
On Protocol Processing
Ulf Nordqvist

Dept. of Physics and Measurement Technology
Linköping University

Sweden

Abstract— The topic of this paper is the emerging area of protocol
processing. The use of protocol processing is rapidly increasing today
when more and more networks for computers and others are coming
into use. Emerging high speed networks puts very high demands on
the hardware which is going to process the packets in order to get the
vital information. The result is that software processes running on a
standard CPU will not be able to process the packets at wire-speed.
Therefor expensive and power consuming memories has to be used. To
avoid this problem protocol processors is used as a hardware platform
specialized on processing of these packets and their protocols. The aim
of this paper is to give the background too, and an overview of the
novel academic research area called protocol processing.

I. INTRODUCTORY OUTLINE

The aim of this paper is to present an up-to-date over-
view on the area of protocol processing in general and
specifically the protocol processor proposed by the aut-
hor and his research team. The protocol processor is pre-
sented as a solution to the limitations and problems with
todays traditional protocol processing. In section 2 the ac-
ademic research area as well as the industrial area of pro-
tocol processing are introduced. The section also contains
a presentation of the implementation methods, which tra-
ditionally have been used for processing of protocols. The
drawbacks and limitations of these implementation met-
hods are also discussed. Finally an overview of the appli-
cations, with their respective protocols, that might especi-
ally benefit from use of a protocol processor, is presented.
In section 3 a relatively novel method for integration of
large scale systems into one chip is presented. Moreover
the integration of a protocol processor into such a system
is motivated and discussed. In section 4 a protocol proces-
sor that can meat tomorrows high requirement is presen-
ted. The application area and some examples of the central
parts of this processor are then presented in section 5.

II. PROTOCOL PROCESSING

As a result of the explosive growth of computer networ-
king and the Internet, network protocol processing is per-
formed in more and more situations. There is also a strong
development towards an increased use of networks pro-
tocols in cases where other techniques were common ear-
lier, e.g. voice and video. One reason is that network pro-
tocols normally can handle a mixture of any kind of traffic.

Today, protocol processing in computer networks is per-
formed either on standard Central Processing Units (CPU)

Ulf Nordqvist is a Ph.D. student at the Electronic Devices group, Dept.
of Physics and Measurement Technology, Linköping University, Sweden.
E-mail: ulfnor@ifm.liu.se

or by one or several Application Specific Integrated Cir-
cuits (ASIC). Most processing of protocols are performed
in software, running on standard computers with their
standard, general purpose CPUs, or on embedded CPU
cores. Such implementations are expensive in cost, space
and power, because of the lack of dedication in a general
CPU. There is also an upper capacity limit, set by the I/O
capacity and the maximum instruction rate of the CPU.

The alternative solution is to implement the protocol
processing in one or several ASICs. This may give solu-
tions with better cost, power and capacity performance,
at the cost of very low flexibility. Even if ASIC solutions
are quite common today, the low flexibility becomes less
and less acceptable. The development time of the ASIC
solution is large and product debugging or upgrading
demands a very slow and costly hardware redesign. We
think that the solution to these problems is an application
specific programmable protocol processor. This solution is
also supported by [1].

A. What is new?

Internet traffic is doubling every six months. New
network services such as Voice over IP (VoIP) and policy-
based Quality of Service (QoS) result in demands for
increasing processing performance. At the same time,
high speed protocols are becoming more and more com-
mon in the computer networks and in a not to distant fu-
ture the network terminals (NT) will use protocols such as
10 G-Ethernet (10 Gbit/s). Using such a protocol results
in a tremendous amount of data, that streams in and out
of every network terminal. All data have to be processed
before it is used by the application on the receiving termi-
nal. If we then want to use the increased bandwidth pro-
vided by the network, the NT has to increase its computa-
tional load. Another example of the increased demands on
high throughput is the 3G mobile phone application whe-
re a baseband processor will have to manage a couple of
hundreds Mbit/s. Balance between on one hand demands
on increasing speed and complexity (computational de-
mands) and on the other hand power consumption, reu-
sability, die size etc, is then the hot issue for tomorrows
protocol processing hardware resources. Today it is clear
that the traditional solutions are not capable of meeting
those requirements. That is what is new.

B. Traditional Protocol Processing Solutions

Traditionally protocol processing has been performed
on a heterogeneous platform with two different appro-

CCSSE’01 2

aches to protocol processing.

