR != 0xFF) /* Check towards initialization */

 error(); /* If not as expected -> error */

for (;;)

 ; /* Do nothing (success) */

}

The program can be compiled and executed in AVR Studio®. The “eeprom.hex” file
must be loaded into the EEPROM memory before the program is executed or it will go
right into the error() routine. The EEPROM is loaded with a hex file by using the File->
Up/Download memories function after the program has been loaded.
10 AVR035
1497D–AVR–01/04

AVR035
Variables and Data
Types

Data Types As the AVR is an 8-bit microcontroller, use of 16- and 32-bit variables should be limited
to where it is absolutely necessary. The following example shows the code size for a
loop counter for an 8-bit and 16-bit local variable:

8-bit Counter unsigned char count8 = 5; /* Declare a varible, assign a value */

// LDI R16,5 ;Init variable

do /* Start a loop */

{

}while(--count8); /* Decrement loop counter and check for zero */

// ?0004:DEC R16 ; Decrement

// BRNE ?0004 ; Branch if not equal

16-bit Counter unsigned int count16 = 6; /* Declare a variable, assign a value */

// LDI R24,LOW(6) ;Init variable, low byte

// LDI R25,0 ;Init variable, high byte

do /* Start a loop */

{

}while(--count16); /* Decrement loop counter and check for zero */

// ?0004:SBIW R24,LWRD(1) ; Subtract 16-bit value

// BRNE ?0004 ; Branch if not equal

Note: 1. Always use the smallest applicable variable type. This is especially important for glo-
bal variables.

Efficient Use of Variables A C program is divided into many functions that execute small or big tasks. The func-
tions receive data through parameters and may also return data. Variables declared
inside a function are called local variables. Variables declared outside a function are
called global variables. Variables that are local, but must be preserved between each
time the function is called, must be declared as static local variables.

Global variables that are declared outside a function are assigned to an SRAM memory
location. The SRAM location is reserved for the global variable and can not be used for
other purposes, this is considered to be waste of valuable SRAM space. Too many glo-
bal variables make the code less readable and hard to modify.

Local variables are preferably assigned to a register when they are declared. The local
variable is kept in the same register until the end of the function, or until it is not refer-
enced further. Global variables must be loaded from the SRAM into the working
registers before they are accessed.

The following example illustrates the difference in code size and execution speed for
local variables compared to global variables.

Table 1. Variable and Code Size(1)

Variable Code Size (Bytes)

8-bit 6

16-bit 8
11
1497D–AVR–01/04

char global; /* This is a global variable */

__C_task void main(void)

{

char local; /* This is a local variable*/

global -= 45; /* Subtraction with global variable*/

// LDS R16,LWRD(global) ; Load variable from SRAM to register R16

// SUBI R16,LOW(45) ; Perform subtraction

// STS LWRD(global),R16 ; Store data back in SRAM

local -= 34; /* Subtraction with local variable*/

// SUBI R16,LOW(34) ; Perform subtraction directly on local
: variable in register R16

}

Note that the LDS and STS (Load and Store Direct from/to SRAM) are used to access
the variables in SRAM. These are two-word instructions that execute in two cycles.

A local static variable is loaded into a working register at the start of the function and
stored back to its SRAM location at the end of the function. Static variables will therefore
give more efficient code than global variables if the variable is accessed more than once
inside the function.

To limit the use of global variables, functions can be called with parameters and return a
value which are commonly used in C. Up to two parameters of simple data types (char,
int, long, float, double) are passed between functions in the registers R16 - R23. More
than two parameters and complex data types (arrays, structs) are either placed on the
software stack or passed between functions as pointers to SRAM locations.

