Linkdping Studies in Science and Technology

Thesis No. 998

A Programmable Network
Interface Accelerator

Ulf Nordgvist

o o UNIV@?
& %
: ‘3
e ~
o Ry
% 45 ¢

[N &
IA’GS UN\Q(O

INSTITUTE OF TECHNOLOGY
LINKOPINGS UNIVERSITET

LIU-TEK-LIC-2002:
Department of Electrical Engineering
Linkdpings universitet, SE-581 83 Linkdping, Sweden
Linkdping 2002

Linkdping Studies in Science and Technology

Thesis No. 998

A Programmable Network
Interface Accelerator

Ulf Nordgvist

INSTITUTE OF TECHNOLOGY
LINKOPINGS UNIVERSITET

ISBN: 91-7373-580-9 ISSN: 0280-7971
LIU-TEK-LIC-2002:71
Department of Electrical Engineering
Linkdpings universitet, SE-581 83 Linkdping, Sweden
Linkdping 2002

Abstract

The bandwidth and number of users in computer networks are rapidly
growing today. The need for added functionality in the network nodes is
also increasing. The requirements on the processing devices get harder
and harder to meet using traditional hardware architectures. Hence, a lot
of effort is currently focused on finding new improved hardware architec-
tures.

In the emerging research area of programmable network interfaces, there
exist many hardware platform proposals. Most of them aim for router
applications but not so many for terminals. This thesis explores a number
of different router design alternatives and architectural concepts. The con-
cepts have been examined to see which apply also to terminal designs.

A novel terminal platform solution is proposed in this thesis. The plat-
form is accelerated using a programmable protocol processor. The proces-
sor uses a nhumber of different dedicated hardware blocks, that operates in
parallel, to accelerate the platform. The hardware blocks have been
selected and specified to fulfill the requirements set by a number of com-
mon network protocols. To do this, the protocol processing procedure has
been investigated and divided into processing tasks. The different tasks
have been explored to see which are suitable for hardware acceleration
and which should be processed in other parts of the platform.

The dedicated datapath, simplified control, and minimal usage of data
buffers makes the proposed processor attractive from a power perspective.
Further it accelerates the platform so that high speed operation is enabled.

Acknowledgments

First of all, | would like to thank my supervisor, Professor Dake Liu, for
guidance, inspiring discussions, proofreading, and for giving me the
opportunity to do this work.

| would like to acknowledgment my fellow PhD student Tomas Henriks-
son for valuable discussions, for coauthoring papers and for sharing infor-
mation regarding many different topics (in many different languages).

| would also like to thank the professor at my former research group,
Electronic Devices, Professor Christer Svensson and the former professor
at that group, Professor Per Larsson-Edefors for inspiring and helping me
especially during the beginning of my career as a PhD student.

The interesting discussions and especially the software related support
of my former office-mate Daniel Wiklund has been very valuable to me.

Sharing the working environment with a inner circle of PhD students
like, including Daniel Eckerbert, Henrik Ericsson, Mikael Olausson, Erik
Tell, Stefan Andersson, Peter Caputa and Kalle Folkesson has been a true
pleasure.

All of the former and present members of the Electronic Devices and the
Computer Engineering group are acknowledged for the technical and
administrative support. You all deserve a hats-off from me.

| would like to thank ECSEL graduate school for killing my time sched-
ules, financing the work and broadening my technical perspective.

Finally | would like to thank my family for supporting (but not under-
standing) my work.

Preface

This thesis presents the results of my research during the period

1999-2002. The following three publications are included in the thesis:

Dake Liu, UIf Nordgvist, Christer Svensson "Configuration based
architecture for high speed and general purpose protocol processing”,
in proceedings of SIPS 199Baipei, Taiwan, pp 540-547

Ulf Nordgvist, Tomas Henriksson, and Dake Liu, “CRC Generation

for Protocol Processingih proceedings of NORCHIP 2000urku,
Finland, November 6-7, 2000, pp. 288-293

UIf Nordqvist, Dake Liu, “Packet Classification and Termination in a
Protocol Processorsubmitted to the HPCA / NP2, to be held in Ana-
heim February 2003

Other publications, not included in the thesis:

UIf Nordqvist, Dake Liu, “Configurable CRC Generatari’ procee-
dings of the IEEE Design and Diagnostics of Electronic Circuits and
Systems, DDEC®rno, 2002, April 17-19, pp. 192-199

Ulf Nordgvist, "On Protocol Processingh, proceedings of CCSSE
2001, NorrkopingSweden, 2001, Mar 14-15, pp. 83-89

Ulf Nordqvist, “A Comparative Study of Protocol Processois”pro-
ceedings of CSSCE 2QQforrkoping, Sweden, Oct 23-24 2002, pp.
107-113

Tomas Henriksson, UIf Nordqvist, and Dake Liu, “Specification of a
configurable General-Purpose Protocol Processorited submission
to a special issue of IEE Proceedings on Circuits, Devices and Sys-
tems.

Tomas Henriksson, Henrik Eriksson, Ulf Nordqvist, Per Larsson-Ede-
fors, and Dake Liu, “VLSI Implementation of CRC-32 for 10 Gigabit
Ethernet”,In proceedings of The 8th IEEE International Conference
on Electronics, Circuits and Systen\alta, September 2-5, 2001, vol.
I, pp. 1215-1218

Vi

» Tomas Henriksson, Ulf Nordgvist and Dake Liu, “Specification of a con-
figurable General-Purpose Protocol Procesdarproceedings of Second
International Symposium on Communication systems, Networks and
Digital Signal ProcessingBournemouth, UK, July 19-20, 2000, pp. 284-
289

« Tomas Henriksson, UIf Nordqgvist, and Dake Liu, “Configurable Port Pro-
cessor Increases Flexibility in the Protocol Processing Ahegitocee-
dings of COOLChips Il An International Symposium on Low-Power and
High-Speed ChipKikai-Shinko-Kaikan, Tokyo, Japan, April 24-25,
2000, pp. 275

Contents

Abstract i
Acknowledgments i
Preface Y
Abbreviations Xi
Introduction 1
Background and motivation.............cccceeeveviiieeennnnnn. 1
ReSearch Project ... 3
OULIINE ..o e 4
Network basics 5
Packet based networks.........c.ccocooiiiiiiiii i, 5
ISO/OSI Protocol layerscccooevvveiiiiieeeecie e 5
TCP/IP Protocol [ayerscooovvvviiiiiiiiiiiii e 7
Traditional layer processingccoeuueeiieiieiiiiineeeeeeiiinnnn 8
Local Area NetworkS..........covviiiiiiiiiiiicieei e 8
Storage Area Networks (SAN)cooovvvviiiiii e 9
Mixed traffiC ..o 10
Quality Of SEIVICEoiiiiiiiiie e 10
Network performance figures.........ccccceeeveeveeeiiiineeeeeennnn 10
ProtoCol SEIVICEScccvviiiiiiii e, 11

Vi

viii

=]| T S 11
Control flow selectionceeiiiiiiieiiiien 11
Transport CONtrolcoovvvvveiiiiiee e 12
Data ProCESSING ..vvvuniieiiiiiiiie et e et e e e e 13
Datastream managementcccoveeiiiiiiiiiiiieeieeeennee. 13
Traditional network componentsccccceeeee. 13
Network Terminalsccoovvviiiiiiiii 13
ROULEIS...ceiiiiiiieeeeeeee e 14
Hardware platforms 17
Architectural challenges.........cccviiiiiiiiincciieee, 17
Design alternativesccooveveiiieviviie e 18
Inter- or intra-layer processingcccevvvvviieeeeveevnnnnnnn. 18
Type Of CONIOl.....cccoiiiii e 19
Application COVEIage........coiveiiieriiiiee e e e e 20
Offloading coverage........ccoovviviiiiiiii e 20
Chip or board integration.............ccccceevvieveiiiiiieeeeeein 21
Configurable [0giC........cooiiiiiiii 22
Performance measurescccooevveeeeeeeiiieeeein e, 22
FIeXIDIlItY ..o 22
TRroughpUL ..., 23
Inter operability ..., 23
COSteeeeeeeaeee 23
Application Specific Accelerators...........ccccceeennn.. 24

Programmable Network Interfaces - A Survey 25
Naming CONVENTIONcovivviiiiiiieeeeeeee e 25

Commercial architecturesccocovveeviveiiineeeennnnn. 26
Motorola C-Port C-5e Network Processor 26
ISNAP e 26
IBM POWEINP ..o, 27
Trebia SNP ... 27
IReady EthernetMAX ... 28
Alacritech Internet PP.........ouvviiiiiie 28
LayerN UltraLockKccoooeiiiiiiiie e 29
Seaway Streamwise NCP ..., 29
Emulex LightPulse Fibre HBAccoovviiiiiiiiiie 29
Intel IXA/IXC/IXS/IOP processors.......ceeeeeveeeivnneennn. 30
LeWiz CoNtent ProCESSONuviviieiiiiieeeeeeiiie e e e eeaeies 31

Qlogic SANDIAdE........cooieiieeiii e 31
Agere Systems - PayloadPIus...............cooeviiiiiiiiiiinnnnn. 32
O [YoTo Tl W0 = 1S (=] 2P 33
PMC-Sierra ClassiPl.........cccooooiiiiiiiieeeee, 34
Academic architeCtures.........ccccoeevvvviveeeiine e, 34
EU Protocol Processor Project PROS..........ccccoovvevveenens 34
UCLA Packet decoder...........cccoeviiiiiiiiiiiiiieeeeee e, 34
TACO processor from Turku University....................... 35
PICO project from Berkeley.........cccccooveeeviiiiiiicieiinn. 35
Conclusions from SUIVEY..........cvvvveiiiiiieiiieeeeiie 35
Proposed Architecture 39
INtrOdUCTION ... 39
Naming CONVENLION..........uiiiiiiiiiiiiie e 39
System PerSPECHiVEcovviviiiiiieiiie e 40
Processing tasksSccovvveiviiiiiieiiiien e 41
Protocol suite OVEIVIEWcoeuvivviiiiiiinieeeeeeeeeeeeiiiiies 41
Ethernet........oooo e 42
Address Resolution Protocol (ARP).......cccevviiiiiiiiiinnnnn. 43
Reversed ARP (RARP) ..., 43
Internet ProtoCol (IP)coooeiviiiiii e 43
ICMP and IGMP ... 45
TCP ettt 45
UDP .. 45
Proposed datapath.............cccviiiiiiiii i, 46
INPUL DUTTEr .. 46
Functional PAgES........ccuvviiiiiiieiii e 47
CM A A L ————— 50
Processing tasks allocationccccceeeeeiiiiiiiiecceccinnnnnn. 51
INLEITACES 52
Network iINterfaceccceovvvveeviiiiiiic e 52
Micro controller interface.........ccccoveeeiiiiieiiiiiiciiieeee, 53
Host system interface.........cccoeevveevieiiii e 53
Control path.........cccooiiiii 53
Counter and controller ..., 53
Hardware timer..........coov i 54
Configuration..........cocceiiiiiii e, 55

P e OIMANCE ... 55

Paper 1:

Background............ooooviiiiiiiii e,
Functional coverage of DPSP....................
APPIICALION OVEIVIEW ..o

ATChItECIUIE ...
Functional Pages........cccccoovvviviiiiiniieiceiii,
Counter and Controller........cccveevieiiiinienann...