System A

7

6

5

4

3

2

1

System B

7

6

5

4

3

2

1

DataHeader 2

DataHeader 3

Header 4 Data

Information Units

Data

Network

Fig. 1. The information exchange process is defined in the OSI standard.
As illustrated by the figure there are a lot of headers transfered in a
computer network. Each layer communicates with the same layer on
the communicating machine.

� The lower two layers, called Physical and Data Link
Layer in the OSI protocol stack [2], have traditionally been
processed by dedicated hardware (i.e. one or more ASICs).
The layered information exchange process standardized
by the OSI standard, is illustrated in figure 1. The main
advantage using ASICs as protocol processing unit is the
performance. The problems with ASIC solutions are to-
day obvious. First of all the ASIC lacks configurability,
meaning that it is impossible to change the functionality
of the ASIC without replacing the hardware. The result is
then that the user has to buy a new network card every
time the network protocols are updated or new protocols
are being adapted. That costs a lot of money and time. On
the other hand, using ASICs is the only way of designing
the high speed backbone network that customers today
requires. In a few years time the same computational load
will be required also for NTs. For network node compo-
nents such as routers, bridges etc the configurability needs
are not as crucial as it is for NTs. The reason to why it
is still possible to implement everything using ASICs in
the backbone networks is simple. The customers to such
equipment are not very cost sensitive. On the other hand,
the time-to-market demands from the networking indu-
stry are becoming very hard to meet. This means that also
for the network node components, novel implementation
methods have to be adapted. The long time-to-market and
the short time-on-market are probably the most serious
drawbacks with the ASIC approach.
� The upper layers (3 and above in the OSI stack) have
traditionally been processed in software, running on the
host machine where the source or destination application
also runs. The primary advantage using a general CPU as
protocol processor is the CPUs infinite SW resources. Up-
grading and modification of the processor can then simply
be done by downloading a new program. This extends
the time-on-market which is very important. On the other

hand, the CPU that processes the upper layers cannot pro-
cess them at the speed of the emerging network protocols,
due to its general nature. The situation is getting worse
and worse with the increasing amount of communication
that has to be handled by each network terminal. When
the next generation high speed networks is coming into
use, todays very general CPUs have to give up. At those
speeds buffers would get filled very quickly if the packets
where not processed at the same rate as they arrive. Since
the CPU cannot handle these speeds even for the proces-
sing of the layer 3 and above, the conclusion must be that
a bigger part of the processing tasks has to be handled by
dedicated hardware.

Flexibility

Speed

ASIC

PP

CPU

Fig. 2. The Protocol Processor tries to combine the flexibility of a CPU
and the speed of an ASIC in the same hardware.

In the last couple of years, the first generation of pro-
tocol processors has been presented by the industry. One
of those processors was presented in [3]. They normally
consist of some specialized hardware for the physical lay-
er and a couple of very powerful General Purpose CPUs
which process the upper layers. All are then integrated on
the same chip and therefor they can together process se-
veral Mpackets/s. Such solutions are mostly aiming for
the backbone applications and especially routers. These
solutions have clarified the need for novel solutions for
protocol processing also in NTs. Another very important
issue, that the industry solutions have pointed out, is the
programming environment. It is absolutely necessary to
have a high level compiler included in the system design
so that the user does not need to program the PP using
micro-code.

Conclusion: The key issue for successful protocol proces-
sing in a NT is to be able to place all the toughest and pro-
cessing intensive jobs on dedicated hardware. The reason
is that dedicated hardware will always have superior cost,
power and performance characteristics according to figu-
re 2.

CCSSE’01 3

C. Application and Protocol examples

More and more network communication becomes
packet-based. One example is Voice over IP (VoIP) which
basically is ordinarily phone calls using the Internet to
communicate via IP packets. Another emerging applica-
tion area is residential Local Area Networks (LAN) using
wireless communication. The protocols used for those ap-
plications could be Bluetooth, WLAN or Hiperlan [4]. In
practise any application including digital communication,
packet based or not, can be efficiently processed by de-
dicated hardware in the form of a protocol processor. Of
course the traditional network protocols such as TCP, IP,
UDP, RARP, ARP, IEEE 802.X [5] as well as ATM is intere-
sting to include in the protocol coverage of a protocol pro-
cessor, due to their widespread use. The core issue when
specifying and designing a protocol processor is to find
the most useful set of protocols that can run on the same
hardware.

