
dun-
puter
as on

dun-
exam-
d. As
reas

asing
nodes
Appli-
SP).
tum-
y net-
s of
sitive

ence
om-
for
gives

also
most
ple-

g data
ump-

its in
CRC Generation for Protocol Processing
Ulf Nordqvist, Tomas Henrikson and Dake Liu

Department of Physics and Measurement Technology
Linköpings University, SE 58183 Linköping, Sweden

Phone: +46-1328-{8916, 1256 and 8956}
Email: {ulfnor, tomhe and dake}@ifm.liu.se

Fax: +46-13132285

Abstract:

In order to provide error detection in communication networks a method called Cyclic Re
dancy Check has been used for almost 40 years. This algorithm is widely used in com
networks of today and will continue to be so in the future. The implementation methods h
the other hand been constantly changing.

A comparative study of different implementation strategies for computation of Cyclic Re
dancy Checks has been done in this paper. 10 different implementation strategies was
ined. A novel architecture suitable for use as an IP in an protocol processor is presente
conclusion, different implementation techniques have been divided into application a
according to their speed, flexibility and power-consumption.

1.0 INTRODUCTION

Both computer and human communication networks, uses protocols with ever incre
demands on speed, cost and flexibility. In the market segment of hardware for network
such as routers, switches and bridges, the performance needs can be fulfilled by using
cation Specific Integrated Circuits (ASIC) or Application Specific Standard Products (AS
This will probably be the case also in the future due to there relatively cost-insensitive cos
ers. In order to let the end-user take advantage of the bandwidth enhancement in toda
works, tomorrows Network Terminal (NT) hardware must support transmission speed
Gbit/s [10]. Hardware for such NT components is on the other hand sold on a cost-sen
market share with high demands on flexibility and usability.

Traditionally NT has been implemented as ASIC:s for the lower layers in the OSI-Refer
Model [17] with an CPU-RISC based SW implementation of the upper layers [8], or c
pletely implemented in software [1], [3], [17]. In [6], [7] we presented a new architecture
configurable protocol processing that supports programmability on the upper layers and
both configurability and high performance on the lower layers. This kind of solution is
supported by [18], [19] and [14]. This architecture specifies that, the without any doubt
computational extensive task, Cyclic Redundancy Check (CRC) [3], [20], should be im
mented as configurable hardware, supporting buffering free processing.

The speed requirement is very important since a protocol processor must buffer incomin
if jobs are not completed at wire-speed. This leads to high costs in terms of power cons
tion, area and manufacturing costs due to the usage of buffers.

The aim of this paper is to compare different implementations of CRC computational un
order to specify a suitable one for protocol processors.

data
used
net-

fol-
 2.

nera-

e line.

ssage
lving

ise 2-
result

enta-

rs.
 will
onal
hard-
1.1 The CRC algorithm

Cyclic Redundancy Check is a way of providing error control coding in order to protect
by introducing some redundancy in the data in an controlled fashion. It is a commonly
and very effective way of detecting transmission errors during transmissions in various
works. Common CRC polynomials can detect following types of errors:

• All single bit error
• All double bit errors
• All odd number of errors
• Any burst error for which the burst length is less than the polynomial length
• Most large burst errors

The CRC encoding procedure can be described by equation 1.

(EQ 1)

V(x) is the n bit long data word transmitted and it consists of the original data and U(x)
lowed by a codeword S(x) called the CRC-sum. S(x) is computed according to equation

(EQ 2)

S(x) is by other words the reminder resulting from a division of the data stream and a ge
tor polynomial g(x).

The actual coding-procedure is the same on both the receiving and transmitting end of th
The CRC encoding/decoding principle is illustrated by figure 1.

As can be seen in figure 1 the receiving NT perform a CRC-check on the incoming me
and if the result is zero, the transmission was error free. One more practical way of so
this is to compute the CRC only for the first part of the message U(x), and then do a bitw
complements addition with the computed checksum S(x) on the transmission side. If the
is non-zero the receiver will order a retransmission from the sender.

2.0 IMPLEMENTATION THEORY

This section introduces the commonly used and presents one new architecture for implem
tion of the CRC algorithm.

