
CONTROL PATH IN A PROTOCOL PROCESSOR

Ulf Nordqvist and Dake Liu
Computer Engineering Group

Linköping University, SE-581 83 Linköping, Sweden
Email: {ulfnor, dake}@isy.liu.se
Abstract- In this paper a dual processor architecture
dedicated for offloading of protocol processing tasks in
network terminals is presented. The architecture includes
one general purpose microcontroller handling control
intensive tasks, and one programmable protocol proces-
sor (the PPP) accelerating data intensive tasks. The PPP
uses a number of accelerators for datapath operation.
The main focus of this paper is on how implementation of
the PPP control path can be configured for different
types of terminals, e.g. servers, gateways or desktop PCs.
Static timing analysis in implemented layouts indicates
that this architecture enables programmable TCP/IP off-
loading for multi-gigabit networks, when implemented in
a mature process technology (0.35 µm).

I. INTRODUCTION

Both computer and human communication networks use

protocols with ever increasing demands on speed, cost,

and flexibility. In order to let the end-users take advan-

tage of the bandwidth enhancement in today networks,

tomorrows Network Terminal (NT) hardware must sup-

port transmission speeds of Gbit/s. Hardware for such

NT components is on the other hand sold on a cost-sensi-

tive market share with high demands on flexibility and

usability. Traditionally NT has been implemented using

ASIC:s situated on the network interface card processing

the lower layers in the OSI-Reference Model and a CPU-

RISC based SW implementation of the upper layers.

Usage of standard, general purpose CPU:s, is expensive

in terms of cost, area and power due to their lack of dedi-

cated hardware. Today it is easy to find Network Inter-

face Card (NIC) supporting multi-gigabit networks but

such bandwidth can not be utilized by the host since it

requires the host to be fully loaded processing layer 3

and 4 protocols, leaving nothing for the application and

system processing. The research focus has mainly been

on router and switching applications so far [1], but in the

future the terminals will also require offloading using

programmable high-speed solutions.

In chapter 2 our dual-processor terminal protocol pro-

cessing architecture is introduced. Chapter 3 discusses

the control path of one of the two processors with focus

on the performance limiting tasks of program flow selec-

tion. In chapter 4 three implementation strategies for this

control path are proposed. In chapter 5 some perfor-

mance figures for two of the alternatives are listed and

finally in chapter 6 some conclusions and directions for

further work are listed.

II. PROGRAMMABLE PROTOCOL PROCESSOR

A Protocol Processor (PP) architecture intended to be

used as a offloading device in a network terminal was

proposed by the authors in [2]. As most PP, it consist of

more or less programmable devices that can accelerate

and offload a host processor, by handling the communi-

cation protocol processing. The protocol processor is a

domain specific processor that have superior perfor-

mance over general purpose CPUs but still provides flex-

ibility through programmability within the application

domain. The proposed architecture has a unique data-

flow based strategy for storage and wirespeed processing

of incoming packet data. Instead of storing the data in a

input buffer before it is processed as traditional network

processing hardware, the proposed architecture manage

some of the fast path processing before the packet is

either discarded or stored for further processing. An

overview of the PP architecture is illustrated by. The PP

is a dual processor architecture depicted in figure 1. The

first processor is a general purpose micro controller

responsible for the control intensive processing of the

slow path. This type of processing tasks is common in

upper protocol layers such as TCP/UDP. The second

component is the Programmable Protocol Processor

(PPP) which is responsible for the high-performance

acceleration of the data-intensive processing tasks, i.e.

packet decoding. This fast path process the data on wire-

speed as it streams through a chain of flip-flop based reg-

isters. The PPP consists of a number of accelerators

denoted as Functional Pages (FP) (e.g. [8]) implementing

the fast path.

NT SoC

PPP

Input buffer

C&C µCFP

Host

DMA Host
Memory

Application

N
e
tw

o
rk

Control MemoryProgram Memory

Figure 1. The PPP together with a general purpose
micro controller (µC) handles the communication of one

network media port.



Note that our dual processor architecture means that

the PPP only is responsible for packet decoding. All con-

nection state (inter-packet processing) is handled by the

micro controller. Further only the FPs accesses packet

data. This means that the C&C only need to control FPs

based on flags generated by FPs. The C&C can therefore

be regarded as the control path of the PPP.