III. SYSTEM ON A CHIP

 Port Protocol
 Configurable

 Processor
 (CPPP)

CPPP

CPPP

CPPP

Memory A Memory B

General Purpose
CPU DSP DSP

AD/DA
converter

 DMA

????

????

Interconnection
Network

Syetem On a Chip

Fig. 3. A System on a chip (SOC) can include any kind of hardware and
software on the same chip.

With the scaling, or down-sizing, of the transistors in
modern manufacturing processes it is possible to put mo-
re and more transistors into a chip. The well known Moo-
res Law says that the number of transistors per area unit
doubles every 18 month. This gives a system designer a lot
of opportunities. It is today possible to put CPU, memo-
ries, a couple of DSPs (for graphic, audio, protocol pro-
cessing etc), analog parts and various kinds of custom-
made hardware blocks (a.k.a. Intellectual Properties (IP))
into one single chip. One of these so called System On a
Chip (SoC) is shown in figure 3. By keeping the communi-
cation on-chip, the memory bandwidth can be very high
while the power consumption from the drivers of the I/O
buffers, is deleted. By including analog parts on-chip, the

sensitivity to noise is decreased. The use of a CPU on-chip
gives the solution flexibility through its programmabili-
ty. All these benefits is there today so there is no question
about that SoC is the solution for the next generation of
protocol processors.

Fig. 4. Moores law is a well known description of the scaling in CMOS
circuits. The complexity in VLSI circuits in terms of number of tran-
sistors that can be integrated on a chip increases at the rate of 58%
per annum compounded. Whereas design productivity increases at
21% per annum. This gap is called the design crisis and is crucial to
close in order to reach the optimal design.

Time-to-market is today one very important parameter
if a system is going to be economically successful. Furt-
her it is not possible to keep up with Moores law and take
advantages of the increased integration possibilities if not
old designs are reused. Thats why the design flow using
IP reusability is growing very fast. Reusing the IP normal-
ly means that an old IP (e.g. a processor, DSP or some ot-
her design) is either bought from an external designer or
picked from one of the designers old project, and then in-
tegrated into a new design together with new logic. This
way, redesign of a hole new chip can be avoided. Reusing
IPs also reduces the verification time (cost) and increases
the chance for a successful first design since the IP is alre-
ady verified.
In order to be able to reuse an IP and use it in a new SoC, it
is necessary that the IP is flexible and have a well defined
interface to the rest of the SoC. Since the verification time
can be as high as 3/4 of the total time spent on the pro-
ject, reuse is very important for the cost efficiency of the
designs [6].

IV. A CONFIGURABLE PROTOCOL PROCESSOR

Our protocol processor is targeted for use in a network
terminal. To begin with the project has been focused on
downstream processing, i.e. on the receiving terminal. To
provide both compatibility and flexibility the architecture
must be able to handle at least the most frequently used
protocols. There are no problems to later in the project, in-
clude more protocols. In order to develop an optimal pro-
tocol processor it is necessary to find out which protocols
are suitable for execution on such.
According to figure 5 it is possible to divide the tasks
that should be performed in the NT into two groups. Our
protocol processor targets on the deterministic jobs which

CCSSE’01 4

Communication processing

Unknown jobs

Infinite programability
required

General Purpose
Data processing

Limited flexibility
required

Limited complexity

DSP Protocol
Processor

 Deterministic jobs

Fig. 5. Some jobs is requires infinite programmability which makes them
unsuitable for protocol processors.

require an limited flexibility and programmability. Some
of the tasks which are deterministic are still not suitable
for our processor. They can instead be left to other dedica-
ted hardware in the system, e.g. to a Digital Signal Proces-
sor (DSP).
This paper has shown that the main reasons for using a
protocol processor instead of a CPU are:
� High performance (Throughput)
� Low power by reduction of memory access or data pro-
cessing.
This means that protocols that do not require high speed
on-the-fly processing or are too complex for such, are not
very suitable for protocol processing and might therefor
be processed on another processing resource. The power
reduction in the protocol processor compared to an im-
plementation using a general CPU, is very important for
protocol processing in portable devices (i.e. mobile phones
etc). All this has to be considered when deciding the ap-
plication coverage of the protocol processor, e.i deciding
which protocols to include in the PP and which should be
handled by other processing resources.
Figure 6 describes the different protocols and their suitabi-
lity for processing our protocol processor. The application
protocols are normally not very suitable for processing on
a protocol processor. They should instead be processed by
for ex Digital Signal Processors (DSP) or in SW running
on the platform. On the other hand some application pro-
tocols as for example MPEG can be parsed by a PP so that
different data streams (Video or Sound) can be ported to
different buffers before the hand over to the platform is
done. This would relax the requirements on the platform.
In this project the specification of the application/protocol
coverage is yet to be finally decided.