CONCIUSION.....ccviiiii e
Acknowledgmentsccccoeeveiiiieiiiin e,

Paper 2:

INtroductioncooevvieii e,

The CRC algorithmccccooeiiiiiiis
Implementation theoryc....ccoveie,
Experimental resultS...........ccccoceveiiinennnnn.
CONCIUSIONSceviieiieecceee e,

Paper 3:

INtroducCtionoeviiiieiiiee e,
Programmable protocol processor
Functional pages..........ccccccvieeiievvviiiiiee e

Control Memory Access Accelerator

Header data..........cccooeivviiiiiiiiiiiiieeee e
Accelerator interfaceccccceeeeevvviiiiieeeeennns
Data pathcovveiiiiiiii
Control procedure.........ccooevvveeiiiiineeeeiiiiee,
Control memory organization.......................
Look-up Engine architectures.......................
CAM implementation iSSUescc.......

Shared control memoryccccceeeveivieeiinnnnnn.
CoNCIUSIONS ...,
Furtherwork ..o
Acknowledgmentscoceeiiiiiinnenen,

ASIC
CAM
CMAA
CRC
FP
FPGA
GMIl
HBA
ILP

ISCSI
LAN
MTU
NIC
NP
NT
PaP
PDU
PHY
PLD
PNI
PP
PPP
SAN
SAR

Abbreviations

Application Specific Integrated Circuit
Content Addressable Memory
Control Memory Access Accelerator
Cyclic Redundancy Check
Functional Page

Field Programmable Gate Array
Gigabit Media Independent Interface
Host Bus Adaptor

Instruction Level Parallelism
Internetwork Protocol

Internet Small Computer System Interface
Local Area Network

Maximum Transmission Unit
Network Interface Card

Network Processor

Network Terminal

Packet Processor

Protocol Data Unit

Physical Layer

Programmable Logic Devices
Programmable Network Interface
Protocol Processor

Programmable Protocol Processor
Storage Area Network
Segmentation And Reassambly

Xii

SSL Secure Socket Layer
TCAM Ternary Content Addressable Memmory

TCP Transport Control Protocol
TOE TCP Offload Engine

UDP User Datagram Protocol
ULP Upper Layer Protocol
XAC eXtract And Compare

XDR External Data Representation

Introduction

1.1 Background and motivation

In the semiconductor industry it is a well known fact that the device pro-
duction scales according to Moores law illustrated by the table below.The
scaling factor S has been 0.7 since 1974 which means that the feature size
becomes half as big every second year. Further we can see that the clock
frequency scales almost with S and that the number of transistors / chip

will scale as S. Historically the design community has been able to take
advantage of this development to improve the processing bandwidth
according to Moore’s law by using improved design methodologies and
architectures. As shown in the roadmap there will however be difficult to
fill the chips with useful content in the future. To deal with this problem,
normally re-use methodologies are addressed as the key issues for success.
Together with the cost issue this means that future platforms must provide
flexibility enough to survive over several product generations. To make the
situation even worse, today a new problem has emerged when it comes to
communication processing. Historically, /0O data rates increased at approx-
imately the rate of Moore’s law, which allowed servers to maintain 1/0 pro-
cessing performance from one product generation to the next.

2 Introduction

Table 1: Projections of the ITRS Semiconductor Roadmap

2001 2003 2005 2007 2010 2014

Feature size nm 90 65 45 35 25 13

On-chip clock 1.68 3.09 5.17 6.74 115 28.75
GHz

IO Speed 1.68 3.09 5.17 6.74 11.5 28.75
GHz

signal pins 1500 1700 2000 2200 2400 3000
(ASIC)

total # pins 480 - 500 - 550 - 600 - 780 - 1318 -
micro processor | 1200 1452 1760 2140 2782 4702
Functions / chip | 276 439 697 1106 2212 8848

Mtransistors

Networking technologies, however, have historically increased data rates
in 10 times increments according to the Fibre Channel Industry Associa-
tion [1.2]. Gigabit Ethernet (GE) today and 10 Gigabit Ethernet (10 GigE)
tomorrow together with high-speed back-bone networks, provides the net-
work bandwidth overhead to accommodate the rapid growth in organiza-
tions today. Further more and more services are requested to be provided to
the network. This makes the processing more complex and increases flexi-
bility demands. It becomes harder and harder to improve the devices so that
they provide the speed and functionality specified by the network stan-
dards.Using traditional design methods, we are already experiencing the |/
O processing gap problem illustrated by figure 1.1. The obvious solution to
this problem is to offload the communication processing from the applica-
tion processing device and instead use dedicated devices.

Example:

Consider a general purpose RISC machine in a 10 Gbps network. Assume
min-sized packets (64 bytes), no gap between the packets arriving (worst
case) and that data arrives 32 bits in parallel. The data arrival then only
takes 51 ns. A traditional 500 MHz RISC machine would then have to man-
age all the packet processing using 25 instructions per packet. The alterna-
tive is to buffer the data and fill the memory. Neither alternative is realistic.

Background and motivation 3

4 Gbit/s

I/O Processing
gap

/O Bandwi

-

Today Time

Figure 1.1: The I/O processing gap has started to become a problem using

traditional CPU architectures. The reason is that while the 1/0 bandwidth

approximately follows Moores law (1.5-2X) the Network bandwidth has a
10X improvement for each generation.

1.1.1 Research project

This thesis as well as the research project behind tries to attack the prob-
lem described in the previous section. The Ph.D. student project has been
restricted to only deal with packet reception because of the complexity of
the problem. The reason for this is that we consider the packet reception
area more challenging and important due to the very hard real time require-
ments. Hence, the process of packet creation and sending is not very well
described in this thesis. No architectural discussion regarding sending will
be included, but all the architectures included in the network processor sur-
vey in chapter 4 does include sending functionality. Interested readers are
encouraged to search for sender related information in the reference list of
chapter 4.

The contribution of my work described in this thesis, is to explore the fur-
ther architectural for network processing. The ongoing research, conducted
by me and my colleagues, is partly focusing on defining problems, deter-
mine the requirements on a network hardware platforms, attacking the
challenging problems described earlier in this section. Based on require-
ments we defined from the reality, a programmable network interface plat-
form is proposed in this thesis. The project is going on and the architecture
Is constantly improving.

4 Introduction

1.2 Outline

This thesis consists of two main parts, organized as follows. The first part
including this and the 3 following chapters, describes available solutions
and applications. Chapter 2 describes the basic concepts of computer net-
works, including common protocols, applications, processing tasks and
equipment. Chapter 2 should be regarded as a introductory tutorial for
readers with no or little background in the area of computer networks.

In chapter 3, a number of different hardware design considerations impor-
tant for the design of programmable network interfaces (PNI) are included.
These design considerations applies to any types of applications, protocols
and networks. The chapter also lists a number of ways to classify and com-
pare, the type and performance of PNI hardware platforms.

Chapter 4 consists of a survey of available PNI solutions. The survey cov-
ers many different applications and architectures, both from industry and
university research groups.

The second part of the thesis contains my research proposals, results and
the three included papers. In chapter 5 a set of protocols is presented.
Based on this protocol set, a number of required processing tasks have been
determined. The tasks are listed in chapter 5. Finally the chapter includes a
proposal of a hardware architecture and methodology, dedicated for high-
speed and flexible processing of the required processing tasks. The archi-
tecture is described in detail and measured using the performance parame-
ters introduced in chapter 3.

Finally the last three chapters consist of the three papers included in the
thesis.

References

[1.1] International Technology Roadmap for Semiconductors, on the internet, http://
public.itrs.net/

[1.2] FC Magazine, Fibre Channel Industry Association - Europe, on the internet, http:/
/data.fibrechannel-europe.com/magazine/

Packet based networks 5

Network basics

2.1 Packet based networks

This chapter includes a brief introduction to the concept of packet based
networks including computer networks. For readers seeking deeper under-
standing in this area, | recommend the following books. A good first
encounter of the area and an excellent starting point for further reading is
provided in [2.1]. In [2.2] the most common physical layer protocol, Ether-
net and Gigabit Ethernet are explained. TCP/IP is described in depth in
[2.3] and [2.4]. Readers with a background knowledge in the area of com-
puter networking, may go directly to the next chapter for further reading.

2.1.1 ISO/OSI Protocol layers

Stack on computer 1 Stack on computer 2
Logical links

Layer 7: Application Layer [« — — — — B Layer 7: Application Layer
Layer 6: Presentation Layef- — — — — - Layer 6: Presentation Laye[
Layer 5: Session Layer ¢ — — — — | Layer 5: Session Layer
Layer 4: Transport Layer |- — — — — - Layer 4: Transport Layer
Layer 3: Network Layer |- — — — — - Layer 3: Network Layer
Layer 2: Data Link Layer |- — — — — - Layer 2: Data Link Layer
Data Data
Transport Transport

Layer 1: Physical layer (netwg

Figure 2.1: The 7 layer ISO/OSI reference model

The standard model for networking protocols and distributed applications
Is the International Standard Organization’'s Open System Interconnect
(ISO/OSI) model. It defines seven network layers.

6 Network basics

« Layer 1 - Physical

Physical layer defines the cable or physical medium itself, e.g. unshielded
twisted pairs. All media are functionally equivalent. The main difference is
in bandwidth, convenience and cost of installation and maintenance. Con-
verters from one media to another operate at this level.

« Layer 2 - Data Link

Data Link layer defines the format of data on the network. A network data
frame, a.k.a. packet, includes checksum, source and destination address,
and data. The largest packet that can be sent through a data link layer
defines the Maximum Transmission Unit (MTU). The data link layer han-
dles the physical and logical connections to the packet’s destination, using
a network interface. For example, a host connected to an Ethernet would
have an Ethernet interface to handle connections to the outside world, and a
loopback interface to send packets to itself.