The remaining of this paper will focus on the control

path of the PPP.

III. CONTROL PATH

The Counter and Controller unit (C&C) depicted in fig-

ure 1, is responsible for starting and stopping FP process-

ing, based on the program and the result flags from the

FPs. The C&C is also responsible for the decision to dis-

card or accept a packet. Further the C&C select program

counter (PC) values based on the flags from the FPs. The

C&C must for example select the correct program flow

when the incoming packets protocol type has been

checked.

A Program Flow Selection

In protocol processing for terminal reception a signifi-

cant part of the tasks is program flow selection, i.e. deter-

mine what to do based on header information. After

header data has been extracted, the header data must be

compared with a number of different values in order to

identify the type of packet. The result of this comparison

then decides which processing (program flow) the proto-

col processor shall perform on the packet. In order to ful-

fill the requirements set by protocol standards, many

packet header fields must be extracted and processed.

The complexity of the comparison grows with the num-

ber of protocols, protocol (e.g. IP source and destination)

addresses etc. This program flow selection essentially

translates as a case-statement in software.

A case-statement can be executed sequentially using

(at assembly level) load, subtract and conditional branch

instructions in most processors. The number of required

clockcycles it takes to perform such an case-statement

depends on the number of entries and which case is

selected (e.g. protocol type). Hence, the C&C must run at

a higher clock frequency compared to accelerators (FP)

or perform the complete case-statement in a single clock-

cycle in order to produce all control signals needed by

accelerators.

IV. IMPLEMENTATION ALTERNATIVES

This paper proposes three different implementation strat-

egies for the control path (C&C) of the protocol proces-

sor. Implementation strategy is selected based on the

protocol coverage, i.e. the type of applications and termi-

nals it is intended to offload. Hence, a domain specific

solution is obtained.

A Pipelined C&C

By dividing the execution of an tasks into smaller parts,

each of the parts takes smaller amount of time to per-

form. If parts of different tasks then are executed in par-

allel using pipeline scheduling the performance can be

dramatically improved. I.e. since only a part of the

instruction has to be executed each clock cycle, the clock

frequency can be increased compared to that of a non-

pipelined processor. Pipelining is a technique used in

almost all modern processors. A pipelined processor can

run on high clock-frequency and therefor manage many

instructions for each network-clock cycle. In the experi-

mental pipelined TIPP-processor [3] from Intel the exe-

cution core runs at a clock-frequency which is 32 times

higher than the network and classification memory

speed. Hence, theoretically up to 608 clock-cycles are

available for each packet. This number is in fact reduced

by the use of low-frequency CAM-memories (classifica-

tion and reassembly). Further these 608 clock-cycles

include the cycles lost as pipe-line penalties when condi-

tional branch instructions are executed. This pipeline

penalty is dependent on the depth of the pipeline. Since

conditional branches are common instructions in proto-

col processing this may seriously limit the performance.

Hence there is a trade-off between high-frequency (deep

pipeline) and branch cost (few or no pipeline-stages).

The proposed pipelined C&C uses an application spe-

cific ISA. The ISA is very simple since most processing

tasks are handled by FPs. The C&C is essentially only

function as the PPP control path. The simple instruction

set consists of 11 instructions. They are listed in table 1.

Arithmetic instructions are used for counting and han-

dling of inter packet information for fragmented packets,

i.e. accessing fragmented packets temporal length and

checksum results.

Table 1: ISA for the pipelined C&C

Type of instruction Name

Logic And

Or

Not

Arithmetic Add (16 bits)

Sub (16 bits)

Transfer Load (immediate)

Move

Jump Jump unconditionally

Brneqz

Breqz



According to behavioral simulations the C&C needs

three instructions per network clock cycle to handle UDP

or TCP/IPv4/Ethernet using the specified ISA when only

one destination address is checked. I.e. we need three

times as many instructions compared to the synchronized

implementation due to increased task complexity. Com-

plexity comes from a more complex classification and

reassembly handling. This number (three) is rather low

compared to many other (e.g. [10.6] uses 32) pipelined

protocol processors but the number of tasks and proto-

cols handled by the C&C is also lower. E.g. checksum

calculations has been offloaded. High frequency opera-

tion is enabled using pipelining techniques. The number

of pipeline stages used is five. It requires the program

memory to be pipelined. We have not implemented such

a memory but the size of the memory is small and using

pipelining it should be possible to achieve very high

speed memories using full custom design techniques.