A. Architecture

Our protocol processor is a non-Von Neuman solution,
named Configurable Protocol Processor (CPP). The CPP
consists of two parts. The first part, named Deep Pipeli-
ne Serial Processor (DPSP), processes the data in a high
speed way and is based on a 32 bit wide data path. It is in
the DPSP the actual protocol processing takes part. The
DPSP is configurable using a common micro-controller
(� C). The � C also configures the interface between the

Protocols
Application protocols

Packet based protocols

Ethernet
TCP/IP WLAN

MPEG VoIP UMTS

Protocol processor?

Link / Transport

Fig. 6. The protocol coverage of our processor is not finally specified.

DPSP and the application. The � C only controls macro
jobs, i.e. configuring the protocol processor for the current
protocols and other network parameters while the DPSP
after parsing of an incoming message configures itself for
the specific protocol in run-time.
The interface to the physical layer is the MII/GMII [2] and
the interface to the application is in the middle of the TCP-
UDP layer. A system description of the protocol processor
can be seen in figure 7. The DPSP is based on Functional
Pages (FP) that each manage one small task of the protocol
process. Examples of such tasks are checksum calculation
and header field extraction. The DPSP data flow is illust-
rated in figure 8.

 Reg Reg Reg Reg Reg

Data
buffer

FP FP FP FP

GMII interface

Fig. 8. The data flow in the protocol processor.

The normal protocol processing procedure of the DPSP
is as follows:
� Data comes from the MII/GMII interface [2] and is then
pipelined in a multi byte shift register.
� Protocol header fields are then provided to concerned
FP:s.
� The FP:s are then activated on control signals from the
Counter and Controller (CC).
� The FP:s reports back to the CC sending flags.
� The CC shuts down FP:s according to the flags and the
configuration.

The flexibility of the CPP is essential in order to manage
all possible protocols that exist in the network environ-
ment. The CPP is configurable according to the procedure
illustrated by figure 9.

The CPP is intended to work as a port processor in a
SoC. Port processor means that the CPP is responsible for
the protocol processing of one port (physical port, not a
TCP port). The CPP then processes incoming packets be-
fore the data is passed on to the application, normally via

CCSSE’01 5

Application interface

Data
buffer (s)

Micro controller core

C
ontrol bus

Interface
Interface

 Configuration
register

32 bit w
ide shift register

uC

(G)MII interface

FP

FP

FP

Counter and controller

Fig. 7. The system block diagram for the protocol processor.

High level desription (SDL, C++, etc)

System Setup Configuration vector (Compiler SW)

Configuration vector

CPP

FP FP FP

Fig. 9. The system setup configuration procedure for the protocol pro-
cessor.

memory buffers as illustrated by figure 10. If there are any
protocol processing tasks not suitable for the CPP to pro-
cess, then the packets data and some selected information
from the header is sent to the platform which processes the
jobs. The programmable platform in the SoC is responsib-
le for the tasks not suitable for the domain specific CPP.
This way the infinite programmability is provided.

Protocol Processor

SOC Platform

Memory

GMII interface Application

Fig. 10. Platform based processing on the receiver end. The da-
ta/information is passed between the different parts according to
the arrows when a packet is received.

V. FUNCTIONAL PAGES

A. Research Design flow

We can for research purpose develop each FP as if the-
re was some sort of gray layer between the FP:s and the
rest of the CPP. This is illustrated by figure 11. This gray
layer assumption allows the designer to investigate and
develop dedicated hardware for some small protocol pro-
cessing tasks, without having a clear interface against the
application layer specified in advance. It also means that
we can assume that the data is provided to the specific
functional page at the right time by the controller, even if
the controller is not finally specified and implemented yet.

CCSSE’01 6

Path
Control Data path

 Memories

 FP N FP 3 FP 2 FP 1

Gray Layer

Fig. 11. The development of Functional Pages is stand alone from the
overall processor structure. This means that memory management,
I/O handling, data scheduling etc is not considered while designing
the FP.