Table 2. Code Size and Execution Time for Variables

Variable Code Size (Bytes) Execution Time (Cycles)

Global 10 5

Local 2 1
12 AVR035
1497D–AVR–01/04

AVR035
When global variables are required they should be collected in structures whenever
appropriate. This makes it possible for the C compiler to address them indirectly. The
following example shows the code generation for global variable versus global
structures.

typedef struct

{

char sec;

}t;

t global /* Declare a global structure*/

char min;

__C_task void main(void)

{

t *time = &global;

// LDI R30,LOW(global) ; Init Z pointer

// LDI R31,(global >> 8) ; Init Z high byte

if (++time->sec == 60)

{

// LDD R16,Z+2 ; Load with displacement

// INC R16; Increment

// STD Z+2,R16 ; Store with displacement

// CPI R16,LOW(60) ; Compare

// BRNE ?0005 ; Branch if not equal

}

if (++min == 60)

{

// LDS R16,LWRD(min) ; Load direct from SRAM

// INC R16 ; Increment

// STS LWRD(min),R16 ; Store direct to SRAM

// CPI R16,LOW(60) ; Compare

// BRNE ?0005 ; Branch if not equal

}

}

When accessing the global variables as structures the compiler is using the Z-pointer
and the LDD and STD (Load/store with displacement) instructions to access the data.
When the global variables are accessed without structures the compiler use LDS and
STS (Load/store direct to SRAM). The difference in code size and will be:

This does not include initialization of the Z-pointer (four bytes) for the global structure.
To access one byte the code size will be the same, but if the structure consists of two
bytes or more it will be more efficient to access the global variables in a structure.

Table 3. Code Size for Global Variables

Variable Code Size (Bytes)

Structure 10

Non-structure 14
13
1497D–AVR–01/04

Optimizing Global
Flags

Most applications requires some global flags to control the program flow. Placing these
in global variables in inefficient in AVR because the variable must be loaded into the
register before the flag is tested. To optimize the flag testing the flag can either be
placed in a dedicated register, or it can be placed in an unused I/O location.
Note: To place a global variable in a dedicated register requires that the register is allocated in

the compiler options setup. This can only be done with IAR Compiler v2.

Unused locations in the I/O Memory can be utilized for storing global variables when
certain peripherals are not used. As example, If the UART is not used the UART Baud
Rate Register (UBRR) is available, and if the EEPROM is not used both the EEPROM
Data Register (EEDR) and the EEPROM Address Register (EEAR) will be available to
store global variables.

The I/O Memory is accessed very efficiently, and locations below 0x1F in the I/O Mem-
ory are especially suited since they are bit-accessible. I/O locations above 0x1F is less
efficient, but still better than global SRAM variables.

The following examples shows the differenc in code size for using SRAM variables, I/O
area or a dedicated register for Global Flags:

typedef struct bitfield{// Bitfield structure

 unsigned char bit0:1;

 unsigned char bit1:1;

 unsigned char bit2:1;

 }bitfield;

Global Flags in RAM: bitfield global_flag; // Bitfield in a global variable

...

global_flag.bit1 = 1;

// LDI R30,LOW(global_flag)

// LDI R31,(global_flag) >> 8

// LD R16,Z

// ORI R16,0x02

// ST Z,R16

Code Size: 10 bytes

Global Flags in Register R15 Note that bitfields are not allowed as register variables.
__no_init __regvar unsigned char reg_flag@ 15;

//Global register R15

...

reg_flag |= 0x01;

// SET

// BLD R15,0

Code size: 4 bytes
14 AVR035
1497D–AVR–01/04

AVR035
Global Flags in Free I/O
Registers Above 0x1F

__no_init volatile bitfield high_io_flag@0x55;

// Bitfield in I/O above 0x1F, note that 0x30 offset is added to address

...

high_io_flag.bit2 = 1;

// IN R16,0x35

// ORI R16,0x04

// OUT 0x35,R16

Code size: 6 bytes

Global Flags in Free I/O
Register Below 0x1F

__no_init volatile bitfield low_io_flag@0x35;

// Bitfield in I/O location below 0x1F

...

low_io_flag.bit1 = 1;

// SBI 0x15,0x01

Code size: 2 bytes

GPIO registers The advantages of free I/O registers are increased in all new AVR devices. From
ATmega169, ATmega48/88/168 and ATtiny2313, all AVR devices includes a number of
General Purpose I/O registers, both below and above the 0x1F address limit. These reg-
isters are used as any other free I/O register, and could potentially increase
performance and reduce code size for your design.