• Software(SW) Solution[3], [1]: The CRC algorithm can always be implemented as an
software algorithm on a standard CPU, with all the flexibility reprogramming then offe
Since there in most communication network terminals exists a CPU, the SW-solution
be cheap or free in terms of hardware cost. The drawback is obviously the computati
speed since no general purpose CPU can achieve the same troughput as dedicated
ware.

V x() S x() x+
n k–

U x()=

X
n k–

U x() a x()g x() S x()+=

CRC CRC
U(x)
data

Transmission
line (Network)

V(x)

S(x) U(x)

= 0?

U(x) + errors

FIGURE 1. Principle of error detection using the CRC algorithm.

s
ware
the

 cycle.
sipa-
solu-

ork
and

d-
is
aral-

fore it
enta-
ed,

ty

k-
e 4.

UT
but in
lled.
• Traditional Hardware Solution : Linear Shift Register (LSR) with serial data feed [20] ha
been used since the sixties to implement the CRC algorithm, see figure 2. As all hard
implementations, this method simply perform a division and then the reminder which is
resulting CRC checksum, is stored in the registers (delay-elements) after each clock
The registers can then be read by use of enabling signals. Simplicity and low power dis
tion are the main advantages. This method gives much higher throughput than the SW
tion but still this implementation can not fulfill all the speed requirements of today netw
nodes. Since fixed logic is used there is no possibility of reconfigure the architecture
change the generator polynomial using this implementation.

• Parallel Solution: In order to improve the computational speed in CRC generating har
ware, parallelism has been introduced [2], [4], [5], [9], [11], [12]. The speed-up factor
between 4 and 6 when using a parallelism of 8. By using fixed logic, implemented as p
lelised hardware, this method can supply for CRC generation at wire speed and there
is the pre-dominant method used in computer networks. The parallel hardware implem
tion is illustrated by figure 3. If the CRC polynomial is changed or a new protocol is add
new changed hardware must be installed in the network terminal. The lack of flexibili
makes this architecture non suitable for use in a protocol processor.

Configurable Hardware: One way of implementing configurable hardware is by using Loo
Up-Tables (LUT) as proposed by [3], [12] and [2]. The architecture is illustrated by figur

This implementation can be modified by using a larger or smaller LUT. If the size of the L
is reduced the hardware-cost in terms of power consumption and area will be reduced
the same time the Combinational Network will be increased so the effect will be cance
The optimal solution has not been derived.

+ +D D D D + U(x)
D

FIGURE 2. Linear Shift Serial Data Feed

Combinational
logic

U(x)

S(x)

State registers

FIGURE 3. Parallel Fixed Logic Implementation

LU
T

CRC regs 32 b Data in 8 b

Combinational
Logic

Polynomial

LUT
configuration
unit

FIGURE 4. Look Up Table based configurable hardware.

can
cting
ND-

data

it
ons

iven
or 32
ER-

SW-
aphics
Place
0.35

llelism
uen-

in the
ethod

f a 4.5
sters,
ption
15],
men-
Another, novel implementation method is theRadix-16 Configurable CRC Unit, which is
presented for the first time in this paper. By noticing that any polynomial of a fixed length
be represented by implementing the CRC using a LSR with switches on the reconne
wires as illustrated by figure 5, a configurable hardware can be implemented using NA
gates to represent the switches.

In order to improve the speed of the Radix-16 Configurable CRC, a 4 - bit wide input
stream is used as can be seen in figure 6. The resulting bit in each positionk in the CRC regis-
ter then depends on the value of thek-4 CRC bit, the last four CRC bits, the polynomial b
description and the input bits. The logic, which consists mainly of XOR and NAND-functi
provides the necessarily configurability.

The polynomial input makes it possible to implement any given CRC algorithm of a g
size. Using shut-down logic on parts of the circuit enables N to be configured for 16, 24
bit polynomials. This means that for example CRC polynomials for protocols such as HIP
LAN and Ethernet is manageable.