B Synchronized C&C With Branch Unit

A synchronized data-flow processor runs at the same

clock-frequency as the incoming data. This require each

instruction to be more complex compared to pipe-lined

processors. Further pipeline penalties are not allowed

since the data- and the instruction-stream must be fully

synchronized at all times. In order to achieve this the pro-

cessor must accelerate complex tasks using self-con-

tained accelerators. Further conditional branches must be

executed in a single clock-cycle. If these two conditions

are met the processor can manage high-performance pro-

tocol processing operating at a low clock frequency.

If the number of entries to the case-statements is lim-

ited, the program flow selection can be implemented in

parallel dedicated hardware. This allows for the program

flow selection to be performed in a single clock cycle. If

all conditional branches are supported by this type of

program flow selection hardware, all branch penalties

can be eliminated. This means that the C&C unit can use

the same clock frequency as the data-flow pipeline (i.e.

the network clock). By using the same clock frequency

the requirements on synchronization with the data flow-

ing through the PPP becomes very strict. Since the data

only is available to each FP during one clock cycle it is

necessary to start and stop the processing in the FPs at

the exact clock cycle. The concept of synchronized pro-

tocol processing was first introduced by Henriksson et al

in [4] even if the proposed implementation is slightly dif-

ferent.

The use of a single clock domain simplifies the layout

and reduces synchronization problems between FPs and

the control path (C&C). I.e. the need for synchronization

registers is eliminated. An implementation alternative for

the C&C suitable for synchronized special purpose pro-

tocol processing is illustrated in figure 3.

There are many alternative ways of implementing a

hardwired case-statement. Using Content Adressable

Memories (CAM) is one rather straight forward alterna-

tive ([5] and [6]). The CAM based branch unit depicted

in figure 4 uses the PC value and flags generated in FPs

as inputs. If there is a match in one of the CAM entries,

i.e. a conditional branch is taken, a new instruction and

instruction fetch address are provided. Since the branch

unit will be a part of the critical path of the PPP and

thereby determine the maximum clock frequency it can

operate at, it is very important to optimize this CAM

search. The latency of a CAM search is mainly depen-

dent on the size of the two search fields and the number

of entries in the memory. The latency of the CAM search

must be added to the latency of the FP and Muxes to find

the critical path of the PPP.

C Pipelined C&C With Branch Unit

Even if a pipelined processor is used it is possible to

accelerate program-flow selections using a branch unit.

The size of the branch unit and the clock frequency to be

used can be optimized after the protocol coverage has

been set. The branch unit then makes it possible to accel-

W
id

e 
st

at
us

 r
eg

is
te

rsRegister

File

PMEM

ALU

Instruction

Decoding

Control
flags

C&C

Figure 2. C&C organization for general purpose termi-
nal processing. The register file is not needed if frag-

mented packets are not allowed.

Branch unit

PMEM (micro code)

PC

Dec instr“1”

C&C

Flags
to/from
FPs

Critical path

Figure 3. Branch unit supporting single clock cycle
program flow selection. The critical path includes
extraction of packet header data, comparison and

branch decision.



erate case-statements. Normally classification is acceler-

ated using pipelined classification engines, e.g. CAM but

also other types of case-statements can be covered using

branch unit acceleration.

Since the branch unit can be pipelined it is possible to

reduce the critical path compared with alternative A,

thereby enabling a higher clock frequency while still

allowing for a large number of entries in the branch unit

memory. In fact alternative C is the only possible for

complex terminals with a large number of protocols,

source and destination addresses since the number of

entries in various case-statements implemented is to

large. Note, that synchronization registers are still

needed.