Ethernet addresses a host using a unique, 48-bit address called its Ether-
net address or Media Access Control (MAC) address. MAC addresses are
usually represented as six colon-separated pairs of hex digits, e.g.,
8:0:20:11:ac:85. This number is unigue and is associated with a particular
Ethernet device. The protocol-specific header specifies the MAC address of
the packets source and destination. When a packet is sent to all hosts
(broadcast), a special MAC address (ff:ff:ff:ff:ff:ff) is used.

o Layer 3 - Network

Almost all computer networking applications uses Internetwork Protocol
(IP) as its network layer interface. IP is responsible for routing, e.i. direct-
ing datagrams from one network to another. The network layer may have to
break large datagrams, larger than the MTU, into smaller packets and the
host receiving the packets will have to reassemble the fragmented data-
gram. The Internetwork Protocol identifies each host with a 32-bit IP
address. IP addresses are written as four dot-separated decimal numbers
between 0 and 255, e.g., 129.79.16.40. The leading 1-3 bytes of the IP
identify the network and the remaining bytes identifies the host on that net-
work. The network portion of the IP is assigned by InterNIC Registration
Services, under the contract to the National Science Foundation, and the
host portion of the IP is assigned by the local network administrators. For
large sites, the first two bytes represents the network portion of the IP, and
the third and fourth bytes identify the subnet and host respectively.

Even though IP packets are addressed using IP addresses, hardware
addresses must be used to actually transport data from one host to another.

Packet based networks 7

The Address Resolution Protocol (ARP) is used to map the IP address to it
hardware address.

* Layer 4 - Transport

The transport layer subdivides user-buffer into network-buffer sized data-
grams and enforces desired transmission control. Two transport protocols,
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP),
sits at the transport layer. Reliability and speed are the primary difference
between these two protocols. TCP establishes connections between two
hosts on the network through sockets which are determined by the IP
address and port number. TCP keeps track of the packet delivery order and
the packets that must be resent. Maintaining this information for each con-
nection makes TCP a connection oriented protocol. UDP on the other hand
provides a low overhead transmission service, but with less error checking.

» Layer 5 - Session

The session protocol defines the format of the data sent over the connec-
tions.

» Layer 6 - Presentation

External Data Representation (XDR) sits at the presentation level. It con-
verts local representation of data to its canonical form and vice versa. The
canonical uses a standard byte ordering and structure packing convention,
independent of the host

* Layer 7 - Application

Provides network services to the end-users. Mail, file transfer protocol
(ftp), telnet, and Domain Name System (DNS) are examples of network
applications.

2.1.2 TCP/IP Protocol layers

Although the OSI model is widely used and often cited as the standard,
TCP/IP protocol has become the totally dominant protocol stack descrip-
tion. TCP/IP is designed around a simple four-layer scheme. It does omit
some features found under the OSI model. Also it combines the features of
some adjacent OSI layers and splits other layers apart. The four network
layers defined by TCP/IP model are as follows.

* Layer1-Link
This layer defines the network hardware and device drivers.

8 Network basics

« Layer 2 - Network

This layer is used for basic communication, addressing and routing. TCP/
IP uses IP and ICMP protocols at the network layer.

* Layer 3 - Transport

Handles communication among programs on a network. TCP and UDP
falls within this layer.

« Layer 4 - Application

End-user applications reside at this layer. Commonly used applications
include DNS, rlogin, talk, and ftp.

2.1.3 Traditional layer processing

A traditional way of describing a protocol layer is illustrated by figure
2.2. The figure is a very general description of protocol layers but it shows
the layered structure that causes many of the problems emerging today. The
layers are today very well specified and it provides us with an interface
between the different service entities, e.g. devices or pieces of software.
The problem is the waisted processing this architecture gives when provid-
ing services on all layers while it is only the top layer services that is going
to be used by the application processing host. The different services are
further discussed in section 2.2.

2.1.4 Local Area Networks

Local Area Networks (LAN) protocols function at the lowest two layers
of the OSI reference model, between the physical layer and the data link
layer. A LAN is a high-speed data network that covers a relatively small
geographic area. It typically connects workstations, personal computers,
printers, servers, and other devices. Devices commonly used in LANs
include repeaters, hubs, bridges, LAN switches, and routers. A repeater is a
physical layer device used to interconnect the media segments of an
extended network. Repeaters receive signals from one network segment
and amplify, retime, and retransmit those signals to another network seg-
ment. Repeaters are incapable of performing complex filtering and other
traffic processing. In addition, all electrical signals, including electrical dis-
turbances and other errors, are repeated and amplified.

 Wireless LAN

Today there exist a number of different protocols for wireless LAN appli-
cations. They differentiate a lot in terms of performance, cost-figures, cod-

Packet based networks 9

From layer i+1 To layer i+1
Protocol Layer | v
Receiving
Computer
Data Data
@ Transmitting
Service

Service con-
trolling

Peer services

Service Ser-

Receiving

Transmitting

Data Data

I

To layer i-1 From layer i-1
Figure 2.2: Traditionally layered protocol processing concept. During
reception each protocol layer receives data and other services from the
layer below. The data is processed in order to provide the peer services
to the transmitting computer. In the same way all protocol layers pro-
vides services to the layer above. Each layer’s service provider is called
an entity. The entities can be implemented in software or hardware or in
a combination.
ing schemes and connection orientation. The main alternatives are IEEE
standard 802.11 and HiperLAN ([2.5] and [2.6]).

2.1.5 Storage Area Networks (SAN)

The usage of SAN is currently growing very fast. SAN is normally used
for connections to and from file servers. They provide a very high band-
width and the dominating protocol is Internet SCSI (iISCSI). Normally the
SAN protocols are used on top of TCP/IP. Some examples on host bus

10 Network basics

adaptors (HBA) and SAN accelerators will be discussed in chapter 4. More
information regarding SAN protocols, devices and applications can be
found in [2.7].

2.1.6 Mixed traffic

Today it becomes more and more common to use the same network for
booth data transfer and voice or video. One reason is that network stan-
dards and quality have reached the level where it is economically beneficial
to share the network resources. The main applications, except normal data
traffic, for mixed traffic are:

* \oice over ATM
» \oice over Frame Relay
e \oice over IP

2.1.7 Quality of Service

Fundamentally, QoS enables the possibility to provide better service to
certain flows. This is done either by raising the priority of a flow or by lim-
iting the priority of another flow. Using congestion-management, it is pos-
sible to raise the priority of a flow by servicing queues in different ways.
The queue management used for congestion avoidance raises priority by
dropping lower-priority flows before higher-priority flows. Policing and
shaping provide priority to a flow by limiting the throughput of other flows.
The QoS concept has been a huge research area for several years by now.
However QoS has not been used in many networks so far. The reason for
this is the complex administration required for billing which makes it
costly.

2.1.8 Network performance figures
Some common networks and their performance figures are listed below.

Table 2: Common networks and their performance figures.

Network Speed
Fast Ethernet 100 Mb/s
GEthernet - GMII interface 1 Gb/s
10 GEthernet - XGMI!I interface 10 Gb/s
OC-1 52 Mb/s
0C-48 2.5 Gb/s
OC-192 10 Gb/s

Protocol services 11

The networks listed in table 2 are and will continue to be some of the
most common for a number of years. They all have such high throughput
that host processors benefit from efficient offloading.

2.2 Protocol services

Regardless of the protocols used in a computer network, there exist a
common set of processing tasks that each node in the network must per-
form in order to make the network function correctly. There are also a
number of tasks, that are specific for the protocol. Since each protocol give
a unique set of requirements on the processing this common set can not be
a bit level correct processing description. Instead they describes the nature
of different processing tasks for different protocols on different layers. The
main reason for grouping the processing tasks is to analyze flexibility and
throughput requirements for a larger set of protocols, before deciding on
resource needs. This results in a classification of a task based on its demand
on the processing resources, not based on protocol or layer type. Conse-
quently | have chosen to classify the processing tasks using five task
groups.

2.2.1 Parsing

In order to perform any processing on a packet, the first step is to recog-
nize the packet and the set of rules to apply on it. This identification of a
packet and its rule-set is commonly known as parsing. During transmis-
sion, both the payload and the set of rules can easy be passed between dif-
ferent processes or processors. Hence, this group of processing tasks,
mainly concerns protocol reception. During protocol reception, the first
task is to detect a valid packet and its data alignment. To identify and detect
a packet, coding algorithms or hardware devices can be used. Secondly the
information describing which rule-set to apply on the packet must be
extracted. The rule-set is normally stipulated by the protocol type and other
parameters such as addresses stored in the packet header.

2.2.2 Control flow selection

Decisions on how to process the packet can be made based on the parsed
information. This decision making normally consists of selecting a number
of operations to perform. These operations can then be performed in hard-
or software. The control flow selection is by nature very different from a
standard Harvard architecture, where the program flow defines the opera-
tions to apply to the data in the data path. Here the program flow is selected

12 Network basics

case protocol_type is
when A jump to flowl
when B jump to flow2
when C jump to flow3
when D jump to flow4

Figure 2.3: Control flow selection pseudo-code.

based on the data extracted from the data path. The control-flow-selection
can be implemented in software as a pseudo-code illustrated by figure 2.3.

If the protocol processing (or parts of it) is implemented in hardware the
control flow selection does not (only) select the program flow. Instead the
control flow selection is implemented as a configuration and selection of
hardware, that meet the requirements of the current protocol. The common
tasks within this group can be listed as:

* Program flow selection
« Hardware configuration
« Hardware multiplexing
« Hardware scheduling

2.2.3 Transport control

The purpose of the transport control is to provide a secure and regulated
communication between a sender and a receiver. In the telecommunication
community this is commonly known as signaling. The transport control in
a network terminal normally consists of two main types:

» Acknowledgement control including timer triggered events
* Receiver management e.g. policing, filtering, and QoS providing

The acknowledgment control must produce acknowledgments and send
them back to the sender when packets have been received. It also includes
keeping track of incoming acknowledgments to see if the transmitted pack-
ets have been successfully received.

In a network terminal, the receiver management normally only consists of
a decision to store or discard the received packet. It may also include a pri-
oritizing of the incoming packets. The decisions are then made based on
the parsed information.

Traditional network components 13

2.2.4 Data processing

The purpose of data processing is to support the transmission control so
that a secure and error-free channel is maintained. Since this type of pro-
cessing tasks only is controlled by the packet type and is very throughput
demanding, it has been given its own processing task group. These data
intensive tasks are normally included in the lower layers in the ISO/OSI
reference model. Some common types of data processing are:

* CRC calculation

* Checksum calculation

e Other Coding/Decoding
» Encryption/Decryption

2.2.5 Datastream management

In network terminals the datastream management consists of different
kinds of buffer management. When transmitting a certain amount of data it
may have to be divided into several packets and then sent to the correct
address. The data must be re-assembled and then stored in the correct
memory location at the receiving terminal. In network infrastructure nodes
(e.g. routers) the data stream management includes deciding where to send
packets.