3.0 EXPRIMENTAL RESULTS

10 different implementations of the CRC algorithm, including one CPU RISC based
implementation, have been examined. They have been described using Mentor Gr
Renoir and VHDL, synthesized and optimized using Build Gates from Cadence and the
& Route was done using Ensemble P&R from Cadence. The technology used is AMS
µm.

Since most network protocols are bytebased, there is no meaning in investigating a para
of more than 8 even if the other parts of a protocol processor might run on other clock freq
cies using for example a 32 bit wide input stream.

As seen in table 1 the fixed logic and parallel input implementation is the fastest. That is
order of what have been reported in earlier work. We can also see that the LUT based m
gives about twice the speed as the Configurable Radix 16 implementation at the cost o
times higher area. A big part of the area in the LUT based architecture is the LUT regi
but the power consumption will anyway be considerably higher than the power consum
in the Radix-16 implementation. In many upcoming applications such as HIPERLAN [
[16], the power consumption will be crucial. The speed supported by the Radix-16 imple

+ +D D D

FIGURE 5. Configuration by use of switches in the circuit reconnecting wire.

“0” “0”

Dk-4

Dk-3

Dk-2

Dk-1

Dk

Dk+1

Dk+2

Dk+3

+ DN-3

DN-2

DN-1

DN

Logic
Input
Data

+

+

+
CRC Polynomial

FIGURE 6. Radix-16 Configurable CRC engine

and
nnec-
down-

ted by

when
ative
d, it is

d for
men-
n the
you

but a
includ-
ook-

perior
ding/

sing
cess-

nec-
tation exceeds 0.6 Gbit/s, which is sufficient since today NT applications do not dem
higher troughput. Since the logic in that specific implementation dominates and the co
tion delay is quite small, there will be a considerable increase of the speed powered by

scaling in future technologies. The speed-up factor due to scalings will be up to s2 which
means that even protocols as 10-GEthernet which will come in the future can be suppor
the Radix-16 implementation [13] thanks to scaling.

Conflict with other processes makes interlayer processing difficult, not to say impossible
using the SW algorithm run on a CPU. This means that even if the SW-algorithm altern
can be implemented on a high-performance CPU that provides the speed that is neede
not suitable for protocol processors such as those described by [6] and [7].

4.0 CONCLUSIONS

Because of the superior performance of a parallel ASIC implementation, it will be use
implementation of network-node-components. The concept of using several ASIC imple
tation as Functional Units in a protocol processor and just letting the processor turn o
CRC that is currently used, as in VLIW architechtures, might also be of interest although
then have no configurability for supporting new protocols.

Software solutions for low speed protocols will also be used for low-speed applications,
increasing area of applications demands high-speed configurable protocol processing,
ing CRC generation. An hardware architecture that can fulfill this specifications is the L
Up table -based structure proposed in [1] and implemented in this paper.

A novel architecture for this application area has also been presented, which has a su
power-delay product. The architecture implemented can be configured for CRC enco
decoding using any 16, 24 or 32 bit polynomial. Power consumption will be kept low u
shut-down logic. The architecture support the speed requirements of today protocol pro
ing in NT:s. For upcoming protocols used in NT network processing, scaling will provide
essarily speed-enhancements.

TABLE 1. Comparison between different CRC implementations. The Pads are not included in the area
computation.

CRC implementation
Polyn.
Length

Area

[mm2]

Max
Clk freq.
[MHz]

Max
Speed
[Mbit/s]