The examples shows using free I/O locations are very efficient for flag variables that
operates on single bits, while using dedicated registers are efficient for frequently
accessed variables. Note that locking registers for global variables limits the compilers
ability to optimize the code. For complex programs it may increase the code size when
dedicating registers for global variables.

Table 4. Code Size (Bytes) for some Common Operations

Action
Data in
SRAM

Data in I/O
Above 0x1F

Data in
Register File

Data in I/O
Below 0x1F

Set/clear single bit 10 6 4 2

Test single bit 6 4 2 2

Set/clear multiple bits 10 6 4 6

Compare with immediate value 6 4 4 4
15
1497D–AVR–01/04

Bit-field vs. Bit-mask To save valuable bytes of data storage it may be necessary to save several single bit
flags into one byte. A common use of this is bit flags that are packed in a status byte.
This can either be defined as bit-mask or bit-field. Below is an example of use of bit-
mask and bit-field to declare a status byte:

/* Use of bit-mask for status bits*/

/* Define bit macros, note that they are similar to the I/O macros*/

#define SETBIT(x,y) (x |= (y)) /* Set bit y in byte x*/

#define CLEARBIT(x,y) (x &= (~y)) /* Clear bit y in byte x*/

#define CHECKBIT(x,y) (x & (y)) /* Check bit y in byte x*/

/* Define Status bit mask constants */

#define RETRANS 0x01 /* bit 0 : Retransmit Flag*/

#define WRITEFLAG 0x02 /* bit 1 : Flag set when write is due*/

#define EMPTY 0x04 /* bit 2 : Empty buffer flag*/

#define FULL 0x08 /* bit 3 : Full buffer flag*/

__C_task void main(void)

{

char status; /* Declare a status byte*/

CLEARBIT(status,RETRANS); /* Clear RETRANS and WRITEFLAG*/

CLEARBIT(status,WRITEFLAG);

/*Check if RETRANS flag is cleared */

if (!(CHECKBIT(status, RETRANS)))

{

SETBIT(status,WRITEFLAG);

}

}

Bit-masks are handled very efficient by the C compiler if the status variable is declared
as local variable within the function it is used. Alternatively, use unused I/O locations
with bit mask or bitfields.

Bitfields can be defined in SRAM and I/O locations. Global variables in registers only
allows simple variables. To use bit instructions on the global variables in registers, use
bit-masks.

The ANSI standard does not define how bitfields are packed into the byte, i.e., a bitfield
placed in the MSB (Most Significant Bit) with one compiler can be placed in the LSB
(Least Significant Bit) in another compiler. With bitmasks the user has complete control
of the bit placement inside the variables.
16 AVR035
1497D–AVR–01/04

AVR035
Initialization of Global
Variables

The startup initialization code executed after reset initializes all global variables. Global
variables without initial value are always initialized to 0.

Example:

unsigned char global_counter = 100;

unsigned int global_flags ;// All global variables are initialized to 0

Normally there is no need to initialize global variables in initialization routines.

For best code denisty all global variable should be initialized at declaration. Alterna-
tively, all variables can be initialized in a seperate routine and the initialization code at
startup can be removed.

Accessing Flash Memory A common way to define a constant is:

const char max = 127;

This constant is copied from flash memory to SRAM at startup and remains in the SRAM
for the rest of the program execution. This is considered to be waste of SRAM. To save
SRAM space the constant can be saved in flash and loaded when it is needed:

flash char max = 127;

flash char string[] = "This string is stored in flash";

__C_task void main(void)

{

char flash *flashpointer; ; Declare flash pointer

flashpointer = &string[0]; ; Assign pointer to flash location

UDR = *flashpointer; ; Read data from flash and write to UART

}

Note: IAR Compiler v2 uses __flash instead of flash.

When strings are stored in Flash like in the latter example they can be accessed directly
or through pointers to the Flash Program memory. For the IAR C compiler, special
library routines exist for string handling, see the “IAR Compiler Users Manual” for
details.