2.3 Traditional network components

2.3.1 Network Terminals

Network terminals (NT) exist for many different applications. Some
examples are desktops, printers and IP phones which are normally con-
nected to the network using wired connections, e.g. Ethernet LANs. There
also exist many wireless applications where the NTs are used, e.g. a mobile
phone or a PDA, connected to a WAN. Due to the diversity of the applica-
tions the requirements on the network interfaces are very different. The
only common characteristics of a NT is that it terminates the packets. This
means that no routing decisions have to be made.

As an example on the type of processing going on in a desktop PC we can
consider the TCP/IP protocol stack processing introduced in section 2.1.2.
An example of some processing tasks in the NT and the simplified hard-
ware allocation, is illustrated by figure 2.4.

14 Network basics

Processing tasks Hardware allocation
Link layer « Check address '
» Error control incl length check, \\ Network
CRC \
» Data buffering \
» Discard erroneous packets < \
Network « Create and trigger reply pack- > <\| Network
layer ets \ 1 Interface
« Check IP address \ Card (NIC)
« Checksum calculation \
« Reassembly and data buffering !
* Timer handling ' | Host processor
» Discard erroneous packets \
Transport . gata stream management \
layer » Create and send Acknowledg- \

ment packets
* Update connection state vari-
ables 7
» Discard erroneous packets y

Figure 2.4: Examples of processing tasks and hardware allocation in a tra-
ditional type of desktop NT. As illustrated above the host processor has to
do a lot of the processing while the NIC only process the link layer.

2.3.2 Routers

Even though router manufacturers of today tend to include more and
more intelligence in their devices, they normally do not handle protocols
above the network layer in the protocol stack. The main reason for this is
that a transport layer protocol such as TCP might have its payloads being
segmented into many packets, which then are transmitted through separate
network paths. Hence, it is only in the terminals the protocols in the trans-
port layer and above will be processed. There are also simpler routers, only
capable of lower layer processing. Layer 1 processing routers are normally
called repeaters. Layer 2 routers are known as switches.

The main goals of a router are:

* To pass on incoming packets to the correct network link.
» To provide error control and security to the communication channels
established.

Traditional network components 15

Processing tasks Typical hardware setup
» Classify packet O~
« Send to the correct link — — X [Line RN Line
» Check options and update) card Interface card
variables /" ne Cine
 Calculate new and check,” | -ard card
old IP checksum : :
« Prioritizing - ~ |Line Line
« Logging statistics \| card card
* Monitoring the traffic DNine Line
T~ card card
< N\

~ 2 Slow path
y processor

Figure 2.5: Example of processing tasks and allocation in a traditional
type of router.

* To monitor and control the traffic flow so that it is optimal from the
Internet Service Providers (ISP) point of view. E.g. management of bill-
ing and bandwidth resources.

Normally a router includes 3 basic components. They are line cards,
interfacing backplane and a slow path processor (normally a PowerPC).

Some examples on processing tasks and a typical router hardware architec-

ture is illustrated by figure 2.5.

References

[2.1] A. S. Tannenbaum, “Computer Networks”, 3nd Edition, Prentice Hall PRT, ISBN
0-13-349945-6, 1996

[2.2] J. Kadambi et al, “Gigabit Ethernet”, Prentice Hall PRT, ISBN 0-13-913286-4,
1998

[2.3] W. R. Stevens, “TCP/IP lllustrated, Volume 1 The Protocols”, Addison-Wesley,
1994

[2.4] G. R. Wright, W. R. Stevens, “TCP/IP lllustrated, Volume 2 The Implementa-
tion”, Addison-Wesley, 1994

[2.5] Technical Specification of BRAN and Hiperlan-2. Common part.”, ETSI TS 101
493 -1,V1.1.1, 2000

[2.6] “Technical Specification of BRAN and Hiperlan-2. Ethernet Service Specific
Convergence Sublayer.”, ETSI TS 101 493 - 2, V1.1.1, 2000

[2.7] Storage Networking Industry Association, on the internet, http://www.snia.org/
home

16

Network basics

Hardware platforms

3.1 Architectural challenges

When designing high speed programmable network interfaces (PNI)
there are a number of challenges that the designer has to overcome. Some
of these challenges are common to all micro electronic designs, e.g.

» Data transfer to/from external memories
» Power dissipation

* Pin limitation

» Packaging

* Verification

Others are specifically important in PNI designs, e.g.

» Line-rate processing (fast path processing)

» Link-rate processing (slow path processing)

» Device integration (accelerators, memories, ASIC:s)

» Shared resources management (e.g. data and program memories)

To overcome these challenges three main approaches exist today. Their
common goal is to provide sufficient processing power so that the host is
efficiently offloaded. The three main alternatives are:

» Application Specific Logic
Special Instruction Set
On- or Off-chip accelerators

17

18 Hardware platforms

» Advanced Processor Architectures
Data level parallelism
Instruction Level Parallelism (ILP)
» Multi processor solutions
Task level parallel or pipelined architectures

Combinations of these design approaches are also possible. Before select-
ing design methodology and architecture a number of design consider-
ations and performance requirements have to be examined. Depending on
application, cost sensitivity and other factors, the optimal solution may
vary. For further information on the design challenges and consideration
when designing PNIs, | strongly recommend the new book [3.1]. In the
Ph.D. thesis [3.2] a deep discussion on memory architectures can be found.

3.2 Design alternatives

Today, there are a number of different hardware platforms available for
use as PNI. In order to investigate the need for, and type of PNI hardware a
classification of the different solutions is useful. When selecting hardware
solution the first step is to analyze the requirement and then select the type
of hardware platform to use. Some of the most common PNI hardware
platform design alternatives are discussed in the following subsections.

3.2.1 Inter- or intra-layer processing

Intralayer processing means that each protocol layer is processed sepa-
rately according to figure 3.1. This way of processing and conceptual
thinking is a result of the invention of computer networks and protocol
stacks for more than 30 years ago. In the seventies the communication was
considered to be a precious resource while the processor had infinite pro-
cessing power. Today, the opposite is true.

Intralayer processing gives a processing overhead since a lot of interme-
diate results and data transports must be performed. However, the well
established protocol standards support verification when intralayer pro-
cessing devices are designed. There is also a need to support all the peer
services stipulated by the different layer standards. This is the reason why
SO many companies and research groups propose intralayer processing to
be considered.

The main advantage with interlayer processing is the reduced amount of
data transportation and processing since we reduce the need for intermedi-
ate results. Another advantage that the interlayer processing gives us is that

Design alternatives 19

Data and services

F__#__f__leewceZ
Protocol layer | g L g l T l T

I
|
_ _ % _ _ # 1
- =-T=- g _
Device 2 <> \ylti layer <> \ylti layer
Protocol layer | - > <a» Processing <a» Processing

Peer services

e)

Protocol layer | g + —p
o ¢ L J‘(' Device 1 Device 1 Device 2

|
|
|
L
-
|
|
L
.
|
|
|
L

— — 1

Figure 3.1: Interlayer (to the right) processing means that all or parts of
several protocol layers are being processed simultaneously on one device.
It does not mean that all processing is done on one piece of hardware or
software. Several devices can still share the processing. Intralayer pro-
cessing means that each protocol is processed sequentially, in order and
on one single device. Higher layer protocols will not be processed until
the lower has been finished.

the processing can be divided and then distributed to different computing
devices depending on the type of processing rather than layer type. The
coarse separation is normally into tasks to be performed in hardware or
software. Traditionally the physical layer was implemented in hardware
while the rest was processed in software. Today, architectures where parts
of all layers are accelerated in hardware emerge.

To distribute the processing according to processing requirements and
type in an interlayered way results in an orthogonal description of the pro-
cessing tasks, compared to the traditional protocol stack.

3.2.2 Type of control

The hardware components in a network interface can have different kinds
of control. The three main alternatives are:

» Fixed function. E.g. ASIC with no flexibility.

» Configurable. The function of the data path can be changed but it can
not be changed every clock cycle. The control ability and flexibility can
be high (e.g. in an FPGA).

» Programmable. The function of the data path can be changed in every
clock cycle.

20 Hardware platforms

In a PNI the need for configurability and programmability can be reduced
by the use of many different fixed function blocks, each capable of process-
ing a small part of the tasks. The different blocks are then used only for
specific tasks and do not need any configuration. Many protocols at the
higher layers in the protocol stack have very high requirements on flexibil-
ity. Hence, the amount of flexibility and the type of control a hardware plat-
form uses, is an important design parameter.

3.2.3 Application coverage

The ability to run a certain set of network applications on the host using
the interface in certain networks is described by the application coverage of
the PNI. The problem is that the complexity and hardware cost grows as
the application coverage grows.

The basic requirement for a large application coverage is that the band-
width is sufficient for processing of the received data. The higher band-
width the PNI can provide the more applications can be supported.

The second requirement for a PNI to have a large application coverage is
that it is flexible enough so that it can process all the different applications
(protocols). The application coverage defines what the PNI can be used for.
Therefore it is the single most important classification parameter. Normally
it is useless to compare the performance figures of two different PNI archi-
tectures that have different application areas.

3.2.4 Offloading coverage

The solutions available today from the academic research community and
the industry are extremely diverse. Despite this diversity, the communica-
tion network platforms can be divided into four main groups according to
their offloading strategy illustrated by figure 3.2.

Depending on application, throughput requirements, power awareness
and customer cost sensitivity different platforms selects one of the four dif-
ferent offloading strategies while offloading the host processor. The off-
loading PNI can then typically process protocols at layer 2 up to layer 7. It
IS not certain that all parts of the protocols are offloaded from the host pro-
cessor. Hence, the offload efficiency can vary within the four main groups
in figure 3.2. Consequently it is very important to clearly examine both
which protocol and how big part of the protocols should be offloaded. Pro-
tocols not offloaded must of course be processed by the host.

Design alternatives 21

Dedicated
Data path Logic based
offload Full offload

Standard
Processor
based
offload

Throughput

No offload

Host Offload Efficiency
Figure 3.2: Host offloading strategies

3.2.5 Chip or board integration

Processors and memories in a PNI ASIC chip are integrated in the same
silicon chip, which means almost all the processing work can be done
internally without having to wait for slower external memory access. On-
chip memory is a major advantage since many protocols require extensive
memory access when being processed.

An ASIC can have multiple processors integrated into the chip to handle
heavy workloads. This means that a single chip may be simultaneously
working on many different processes for many independent protocol ses-
sions. Parallel processors within an ASIC (SoC) provide enormous perfor-
mance advantages beyond those achievable with single-processor board-
level products.