Serial Input - fixed Ethernet Polynomial 32 0.014 413 413

Serial Input - any polynomial 32 0.017 369 369

Serial Input - any polynomial 16 0.011 355 355

Parallel(8) Input - any polynomial 32 0.061 109 875

Parallel(8) Input - any polynomial 16 0.038 130 1039

Parallel(8) Input - fixed Ethernet Polynomial 32 0.035 208 1663

Parallel(8) Input LUT Based 32 0.225 169 1358

Configurable Radix-16 CRC - any polynomial 32 0.050 166 663

Configurable Radix-16 CRC - any polynomial 16,24,32 0.052 153 612

SW Pure RISC (43893 clk cycles / 1500 Bytes) any 600 164

eed
s

ose

ica-

f

ck

OS

Sys-
5.0 REFERENCES

[1] A. Perez, “Byte-wise CRC Calculations”,IEEE Micro, Vol. 3, No. 3, June 1983, pp. 40-50
[2] G. Albertango and R. Sisto, “Parallel CRC Generation”,IEEE Micro, Vol. 10, No. 5, Octo-
ber 1990, pp. 63-71
[3] T. V. Ramabadran and S. S. Gaitonde, “A Tutorial on CRC Computations”,IEEE Micro,
Vol.8, No. 4, August 1988, pp. 62-75
[4] T. B. Pei and C. Zukowski, “High-speed parallel CRC cicuits in VLSI”,IEEE Transaction
Communication, Vol. 40, No. 4, pp. 653-657, 1992.
[5] R. F. Hobson and K. L, Cheung, “A High-Performance CMOS 32-Bit Parallel CRC
Engine”,IEEE Journal Solid State Circuits, Vol. 34, No. 2, Feb 1999
[6] D. Liu, U. Nordqvist, and C. Svensson, “Configuration-Based Architecture for High-Sp
and General-Purpose Protocol-Processing”,Proceedings of IEEE Signal Processing System
1999, pp. 540-547, Taipei
[7] T. Henrikson, U. Nordqvist, and D. Liu, “Specification of a Configurable General-Purp
Protocol-Processor”,Proceedings of CSNDSP 2000,Bournemouth
[8] C. J. Georgiou and C.-S. Li, “Scalable Protocol Engine for High-Bandwidth Commun
tions”, IEEE International Conference on Communications. ICC’97 Montreal, Volume: 2,
1997, Page(s): 1121 -1126 vol.2
[9] R. Nair, G. Ryan, and F. Farzaneh, “A Symbol Based Algorithm for Implementation o
Cyclic Redundancy Check (CRC)”, ProceedingsVHDL International Users’ Forum, 1997,
Page(s): 82 -87
[10] J. Kadambi et al, “Gigabit Ethernet”,Prentice Hall PRT, ISBN 0-13-913286-4, 1998
[11] G. Castagnoli, S. Brauer, and M. Herrmann, “Optimization of cyclic redundancy-che
codes with 24 and 32 parity bits”,IEEE Transactions on Communications,Volume: 41 6, June
1993, Page(s): 883 -892
[12] R. J. Glaise, X. Jacquart, “Fast CRC calculation”,1993 IEEE International Conference on
Computer Design: VLSI in Computers and Processors, 1993, Page(s): 602-605
[13] A. P. Chandrakasan, R. W. Brodersen, “Minimizing power consumption in digital CM
circuits”, Proceedings of the IEEE, Vol, 83 No. 4, pp. 498 -523, April 1995
[14] M. Yang, A. Tantawy, “A design methodology for protocol processors”,Proceedings of
the Fifth IEEE Computer Society Workshop on Future Trends of Distributed Computing
tems, 1995, pp. 376 -381
[15] “Technical Specification of BRAN and Hiperlan-2. Common part.”,ETSI TS 101 493 - 1,
V1.1.1, 2000
[16] “Technical Specification of BRAN and Hiperlan-2. Ethernet Service Specific Conver-
gence Sublayer.”,ETSI TS 101 493 - 2, V1.1.1, 2000

[17] A. S. Tannenbaum, “Computer Networks”,3nd Edition, Prentice Hall PRT, ISBN 0-13-
349945-6, 1996
[18] “Building Next Generation Network Processors”,White paper, Sep 1999, Agere Inc., http:/
/www.agere.com/support/non-nda/docs/Building.pdf
[19] D. Husak, “Network Processors: A Definition and Comparison”,White paper, C-PORT,
http://www.cportcorp.com/solutions/docs/netprocessor_wp5-00.pdf
[20] W. W. Peterson and D. T. Brown “Cyclic Codes for Error Detection”,Proc. IRE, Jan 1961,
pp. 228-235

	1.0 INTRODUCTION
	1.1 The CRC algorithm

	2.0 IMPLEMENTATION THEORY
	3.0 EXPRIMENTAL RESULTS
	4.0 CONCLUSIONS
	5.0 REFERENCES