Interrupt Routines When entering an interrupt routine all registers used in the interrupt routine are pushed
on the Stack. To reduce code size and optimize speed the interrupt routines should be
small and preferrably without calls to other functions. The reason is that when the rou-
tine calls an external function, the compiler pushes all registers on the Stack.
17
1497D–AVR–01/04

Functions Returning
Several Values

In some cases global variables are used because several values must be returned from
a function. With AVR, up to four bytes can be returned from a function by returning a
value in the scratch registers. Some tricks can be used to combine several varibles in
one return value.

Example

unsigned int read_io(void)

{

return (PIND<<8 | TCNT0);// Function is returning 2 values

}

// IN R17,0x10// First value is shifted 8 bytes

// IN R16,0x32// Second values read into register

// RET

From the calling function

__C_task void main(void)

{

unsigned int temp;// Declare a temporary variable

temp = sum();// Read value from function

PORTB = temp>>8;// Use only high byte

TCNT0 = temp&0x00FF;// Use only low byte

}

// CALL sum// Call the function

// OUT 0x18,R17// Use high byte

// OUT 0x32,R16// Use low byte

Memory Model For the smallest AVR devices with less than 256 bytes of SRAM the tiny memory model
can be used in many cases. When using tiny memory model, all variables in SRAM are
accessed with 8-bit pointers instead of 16-bit pointers. This reduces the code size for
loading pointer values. Note that 8-bit pointers can address 160 bytes of RAM + Regis-
ter File and I/O memory. To make sure the compiler utilize all of the addressing range,
make sure the linker file is configured to place the RSTACK and CSTACK at the top of
SRAM.
18 AVR035
1497D–AVR–01/04

AVR035
Control Flow

The Main Function The main function usually contains the main loop of the program. In most cases no func-
tions are calling the main function, and there are no need to preserve any registers
when entering it. The main function can therefore be declared as C_task. This saves
stack space and code size:

__C_task void main(void) /* Declare main() as C_task*/

{

}

Note: IAR Compiler v2 uses __C_tast instead of C_task.

Loops Eternal loops are most efficiently constructed using for(; ;) { }:

for(; ;)

{

/* This is an eternal loop*/

}

// ?0001:RJMP ?0001 ; Jump to label

do{ }while(expression) loops generally generates more efficient code than while{ } and
for{expr1; expr2; expr3). The following example shows the code generated for a do{ }
while loop:

char counter = 100; /* Declare loop counter variable*/

// LDI R16,100 ; Init variable

do

{

} while(--counter); /* Decrement counter and test for zero*/

?0004:DEC R16 ; Decrement

// BRNE ?0004 ; Branch if not equal

Pre-decrement variables as Loop Counter gives usually the most efficient code. Pre-
decrement and post-increment is more efficient because branches are depending on the
flags after decrement.
19
1497D–AVR–01/04

Macros vs. Functions Functions that assemble into 3 - 4 lines of assembly code or less can in some cases be
handled more efficiently as macros. When using macros the macro name will be
replaced by the actual code inside the macro at compile time. For very small functions
the compiler generates less code and gives higher speed to use macros than to call a
function.

The example below shows how a task can be executed in a function and as a macro.

/* Main function to call the task*/

__C_task void main(void)

{

 UDR = read_and_convert(); /* Read value and write to UART*/

}

/* Function to read pin value and convert it to ASCII*/

char read_and_convert(void)

{

 return (PINB + 0x48); /* Return the value as ASCII character */

}

/* A macro to do the same task*/

#define read_and_convert (PINB + 0x48)

The code with function assemble into the following code:

main:

// RCALL read_and_convert ; Call function

// OUT LOW(12),R16 ; Write to I/O memory

read_and_convert:

// IN R16,LOW(22) ; Read I/O memory

// SUBI R16,LOW(184) ; Add 48 to value

// RET ; Return

The code with macro assemble into this code:

main:

// IN R16,LOW(22) ; Read I/O memory

// SUBI R16,LOW(184) ; Add 48 to value

// OUT LOW(12),R16 ; Write I/O memory

Table 5. Code Size and Execution Time for Macros and Functions

Variable Code Size (Bytes) Execution Time (Cycles)

Function 10 10

Macro 6 3
20 AVR035
1497D–AVR–01/04

AVR035
Eighteen Hints to
Reduce Code Size

1. Compile with full size optimization.

2. Use local variables whenever possible.

3. Use the smallest applicable data type. Use unsigned if applicable.

4. If a non-local variable is only referenced within one function, it should be
declared static.

5. Collect non-local data in structures whenever natural. This increases the possi-
bility of indirect addressing without pointer reload.