One particularly noteworthy example of parallel processing in a network
processor ASIC is the implementation of timers. TCP processing depends
on session timers to manage flow control and identify transmission errors.
At gigabit and higher transmission rates, the accuracy of flow control and
error detection becomes increasingly important to the health of the net-
work. Board-level solutions have to implement TCP timers in software or
use one or two general timers provided in a general processor core. This
means that the events and timers are processed sequentially by a single
CPU. Obviously, multiple hardware-based timers running in a custom
ASIC add a great deal of efficiency as well as accuracy, resulting in the
most consistent and predictable network operations.

22 Hardware platforms

Beyond accessing memory in silicon, ASICs also facilitate the use of
advanced memory technologies that have been developed for high speed
networking applications. Specifically, where TCP processing is concerned,
a special memory technology for high throughput networking called CAM
(content addressable memory) can be used very effectively. While CAM
can be implemented in both board-level as well as ASIC solutions, it is less
expensive and more efficiently utilized when implemented in an ASIC. In
general, the content-based indexing of CAM virtually guarantees that each
connection table lookup only needs a single memory operation. With a
high volume of lookup operations occurring every second on a Gigabit Eth-
ernet link, it is easy to see why an ASIC approach with integrated CAM is
so efficient. More on accelerated memory access using CAMs is presented
in paper 3, chapter 8.

3.2.6 Configurable logic

To implement parts or the whole of a PNI in a Field Programmable Gate
Array (FPGA) would give a very high degree of flexibility due to the con-
figurability of the FPGA. Since the cost of FPGAs today is acceptable for
low volume products, it would be a very cost effective solution if the num-
ber of units sold is small. There are however four major drawbacks with
FPGA implementation. First of all the throughput of an ASIC implementa-
tion will always be significantly higher than the FPGA solution can man-
age. Secondly the power consumption is much higher in the FPGA. The
third drawback with a standard FPGA is the limitations in size and com-
plexity of the design that can be implemented on one FPGA. The memory
communication and use of distributed embedded memories are also bene-
fiting from an ASIC chip implementation.

3.3 Performance measures

A number of different performance figures must be compared in order to
evaluate and compare different hardware platforms to find the most suit-
able one for use as a PNI. The most important ones are described in this
section.

3.3.1 Flexibility

A PNI must provide flexibility and adaptability to the changing environ-
ment it might operate in. This results in some flexibility requirements that
all PNIs has to meet to some extent:

Performance measures 23

» Reconfigurable media adaptationln order for a PNI to be used in dif-
ferent networks and survive over time it must be capable of adaptation
for different medias.

» Programmable connection policyA PNI must support on-line change
and control of the traffic flow.

» Programmable host interface.The interface between the PNI and the
host system must be operating in real time and be highly flexible in
order to avoid unnecessary interrupts in the host.

» Data controlled datapath selectionThe datapath must be config-
urable or selectable depending on the data header information.

Providing the flexibility bulleted above gives a large protocol coverage
but it increases the complexity of the hardware. There is always a tradeoff
between flexibility and throughput since flexible general purpose hardware
never can reach the same throughput as dedicated hardware blocks. Hence
flexibility is an important performance parameter.

3.3.2 Throughput

The need for bandwidth is ever increasing and is not going to disappear.
Further it is a fact that an increased bandwidth supports larger application
coverage which is very attractive. The conclusion is that throughput is and
will continue to be a very important performance parameter when a hard-
ware platform is designed.

3.3.3 Inter operability

The main purpose of a PNI is to offload and relax the host processor as
much as possible. Hence, it is very important that the interfacing communi-
cation between the PNI and the host does not disturb or interrupts the pro-
cessing on the host CPU. Further it is important that the host operating
system can manage and access the data buffers as well as communication
with the PNI in an efficient and non-interruptive way. In order to reach an
optimal way of integrating the PNI device into the system, both the PNI
interface and the host operating systems must be optimized. To optimize
the PNI interface is much easier than the host operating system since itis a
proprietary architecture. | have chosen to call this integration of the PNI
with the host operating system, inter operability and it is a very important
for the overall system performance.

3.3.4 Cost

The cost of the PNI chip or board is very important performance figure.
The cost is important for any customer but network terminal user are espe-

24 Hardware platforms

cially cost sensitive. The cost is always an important part of architectural
design tradeoffs. The cost off a PNI chip mostly depend on the package and
the number off chips manufactured.

In order to make the package cheap, the area, power dissipation, and
number of pins must be minimized. The power dissipation is normally an
Important optimization criteria in all micro-electronic system but it is espe-
cially important for network terminals. The power figures are of course
even more important in portable systems. The number of pins is hard to
lower since a PNI by nature includes a lot of communication over the chip
edge. The area is possible to minimize by architectural exploration. Mini-
mizing the design can be either used for cheap packaging and/or to allow
for more resources on-chip, e.g. memory.

The number of chips that can be manufactured is strongly connected to
the flexibility of the design. A general design can be used for more applica-
tions and can also stay longer on the market. Hence, it is important that the
design is reusable and flexible enough for a long life-time.

3.4 Application Specific Accelerators

In order to improve the performance of PNIs used either in network nodes
or terminals, dedicated hardware blocks are often used. The main purpose
Is to offload the offloading devices (PNI) by taking care of the computa-
tional heavy data intensive processing. New accelerator types for higher
layer offloading emerges every year. Some of the accelerator types avail-
able today are:

* Two- or one-dimensional classification engines. Could be CAM,
TCAM or RAM based.

« Storage Area Networks (SAN) Engines. Used in file servers.

« PHY and MAC layer ASICs

« Segmentation and reassembly (SAR) engines.

» Crypto engines

* Hardware timer assisting engines

Reference

[3.1] Crowley, Patrick, et al, “Network Processor Design”, first edition, Morgan Kauf-
man Publishers, ISBN: 1-55860-875-3

[3.2] Mattias Gries, “Algorithm-Architecture Trade-offs in Network Processor
Design”, Ph.D. thesis, Diss. ETH No. 14191, Swiss Federal Institute of Technology
Zurich, 2001

Programmable Network
Interfaces - A Survey

4.1 Naming convention

Depending on application coverage and marketing reasons, platforms
dedicated for processing of packet based communication channels have
different names. Common names on various communication network plat-
forms are:

* Network Processors (NP)

» TCP Offload Engines (TOE)

* Protocol Processors (PP)

* Programmable Network Interfaces (PNI)
* Network Interface Cards (NIC)

» Packet processors (PaP)

The two most general names are NP and PNI. The other ones are nor-
mally regarded as subsets of the NP type but no naming convention has
been agreed upon. The application coverage may vary a lot between two
architectures within the same group. For example a TOE may process parts
or the hole TCP protocol. Regardless which, it will still be presented to the
customers as a TOE.

25

26 Programmable Network Interfaces - A Survey

4.2 Commercial architectures

4.2.1 Motorola C-Port C-5e Network Processor

The C-5e NP is a part of Motorolas C-Port family. It supports the use of
16 line interfaces, each controlled by a channel processor (CP). The CP
contains a receive and a transmit processor. They are serial data processors
(SDP) which can be used for various layer 2 implementations. Further the
CP contains a dedicated channel processor RISC core (CPRC) with a dedi-
cated 32 bit instruction set. Each CPRC uses a 8 kB instruction memory
and a 12 kB data memory. Each channel processor can manage 156 Mbps
line cards but when used in clusters, much higher bandwidths is supported.

Further the C-5e NP includes an eXecutive Processor (XP) for control
plane operations. C-5e NP also includes a humber of dedicated co-proces-
sors:

* A Table lookup unit (TLU) classifies incoming packets based on infor-
mation in a external SRAM memory.

« Buffer management unit that controls the payload data storage while the
header is being processed.

* Queue management unit that is shared between all the processors to
provide QoS.

» Fabric processor provides a high-speed network interface.

The SDP in the CP is responsible for the bit- and byte-wise processing
and can be considered as the fast path. The SPDs are responsible for the
layer 2 interfaces, e.g. GMII. They also handle encoding/decoding, fram-
ing, formatting, parsing and error checking (e.g. CRC and header check-
sum calculation). The SPD may also initiate a classification search in the
TLU. The receive SPD include two FIFO buffers. The first one is a small
FIFO storing incoming data before the bit processing. The other FIFO is
larger and it stores the data before byte processing. The SPD are also
responsible for framing and synchronization of the incoming packets.

Several CP can be concatenated using the very high bandwidth interface
bus (35 Gbps) for pipelined processing.

4.2.2 iISNAP

The IP Storage Network Access Processor from Silverback [4.1] termi-
nates and process IP-based storage traffic in a GE with full duplex. It sepa-
rates the header and data traffic processing. The header processing
generates an event which is placed in a queue that communicates via DMA
to the host. Meanwhile the packet data is stored in a DRAM until the event

Commercial architectures 27

-
(q\|
o)
©
5 nd
2 3 o
= =N =g Ol
LL (&) (U-_ O 4
— o[| S |<| Interface
o) @) (o 2 (7))
w — (]
O - 2
[7)]
)
©
L O]

Figure 4.1: Trebia SNP architecture.
is finally created. At the host level the data can then be stored in separate
application buffers depending on the upper layer protocol (ULP). This is
called PDU awareness. ULP covered are iISCSI, NFS, CIFS and main
application areas are servers, storage devices and Network Area Storage
(NAS) appliances.

4.2.3 IBM PowerNP

First of all the PowerNP consists of a number of interfaces to memories
(control and data) and networks (PHY/MAC ASICs). The packet process-
ing is performed in the programmable Embedded Processor Complex
(EPC) assisted by co-processors. The EPC contains 16 programmable
engines known as picoprocessors. The picoprocessors operates in pairs
called DPPUs. Each DPPU have a shared set of co-processors that operates
in parallel. The picoprocessors are essentially 32 bit scaled-down RISC
machines with an dedicated instruction set. The DPPU also contains a
small (4 kB) shared memory. The co-processors handles tree search, data
storage, control access, queues, checksums, string copy, policy, counters,
buses and system semaphoring.

4.2.4 Trebia SNP

This architecture [4.2] includes MAC block for mixed medias (wired and
fibre-based), a security accelerator, various classification block, a TCP off-

load engine and a Storage Area Network (SA?I\B’rotocoI processor as
illustrated by figure 4.1. The TCP offload engine can operate stand alone,
terminating TCP connections without involving the host processor. For IP

1. Storage Area Networks (SAN) today sees a rapidly increasing use of PP to offload the host.
The host is then typically acting as a file server. SAN was previously discussed in chapter 2.

28 Programmable Network Interfaces - A Survey

storage applications they claim that their TCP offload engine manage up to
10 GigE. The SAN PP is optimized for processing of storage 1/O flows and
especially iSCSI termination.