V. PERFORMANCE

Using AMS 0.35 µm standard cell library an implemen-

tation of the synchronized data-flow version of the C&C

has been completed. The implemented branch unit sup-

ports 16 different conditional branches, each with four

case-entries. Static timing analysis of the implemented

layout shows that the critical path is 10.9 ns long which

indicates that it can support wire speed processing at 2.9

Gbit/s. This is comparable with the performance of a

configurable CRC FP implemented using the same pro-

cess. Four entries to the case-statement means that only

four destination addresses (including multi-cast

addresses) can be checked.

The critical path of the pipelined C&C is the ALU.

Static timing analysis of the layout of the C&C datapath

shows that the simple 2-pipeline stage ALU can run at

588 MHz when implemented using AMS 0.35 µm stan-

dard cell library. If the C&C runs at a four times as high

clock frequency this enables the PPP can support for a

network speed of 4.7 Gbit/s. If the protocol coverage is

increased, the C&C might have to run at eight times as

high clock frequency compared to the network interface

(GMII). This however still allows for more than 2 GBit/s

of wirespeed processing.

VI. CONCLUSIONS AND FURTHER WORK

This paper proposes three different implementation strat-

egies for the control path of a data-flow based protocol

processor. Based on protocols covered and terminal type

the C&C can be optimized for high speed operation. By

enabling high speed and low latency program flow selec-

tion, the overall throughput is optimized. Timing analysis

indicates that multi-gigabit network speeds are feasible

for a restricted set of protocols when the C&C is imple-

mented in a mature standard cell technology.

As future work a more complex protocol stack would

be interesting to investigate implementation alternative

C. Specially the size of the branch-unit and number of

pipeline stages have to be carefully optimized using

benchmarks.

REFERENCES

[1] Crowley, Patrick, et al, “Network Processor Design”,

first edition, Morgan Kaufman Publishers, ISBN: 1-

55860-875-3

[2] D. Liu, U. Nordqvist, and C. Svensson, “Configuration-

Based Architecture for High Speed and General-Pur-

pose Protocol Processing”, IEEE Workshop on Signal
Processing Systems, Taipei, Taiwan, 1999, pp. 540-547.

[3] Y. Hoskote, V. Erraguntla, D. Finan, J. Howard, D.

Klowden, S. Narendra, G. Ruhl, J. Tschanz, S. Vangal,

V. Veeramachaneni, H. Wilson, J. Xu, N. Borkar, “A

10GHz TCP offload accelerator for 10Gbps Ethernet in

90nm dual-VT CMOS”, IEEE International Solid-State

Circuits Conference, 2003. Digest of Technical Paper,

14.7.

[4] T. Henrikson, U. Nordqvist, and D. Liu, “Specification

of a Configurable General-Purpose Protocol-Proces-

sor”, Proceedings of CSNDSP 2000, Bournemouth

[5] McAuley A. et al., “Fast Routing Table Lookup Using

CAMs”, IEEE INFOCOM ‘93, March 1993

[6] van Lunteren J., Engbersen A.P.J., “Multi-field packet

classification using ternary CAM”, Electronics Letters,

Volume: 38 Issue: 1, 3 Jan. 2002, pp 21 -23

[7] M. B. Abbott, L. L. Peterson, “Increasing network

throughput by integrating protocol layers”, IEEE/ACM

Transactions on Networking, vol. 1, pp 600-10, 1993

[8] U. Nordqvist, T. Henriksson, D. Liu, “CRC Generation

for Protocol Processing”, in proceedings of the NOR-

CHIP 2000, Turku, Finland

PC

 new PC

Dec
instrBranchUnit Decoded instructions

and next PC valueCAM

flags

Figure 4. The branch unit makes its branch decision
based on the program counter value and flags created in

FPs.


	I. INTRODUCTION
	II. PROGRAMMABLE PROTOCOL PROCESSOR
	III. CONTROL PATH
	A Program Flow Selection

	IV. IMPLEMENTATION ALTERNATIVES
	A Pipelined C&C
	B Synchronized C&C With Branch Unit
	C Pipelined C&C With Branch Unit

	V. PERFORMANCE
	VI. CONCLUSIONS AND FURTHER WORK
	REFERENCES
	CONTROL PATH IN A PROTOCOL PROCESSOR
	Ulf Nordqvist and Dake Liu
	Computer Engineering Group
	Linköping University, SE-581 83 Linköping, Sweden
	Email: {ulfnor, dake}@isy.liu.se