6. Use pointers with offset or declare structures to access memory mapped I/O.

7. Use for(;;) { } for eternal loops.

8. Use do { } while(expression) if applicable.

9. Use descending loop counters and pre-decrement if applicable.

10. Access I/O memory directly (i.e., do not use pointers).

11. Declare main as C_task if not called from anywhere in the program.

12. Use macros instead of functions for tasks that generates less than 2-3 lines
assembly code.

13. Reduce the size of the Interrupt Vector segment (INTVEC) to what is actually
needed by the application. Alternatively, concatenate all the CODE segments
into one declaration and it will be done automatically.

14. Code reuse is intra-modular. Collect several functions in one module (i.e., in one
file) to increase code reuse factor.

15. In some cases, full speed optimization results in lower code size than full size
optimization. Compile on a module by module basis to investigate what gives the
best result.

16. Optimize C_startup to not initialize unused segments (i.e., IDATA0 or IDATA1 if all
variables are tiny or small).

17. If possible, avoid calling functions from inside the interrupt routine.

18. Use the smallest possible memory model.

Five Hints to Reduce
RAM Requirements

1. All constants and literals should be placed in Flash by using the Flash keyword.

2. Avoid using global variables if the variables are local in nature. This also saves
code space. Local variables are allocated from the stack dynamically and are
removed when the function goes out of scope.

3. If using large functions with variables with a limited lifetime within the function,
the use of subscopes can be beneficial.

4. Get good estimates of the sizes of the software Stack and return Stack (Linker
File).

5. Do not waste space for the IDATA0 and UDATA0 segments unless you are using
tiny variables (Linker File).

Checklist for
Debugging Programs

1. Ensure that the CSTACK segment is sufficiently large.

2. Ensure that the RSTACK segment is sufficiently large.

3. Ensure that the external memory interface is enabled if it should be enabled and
disabled if it should be disabled.

4. If a regular function and an interrupt routine are communicating through a global
variable, make sure this variable is declared volatile to ensure that it is reread
from RAM each time it is checked.
21
1497D–AVR–01/04

 Printed on recycled paper.

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard
warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any
errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and
does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are
granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use
as critical components in life support devices or systems.

Atmel Corporation Atmel Operations

2325 Orchard Parkway
San Jose, CA 95131
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

1497D–AVR–01/04 0M

© Atmel Corporation 2003. All rights reserved. Atmel® and combinations thereof, AVR® and AVR Studio®

are the registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be
the trademarks of others.

	Features
	Introduction
	Architecture Tuned for C Code
	Addressing Modes
	Support for 16-/32-bit Variables

	C Code for AVR
	Initializing the Stack Pointer
	Accessing I/O Memory Locations

	Accessing Memory Mapped I/O
	Accessing Data in EEPROM

	Creating EEPROM Data Files(IAR v2)
	Creating EEPROM Data Files(IAR v1)
	Example
	The EEPROM Header File
	The EEPROM Program File
	The EEPROM Linker File
	Building the EEPROM Intel-Hex Data File
	Accessing the EEPROM Data Structure from a C Program

	Variables and Data Types
	Data Types
	8-bit Counter
	16-bit Counter

	Efficient Use of Variables

	Optimizing Global Flags
	Global Flags in RAM:
	Global Flags in Register R15
	Global Flags in Free I/O Registers Above 0x1F
	Global Flags in Free I/O Register Below 0x1F
	GPIO registers
	Bit-field vs. Bit-mask
	Initialization of Global Variables
	Accessing Flash Memory
	Interrupt Routines
	Functions Returning Several Values
	Memory Model

	Control Flow
	The Main Function
	Loops
	Macros vs. Functions

	Eighteen Hints to Reduce Code Size
	Five Hints to Reduce RAM Requirements
	Checklist for Debugging Programs