4.2.5 iReady EthernetMAX

The Media Access Xccelerator [4.4] from iReady is intended for trans-
port offload [4.3]. It fully terminates TCP/IP at GE speed. The TCP/IP
accelerator uses a streaming data architecture similar to the one proposed
by this papers author. The data is not stored but instead processed while it
Is streaming through a 64 bit wide pipeline. The 64 bit wide datapath then
process the data using multiple dedicated hardware blocks implementing
different state machines. Each state machine block process a specific part
of the incoming headers. The processor also uses hardware acceleration of
ISCSI and IPSec. Since the complexity of the IPSec processing is 2 to 3
times higher than TCP/IP this architecture is not suitable from a power and
cost point-of-view if the use of IPSec packets not is large in the network.
The implementation does not use standard programmable devices. Instead
dedicated logic for optimal performance is used.

4.2.6 Alacritech Internet PP

Alacritech [4.5] provides a Session Layer Interface Card (SLIC) [4.7] that
includes accelerators for GE, network acceleration [4.6], storage accelera-
tion and dual-purpose server and storage acceleration. Especially their
Internet Protocol Processor (IPP) which offloads TCP/IP and iSCSI pro-
cessing is interesting. The IPP offers acceleration of non-fragmented TCP
connections. This means that data transfers to and from the TCP/IP stack is
handled by the IPP while the host system must take care of the connection
state processing. Parts of the TCP that IPP does not handle are:

« TCP Connections and breakdowns (SYN segments)
* Fragmented segments

* Retransmission timeout

« Out of order segments

* Finish segments (FIN)

Despite this down-sized functional coverage in the accelerators, Alac-
ritech claims that 99.9 percent of the TCP/IP traffic is handled by the IPP
while the other 0.1 percent is processed by the host processor. Alacritech
further stresses the low power and low cost figures of their architecture.

Commercial architectures 29

Client TCP/IR Client TCP/IR
state memory state memory

non SSL
(http)

Client [<€—— ¥ Server
TCP/IP TCP/IP

Processaks| SSL |«a| Processa
Crypto

Engine

=

Servers

GE MAC |[=a—»f
GE MAC |=e»

Internet

Figure 4.2: The UltraLock provides acceleration for SSL connections.
Ordinary http packets are passed on without any processing in the SSL
engine.

4.2.7 LayerN UltraLock

The UltraLock [4.9] illustrated by figure 4.2 uses a patented architecture
named SIGNET [4.8]. The UltraLock chip offloads both the Network pro-
cessing, including packet classification, and provides acceleration of
Secure Socket Layer (SSL). The UltraLock also includes GE MAC accel-
erators.

In the TCP/IP processor the tasks are distributed among several different
dedicated functional blocks in order to improve the throughput. These
TCP/IP processors are also pipelined.

4.2.8 Seaway Streamwise NCP

Seaway Networks [4.10] offers a streamwise Network Content Processor
(NCP) capable of multi-gigabit layer 4 (TCP) termination. The NCP also
examine, modifies and replicate data streams based on their content (Layer
5-7). The NCP uses a streamwise switch to send data streams to different
content processing devices, e.i. co-processors or general purpose CPUs.

4.2.9 Emulex LightPulse Fibre HBA

The host bus adapter (HBA) from Emulex [4.11] includes an ASIC con-
troller, a RISC core and a SAN accelerator. The SAN accelerator uses a
context cache hardware so that context (PDU information) not must be

30 Programmable Network Interfaces - A Survey

transported to and from the host and thereby offloading the server PCI bus.
The systems have 1 Gbit/s performance and the main feature is the imple-
mentation of a strong SAN accelerator for high end servers.

4.2.10 Intel IXA/IXC/IXS/IOP processors

Intel offers a number of chips to solve different tasks when it comes to
what they call Network Infrastructure Processing [4.13]. First of all they
have the Internet eXchange Architecture (IXA) which includes different
NP. They uses Xscale instruction set (improved Strong-ARM) and the peak
capacity is today 10 Gbit/s using high-end MAC interfacing chips, while
the normal IXP 1200 uses Fast Ethernet. In for example the IXP 1200 the
datapath includes 6 different micro engines which supports multithread
programmability. The second generation NP IXP2400 includes 8
microengines. The microengines in the IXP 2400 are connected in two
clusters of four engines. The microengines uses a application specific
Instruction set. The microengines shares memory resources and have pri-
vate connections to its neighboring engines. Each microengine contains a
4096 times 40 bits program memory. Each microengine can process 8 dif-
ferent contexts, e.i. threads. There are 128 general purpose registers and
640 data transfer registers available in each microengine. Further it
includes a memory capable of storing 640 32 bit data values. The
microengines also includes the following dedicated hardware blocks:

 CRC unit for 16 and 32 bit computations.

* Pseudo Random Number generator (used for QoS in congestion algo-
rithms).

« Hardware timers.

* Multiplier

« 16-entry CAM used for cache search and assists software pipelining.

TCAM can be connected as an external accelerator working in parallel
with the IXP2400.

The IXA type chips is mainly intended for packet processing for switch-
ing, protocol conversion, QoS, firewalling and load balancing. Further Intel
offers Control Plane Processors in the IXC family. IXC is mostly efficient
when they are being used for exception handling and connection states pro-
cessing. They are normally used in high end systems, e.g. Base Transceiver
Stations, Radio Network Controllers and MAN servers. They normally
operates together with a IXA type of chip handling the control plane pro-
cessing. The IXS family contains Media Processors used for acceleration
of voice, fax, and data- communication. In a big server a number of these
IXS could be used together with one IXA chip. Finally Intel offers I/O pro-

Commercial architectures 31

Content Processor

Packet Engine

PCI Packet pre- Pratocol
: >
—®r processing parser
Syst Interface +
Classifier
Packet forward engine
engine T_

#

Content Memory

-

Figure 4.3: LeWiz content processor. The Packet pre-processor is a TOE.
The Protocol parser examines the ULP data (layer 5-7) and based on this
it start a search for a classifier using the classifier engine. The classifier
then decides priority and is used for re-direction of the traffic according to
the QoS policy.

cessors (IOP) that is a quite general architecture which can be used for
SAN acceleration.

4.2.11 LeWiz Content processor

LeWiz processor [4.12] process layer 3-7 with hardware acceleration
with a line rate capability of Gbit/s. Among other things it performs table
lookup for connections, controls a external header data memory, support
different types of connections based on URL/source address, and handles
XML and URL switching. LeWiz sells both hard and soft cores. The con-
tent processor architecture is further described in figure 4.3.

4.2.12 Qlogic SANblade

The SANDblade [4.14] manage 2 Gbit/s line rate using GE or fibre channel
medias while performing iSCSI as a HBA. It completely offloads the TCP/
IP protocol stack from the host. The SANblade also handles all 1/0O pro-
cessing. The SANDblade contains internal on-chip memory which they
claim to be faster, cooler and moore scalable than using shared memory
architectures.

32 Programmable Network Interfaces - A Survey

RAM
32 bit data» :
gbitASI| | mput Output
8 bit ASI | framer ——» Data controller —m mtert o -
| Block buffer | I
Y ! |
Eré’r%ﬁm‘_, Pattern Processing CS/CRC |
4 Engine (PPE) engine | |
Control -« 4 ATU |
|
Memory |Queue eng|n$<_ R
—L 32 bit
i Functional bus
8 bit Configuration interface interface - — —
A'Sl—r

Figure 4.4: FPP architecture.

4.2.13 Agere Systems - PayloadPlus

PayloadPlus provides a complete solution for OC-48c (2.5 Gbps) net-
works. The board solution includes 3 chip, capable of up to layer 7 process-
ing. They are the Fast Pattern Processor (FPP), the Routing Switching
Processor (RSP), and the Agere System Interface (ASI).

The FPP is programmed with a dedicated protocol processing language
(FPL). The FPP does not contain any accelerators for classification and
reassembly such as CAM or Segmentation and Reassembly (SAR) devices.

The Pattern Processing Engine (PPE) matches fields in the data stream
based on the program stored in the program memory. The program is writ-
ten in FPL. The FPP operates on 64 PDU at a time. Each PDU is processed
by a separate processing threds called contexts. The CS/CRC engine per-
forms 4 different checksums based on the FPL program, generic checksum
(1-complement), IP v4 checksum, CRC-10 and CRC-32. The input framer
can be configured for 8, 16 or 32 bit wide datastreams.

The RSP handles the traffic management and flow modifications in a pro-
grammable way.

The ASI is a PCI like standardbus. The main applications is layer 2-3
routing and switching. The PayloadPlus architecture also supports voice
and data processing (e.g. over IP, AAL5, AAL2), access control and
enables QoS functionality.

Commercial architectures 33

XMC

H-TMC P~TMC ~TMC ~TMC
from | TMC | . TMC | o[TMC | o [TMC ggcket
m
Balgf&,; [ICM] [CM] [CM] [CM] -
uffer buffer
-TMC P~TMC *TMC TMC
| []TMC|.TMC | . TMC| [TMC

F{ | VIL |

4

Figure 4.5: The Toaster2 architecture. IHB/OHB are uni-directional bus
interfaces that are 64 bit wide and can operate at 100 Mhz and above. The
TMC blocks are memory controllers that controls the access to each Inter-

nal Column Memory (ICM) while the XMC handles access to external
memory devices.

The ASI, the RSP and the FPP is connected to the same 8 bit configura-
tion bus. The configuration bus is used for updating of routing tables and
programs during runtime.

4.2.14 Cisco - Toaster2

Toaster2 is a multiprocessor ASIC solution. The chip includes 16 uniform
processors each including a dedicated microcontroller (TMC). The 16 pro-
cessors are organized in a 4 by 4 matrix. Each node also includes a pro-
gram memory and a memory controller. The Toaster2 is typically used
together with other Toaster2 chips, a packet buffer ASIC, PHY/MAC
ASICs and a routing processor. The routing processor is typically a general
purpose RISC machine. The packet buffer stores the payload data while the
header is being processed.

The TMC is essentially a SIMD architecture that uses a 64 bit instruction
to operate on multiple 32 bit data. The architecture schedules ILP in soft-
ware and then 4 stages of Toaster microcode is processed in a pipelined and
parallel way by each row of four TMC.

34 Programmable Network Interfaces - A Survey

__p| Packetl,| Decoder RPML—p| Encodel
recogn

\
Figure 4.6: The PR®architecture.

4.2.15 PMC-Sierra ClassiPI

The ClassiPl is not really a network processor. Instead it is a classification
device that can assist many different NP with the complex task of packet
classification. The ClassiPI architecture consists of two main engines. One
is the Field Extraction Engine (FEE) and the other one is the Classification
Engine (CE). The FEE can extract IP, UDP, and TCP header data from an
incoming packet. The extracted data is then passed on to the CE for classi-
fication search operations. The CE is a RAM based classification engine
that includes four ALUs and other processing logic. The CE uses an exter-
nal memory for storage of programs and control state variables, e.g.
counters and time stamps.