B. Some typical tasks for the functional pages

The main applications for our protocol processor is dif-
ferent types of Ethernet, with IP/TCP-UDP on top. The-
se protocols are processed by different FPs. To cover the
protocols IP/TCP-UDP, also ARP, RARP, ICMP and IGMP
have to be managed. Packets of the later, control oriented
protocols, are not that common and there is no need to de-
sign specialized hardware for them. Instead of processing
them in FPs the functions can be performed in software on
the platform with a relatively small total overhead.

Following is a list of typical jobs that is processed by our
protocol processor. This list was first published in [7].
� Ethernet checksum calculation
� Ethernet destination address extraction and comparison
� Ethernet length/ethertype field extraction
� IP header checksum calculation
� IP version field extraction
� IP destination address extraction and comparison
� IP header length extraction
� IP total length extraction
� IP protocol/next header extraction
� IP reassembly
� TCP-UDP checksum calculation
� TCP-UDP packet length counter

C. CRC

The most computational demanding task for the CPP
when processing TCP/IP over Ethernet or Wireless, is wit-
hout any doubts the Link layer checksum calculation [8].
Therefor dedicated hardware for this task has been desig-
ned as a FP. The task of the FP is to check if the transmis-
sion of the packet was erroneous. This checksum calcula-
tion used, is known as Cyclic Redundancy Check (CRC).

The CRC encoding/decoding procedure is described by
equation 1.

�������
	�������������������������
(1)

V(x) is the n bit long data word transmitted and it consists
of the original data and U(x) followed by a codeword S(x)
called the CRC-sum. S(x) is computed according to equa-
tion 2.

����������������	�������� �!�����"�#������
(2)

S(x) is by other words the remainder resulting from a di-
vision of the data stream and a generator polynomial g(x).
The actual coding-procedure is the same on both the re-
ceiving and transmitting end of the line as can be seen in
figure 12. The CRC FP has been implemented using VHDL

CRC

Transmission
Line (Network)

V(x)

U(x) + errors

=0?
data

U(x)

CRC

Fig. 12. The receiving NT perform a CRC-check on the incoming mes-
sage and if the result is zero, the transmission was error free.

and it can manage more then 1 Gbit/s and it supports
both Ethernet standards as well as HiperLAN. The layout
is shown in figure 13.

Fig. 13. The configurable CRC implementation combines the require-
ments on performance, low power consumption and configurability.
The technology used is AMS 0.35 $ m. The size of the design is 0.052
square mm.

VI. FUTURE WORK

Memory access is very time and power consuming. The
solution for reduction of these drawbacks is to use on-the-

CCSSE’01 7

fly processing. On the other hand not all protocols are su-
itable for streaming based processing due to complexity.
By other means a thorough investigating of the protocol
coverage has to be done in order to find out which pro-
tocols are suitable for processing on-the-fly and which are
suitable for general purpose processing. Moreover it has
to be clarified how the scheduling of the on-the-fly pro-
cessing tasks are influenced by the use of non-streaming
based processing of other jobs in the protocol.
It is very important to set up a simulation environment for
the project in order to verify the functionality of the CPP
using real network data.
The final goal of the project is to generate a synthesizable
RTL description of a complete CPP.

VII. ACKNOWLEDGMENTS

This protocol processor research project is sponsored by
ECSEL graduate school in Linköping, Sweden.

REFERENCES

[1] A. Jantsch, J. Oberg, and A. Hemani, “Is there a nich for a general
protocol processor core?,” in Proc of the NORCHIP, 1998.

[2] Jayant Kadambi, Gigabit Ethernet, Prentice Hall PRT, 1998.
[3] Dan Dobberpuhl, “Network protocol processing using high perfor-

mance cpus in an integrated soc platform,” in Proc of the 18th NOR-
CHIP conference, 2000.

[4] ETSI TS 101 493 - 1/2, Technical specification of BRAN and Hiperlan-2,
2000.

[5] Andrew S. Tannenbaum, Computer Networks, Prentice Hall PRT,
1996.

[6] G. Pulini and D. Hulance, “Accelerated verification of soc designs
containing ip cores,” in Proc of the Int. workshop on IP-Based Synthesis
and SoC Design, 2000.

[7] T. Henriksson, U. Nordqvist, and D. Liu, “Specification of a confi-
gurable general-purpose protocol processor,” in Proc of the CSNDSP,
Bournemouth, UK, 2000.

[8] U. Nordqvist, T. Henriksson, and D. Liu, “Crc generation for pro-
tocol processing,” in Proc of the 18th NORCHIP conference, 2000.