4.3 Academic architectures

4.3.1 EU Protocol Processor Project PR®

The architecture proposed by P@Q.lS] consists of 5 parts. Most inter-
esting is the Reconfigurable Pipelined Module which process the data
intensive tasks, and the embedded RISC core which takes care of the sig-

naling processing. An illustration of the PREan be found in figure 4.6.

4.3.2 UCLA Packet decoder

This decoder [4.17], decodes packets on layer 2-4. The decoder architec-
ture illustrated in figure 4.7 consists of one datapath for each layer, e.i. 3
data paths totally. It only uses one control path for the signaling processing.
It operates on streaming data using a application specific instruction set
and the intended application area is routers.

Conclusions from survey 35

Data
flow Control signals
¢ ;‘ ___________ RAM
< !
L2 I Program
datapat W Counter,
{ : decisions
L3 |- T Ctrl
datapat ; ™ Path
Y |
L4 |
datapatiie—

Figure 4.7: Simplified view of the UCLA processor architecture proposal
showing how to accelerate case-jump functions.

4.3.3 TACO processor from Turku University

Based on a Transport Triggered Architecture (TTA). The TTA architec-
ture only uses one instruction (move). The architecture uses the move
instruction to transport data between different dedicated functional blocks.
The main focus has been on optimization of the distribution of tasks and
data between different dedicated hardware blocks. To do this, a develop-
ment and simulation framework has been developed. The intended applica-
tion area is primary the ATM protocol. The framework and the architecture
Is described in [4.18].

4.3.4 PICO project from Berkeley

The PICO project is a focused on low power terminal processing for
wireless networks. Examples on protocols covered are Bluetooth and
Home RF. Sensor based networks has also been part of the project. The
design consists of a fast path implemented in FPGAs and a slow path
implemented in Programmable Logic Devices (PLD). The PICO processor
Is further described in [4.19].

4.4 Conclusions from survey

A number of different PNI solutions is included in the survey. They all are
focused on different application areas. Some fully offloads complex proto-
cols, while others mainly focus on high-speed operation. As one can see

36 Programmable Network Interfaces - A Survey

from the survey, a trend against separation of the network processor area
into more dedicated specialized network processors optimal for a certain
application area emerges. There is a general disagreement on how much
functionality to include in the PNI and how much should be left for the
host. Instead it is clear that TOE, MAC, Encryption accelerators and SAN
control accelerators are being designed and optimized independently.
Hopefully this means that we soon can have standardized interfaces
between different communication accelerators. In the future we will surely
see new protocol processing application areas where area specific PNI:s are
worth using. SAN is just the first one becoming commercially interesting.
There is no clear trend on the amount of offloading needed in a TOE for
NT so here further exploration is needed. One big question that remains
unanswered is where the re-ordering of the incoming application data
should be done. The question is if the data should be delivered to the main
memory unordered or if it should be stored in order in the application buff-
ers. The second alternative demands an embedded data memory to be used.
The data delivery format has off course a big impact on the host operation.
The comparison clearly shows that there exists solutions to the various new
PNI specific implementation problems and considerations discussed in
chapter 3. It is also clear that the academic research community is far
behind the industry and just have started to examine these implementation
iIssues. Examples on interesting research areas still remaining are host OS
interface, shared memory control etc.

References

[4.1] Silverback Systems homepage,the wwwhttp://wwwsilverbacksystems.com

[4.2] Trebia Networks homepagen the wwwhttp://www.trebia.com

[4.3] National Semiconductors, “Enabling Next Generation Ethernat’the www
http://www.trebia.com/EthernetMAXweb.pdf

[4.4] Minami, et al, “Multiple network protocol encoder/decoder and data processor”,
US patent, no. 6 034 963

[4.5] Alacritech Inc. homepagen the wwwhttp://www.alacritech.com

[4.6] Boucher, et al, “TCP/IP offload network interface device”, US patent, no. 6 434
620

[4.7] Boucher, et al, “Intelligent network interface system method for protocol process-
ing”, US patent, no. 6 434 620

[4.8] LayerN Networks, “SIGNET - Secure In-line Networkingin the www http://
www.layern.com/SIGNETWP020419.pdf

[4.9] Omura, et al, “The Evolution of Modern Digital Security Techniquesi, the
www http://www.layern.com/EvolutionWhitePaper.pdf

[4.10]Seaway Networks homepag®a, the wwwhttp://www.seawaynetworks.com
[4.11]Emulex homepagen the wwwhttp://www.emulex.com

[4.12]LeWiz Communication,Inc. homepaga, the wwwhttp://www.lewiz.com

Conclusions from survey 37

[4.13]Intel Corp., “Network Infrastructure Processors - Extending Intelligence in the
Network”, white paper on the wwwhttp://www.intel.com/design/network/papers/
251690001.pdf

[4.14]QLogic Corp. homepagen the wwwhttp://www.glogic.com

[4.15]G. Konstantoulakis, V. Nellas, C. Georgopoulos, T. Orphanoudakis, N. Zervos,
M. Steck, D. Verkest, G. Doumenis, D. Resis, N. Nikolaou, J.-A. Sanchez-P., “A Novel
Architecture for Efficient Protocol Processing in High Speed Communication Environ-
ments”, ECUMN 2000, pp 425-431

[4.16]C. Georgopoulos et al, “A Protocol Processing Architecture Backing TCP/IP-
based Security Applications in High Speed Networks”, INTERWORKING 2000, Oct.
2000, Bergen, Norway

[4.17]M. Attia, |. Verbauwhede, “Programmable Gigabit Ethernet Packet Processor
Design Methodology”, ECCTD 2001, vol. lll, pp. 177-180

[4.18]Virtanen, Seppo A., et al, “A Processor Architecture for the TACO Protocol Pro-
cessor Development Framework”, in the Proceedings of the 18th IEEE Norchip Confer-
ence, Turku, Finland, 2002, pp. 204-211

[4.19]T. Tuan, S.-F- Li, J. Rabaey, “Reconfigurable Platform Design for Wireless Proto-
col Processors”, ICASSP 2001, pp. 893-896

38

Programmable Network Interfaces - A Survey

Proposed Architecture

5.1 Introduction

This chapter describes a hardware architecture proposal which is a result
of my research during 1999-2002. The architecture is a PNI Accelerator
dedicated for packet reception in a network terminal. The architecture was
originally introduced in the paper presented in chapter 6.

My and my colleagues have investigated and implemented different parts
of the architecture to find optimal architectural solutions. These investiga-
tions have resulted in the two papers in chapter 7 and 8.

This chapter will give an overview of the architecture. It also includes a
performance discussion based on performance parameters introduced in
chapter 3.

5.1.1 Naming convention

During the progress of the research work, our architecture has changed
name several times. The reason for this is that the research field is so imma-
ture that no naming conventions has been agreed on. During the hole
design time we have used the name Protocol Processor (PP) describing our
PNI. The PP consists of two parts. One is the general purpose micro con-
troller. The micro controller hardware architecture has not been investi-
gated in the research project. Instead the focus has been on the other part of
the PP which implements the fast path.

39

40 Proposed Architecture

In the papers included in the following 3 chapters, the PP fast path has
been characterized as Deep Pipelined Serial Processor (DPSP), config-
urable port protocol processor (CPPP) and programmable protocol proces-
sor (PPP). The names reflects the ongoing rapid development, both in our
research and in the research community. The name that will be used in this
chapter is PPP. Note that the PPP is a part of the PP.

5.1.2 System perspective

As mentioned earlier the proposed PNI architecture is called protocol
processor and it consists of two parts. The first part is the Programmable
Protocol Processor (PPP) and the other is the micro contri@y. (The
platform also includes two RAM memories. They are used as program
memory and as a control memory which stores interpacket control vari-
ables. The PP is intended to be a part of a SoC where one or several PPP
together with theuC acts as a high speed PNI. An overview of the system
Is illustrated by figure 5.1.

< o) i Application
S | |PpP g
2 B
- »| Input buffer = o Host
: : t Memory
cac il 3/ UC

T

Program Memory | Control Memory

Figure 5.1: The PPP together with a general purpose micro controller
(uC) handles the communication of one network media port. In a system
on chip (SoC) many PPP can be used as port-processors in order to pro-

vide high bandwidth between the application and the network.

Processing tasks 41

5.2 Processing tasks

5.2.1 Protocol suite overview

To test our architecture we have used a common set of protocols. The pro-
tocols are useful for investigations on architectural requirements and possi-
bilities. This however does not mean that the architecture not is suitable for
other application areas and protocols. The protocols we have chosen to
include in our protocol coverage are:

» Fast Ethernet with PHY interface Ml

» Gigabit Ethernet with PHY interface GMII

* 10 Gigabit Ethernet with PHY interface XGMI|I

* |P version 4 and version 6

» Address Resolution Protocol (ARP)

» Reversed Address Resolution Protocol (RARP)
* Internet Control Message Protocol (ICMP)

* Internet Group Management Protocol (IGMP)

« TCP

« UDP

The selected protocols are very commonly used today and there is no rea-
son to believe that they will not continue to be used for a long time ahead.
Further, the protocols are required for many of the existing application pro-
tocols used today. When a data frame from the ethernet interface is

Appl | _] Appl Appl | _ | Appl

ICMP IGMP TCP UDP

Ethernet

Figure 5.2: The data demultiplexing of a received Ethernet frame.

42 Proposed Architecture

U

Eth header IP header TCP/UDP header DATA CRC

Figure 5.3: One Ethernet frame encapsulate the IP packets. Each layer
includes a header and data.

received, it will be passed on to different processing units depending on
which protocols that have been used, according to figure 5.2.

Each header includes a number of header fields which have to be
extracted and processed according to the protocol standard. The header
encapsulation format is illustrated by figure 5.3.

In order to process all the headers and providing the services stipulated by
the protocol standard, a number of processing tasks are required to be per-
formed by the receiving terminal. This set of processing tasks are specific
to the selected protocol suite. If new protocols should be included, new
processing task types may, or may not, be needed. The processing tasks are
listed in the subsections following.

5.2.2 Ethernet
 Calculate CRC

Cyclic Redundancy Check is a error detecting code that is used to detect
transmission errors. The CRC checksum is computed over the hole frame
before it is compared with the transmitted CRC checksum. The transmitted
checksum has been calculated using the same algorithm by the transmitter,
and it is transmitted in the trail of the frame, after the data. The CRC com-
putation is a very data intensive operation. In a simple RISC machine a
1500 Byte long frame require almost 44000 (non-optimized) instructions
to process only the CRC checksum according to paper 2. Hence, the CRC
calculation is normally done using dedicated hardware assist. Paper 2
describes such a hardware block dedicated for CRC acceleration.

» Check Ethernet Destination Address (Eth DA)

To be sure that the received frame is intended for the terminal, it must
check that the destination address is correct. If the address is incorrect we
discard the packet.

» Check the type field

The type field describes what sort of layer 3 packets is encapsulated in the
frame. The valid options according to my protocol suite are ARP (0x0806),
RARP(0x0835) and IP.

« Extract length field

Processing tasks 43

The length field must be extracted to know how long the packet is. It is
especially important to know since the CRC value stored in the last 32 bits
of the frame, must be extracted and compared to the computed CRC value.

* Demultiplex data

When the terminal has identified the layer 3 protocol used (ARP, RARP
or IP) it can send the Ethernet data to the correct location for further pro-
cessing.

5.2.3 Address Resolution Protocol (ARP)
» Extract and check the ARP code

The ARP protocol is used to query the network for a MAC address when
we have a IP address but do not know the MAC address. The ARP code
typically tells if the packet is a query or a reply.

e Update ARP table

We should update our table describing which MAC addresses belongs to
which IP addresses.

* Send reply
If needed a reply packet should be triggered.

5.2.4 Reversed ARP (RARP)

RARRP is typically used during a booting procedure. We know our MAC
address from the NIC but do not have any IP address. To get an IP address
we send out a RARP request. The header format and processing tasks is the
same as for the ARP protocol.

5.2.5 Internet Protocol (IP)
e Check the version
The version field tells if it is IP version 4 or 6 that has been used. The

main difference is that IP version 6 allows for a larger number of users
since 128 bits are used for the addresses instead of 32.

e Calculate header checksum

The IP checksum is a 16 bit wide 1-complement addition of the header.
The data is not included in the checksum addition since transport layer pro-
tocols (e.i. TCP, UDP, ICMP, IGMP) have their own checksums. This oper-
ation must be performed for all headers which can be a heavy load for a
host processor.

» Extract and check IP Destination Address (IP DA)

44 Proposed Architecture

The IP DA is unique for a terminal, no other terminal share the same
address. Each network terminal can have several IP DA but normally it
only has one. If the IP DA is erroneous the packet should be discarded.

» Extract the IP Source Address (IP SA)

The IP SA is used for checking if we should accept a packet or not. This
procedure will be described in section 5.2.7.

 Reassembly fragments

An IP packet might be to big for some parts of the network. In that case,
the servers will divide it into several smaller IP packets according to the
Maximum Transmission Unit (MTU). This is called segmentation. In order
to obtain the original packet the receiving terminal must reassembly the
packets. In order to do this the fragmentation offset and IP identification
(IP ID) fields must be extracted and processed. The IP ID is the same for all
the fragments and the fragmentation offset shows the order of the frag-
ments. There are also flags saying if the packets has been fragmented or
not. Another flag shows if the fragment is the last.

« Handle time-outs

If a fragment gets lost, a request for a retransmission must be sent after a
certain time period.

« Check protocol field and demultiplex data

The protocol field shows the transport layer protocol used. The valid val-
ues in my protocol set-up are 1=ICMP, 2=IGMP, 6=TCP, 17=UDP. When
the protocol field has been checked the data can be directed to the correct
transport layer data buffer.

» Check lengths

There is two types of lengths involved in IP processing. One describes the
header length which is used to know when the data starts. The other
describes the total length which is used to see if all fragments have been
received. The names of the fields differs between the two IP versions, but
the length information is essentially used in the same way.

* Process options

There are a number of different fields remaining that has to be processed.
Among them are IP v6 extension headers, IP v4 options, and IP v6 flow
labels.

Processing tasks 45

5.2.6 ICMP and IGMP

ICMP normally communicates error messages and exceptions, or condi-
tions that require attention. IGMP is used for setting up and managing mul-
ticast groups.

» Compute header checksum
Same procedure as for IP checksum calculation.
* Check ICMP version and type field

The version field is normally 1. If the type is 1, the packet is a query, and
ifitis 2 itis a reply.

* Check IGMP type and code field

This header information describes the type of request or reply. The
parameter field should be processed if it is included.

* Send ICMP payload to application

Some control messages should be passed on to the application for further
processing.

5.2.7TCP
+ Extract Ports and check connection

The Source Port (SP) and Destination Port (DP) together with the IP SA,
IP DA and transport layer type defines a connection. A receiving terminal
should discard all packets not belonging to a valid connection. For some
connections not all of the fields must be matched, instead these fields are
wild-cards. The procedure is described in detail in paper 3.

* Check Sequence number and reorder data

The sequence number describes where in the data buffer the current pay-
load should be placed.

» Extract acknowledgment field and trigger a reply payload
* Check and process options and flags

Including the finish flag.
» Update connection state variables and timers
This is the complex traffic flow management, controlling all traffic.

5.2.8 UDP

The main difference between UDP and TCP is that UDP is connection
less.

o Extract Ports and check connections

46 Proposed Architecture

Similar to the TCP task. | call it a connection although we only check if
the port is open.

» Extract length field
To know when the hole payload has been received.
» Calculate header checksum

5.3 Proposed datapath

A datapath of the PPP has been developed and optimized based on the
processing tasks introduced in section 5.2. The datapath of the PPP
includes 3 types of components, the input buffer, the functional pages and a
control memory accelerator. An overview of the PPP architecture is illus-
trated by figure 5.4

5.3.1 Input buffer

When data arrives from the network interface (GMIl) to the PPP it
streams through a chain of 32 bit wide flip-flop registers illustrated by fig-
ure 5.5.

PPP

GMII > I
PHY

ASIC

FP FP| FP| FP| FP| FP| FP
A A A A A

Interconnect Network

il

Flag decode
o DL H I X L L T
DR Y Vdbut

L

Program memory Control memory

Figure 5.4: Overview of the PPP architecture.

Proposed datapath 47

32 bit - ——-
'FIFOor L, T0host
| more FF| memory

I__i_J

Discard?

Functional Pag
Functional Pag
Functional Pag
Functional Pag
Functional Pag

Figure 5.5: The input flip-flop chain. The chain of flip-flops enables access

to the data stream with low fan-out. If the number of functional pages are

moderate and the header processing delay high the chain might include a
RAM based FIFO in the end to save power.

The purpose of using a flip-flop chain instead of a normal RAM based
buffer, is that we want to keep the fan-out from the register as low as possi-
ble. If the number of functional pages (FP, see section 5.3.2) is large, we
have to use a large number of registers in the chain, but if the number of
FPs are moderate or low the chain can be minimized. The lower bound on
the number of registers is then set by the decision latency of the header pro-
cessing. We do not want to send the payload data to the host before we
know if it should be discarded or not. But there is no reason not to use a
low power RAM based FIFO in the end of the input buffer if the number of
FPs is low and the decision delay is large. The number of FPs and the deci-
sion latency are set by the protocol coverage, at design time.

5.3.2 Functional pages

The functional pages are all dedicated hardware blocks with a limited
configurability. Since they are dedicated for the processing they do, they
have very little control overhead, which saves power and allows for the FPs
to have a very high throughput. The functional pages are responsible for
the data intensive processing in the PPP. Their processing tasks are very
diverse both by type and complexity. Hence, the FP hardware becomes
very different. What they have in common is that they all have a limited
configurability within their specific application area. Further they all are
controlled by the counter and controller (C&C discussed in section 5.5.1).
The control normally consists of flags that starts or stops the processing in
the functional page. The typical FP interface is illustrated by figure 5.6.

48 Proposed Architecture

The output from a functional page normally consists of flags. Some func-
tional pages also produce result data that will be exported to other parts of
PPP. The FPs can be configured using configuration registers. This configu-
ration only takes one, up to a few clock cycles. The configuration vectors
are produced in the micro controller which also controls the configuration
procedure. Using the protocol suit discussed earlier a small set of func-
tional pages has been selected and implemented to implement the data
intensive part of the protocols. They are

« Extract and compare (XAC) FP
« CRCFP

e MIl parallelization FP

e Checksum FP

* Length counter FP

The CRC FP is very important for the overall performance of the PPP.
This FP has been implemented and manufactured using a standard cell pro-
cess. The CRC solution proposed in paper 2 is very flexible and it can pro-
cess a large set of CRC algorithms. If the bandwidth of such a configurable
solution is not sufficient, a fixed logic, parallel data CRC implementation
can be used. Such a FP is described in [5.3] and it enables very high
throughput. The CRC FP, CRC algorithms and design considerations are
discussed in detail in paper 2.

The XAC FPs are used for extraction of header information that will be
used by other parts of the PPP. They are also used for comparisons between

Configuration vector

| Result
lgl:sgn;rm v flags
—> Configuration register || [&
= >
—> FP Control path "
T

rFergiergr]pc%tain FP Data path Result data

- e

Figure 5.6: Funtional page interface.The FP are controlled by flags pro-
duced in the C&C. The primary output consists of result flags, e.g. discard
flag. Some FP also produces result data.

Proposed datapath 49

the data stream and a data vector stored in the FP. This is used when the
destination address of a packet is checked. A XAC FP contains a masked
registers of 32 bits holding the values to compare with the extracted vector.
It also contains a register holding the extracted vector. The XAC FP can
compare four 8-bit values, two 16-bit values or one 32-bit values with the
extracted vector. It generates a number of result flags based on the compar-
isons. The XAC FP is functionally divided into four slices each comparing
one byte. One of these byte-slices is illustrated in figure 5.7. The XAC FP
has been implemented and verified in VHDL but the final layout remains to
be implemented.

The MII parallelization FP is only included if the PP is going to be used
with the MII as interface. The MII produces 4 bit wide data. The FP is
responsible for parallelization and alignment of the data, before it is passed
on to the 32 bit wide input buffer chain.

The Checksum FP essentially consists of a pair of 1-complement adders
and is a simplified version of the FP described in [5.1]. An overview of the
checksum calculating FP is illustrated by figure 5.8. According to the
investigations done by my colleagues this FP can operate at 10 Gb/s which
Is unreachable using a general purpose processor. This FP has not yet been
implemented by me.

x_vec(31 downto 0) <y

oy

sel_mux

result
N\ A— data_in_mux
data_in + ?
A data_out
i >
T reg_mux
x_vec_slice

Figure 5.7: One out of four byte comparing slices in the XAC FP.

50 Proposed Architecture

)(16 J(16
1-complement addey

1-complement adde

Y

Register
| Result

s

Figure 5.8: Checksum FP.

The Length counter FP is responsible for counting the lengths of a packet
to find out when all fragments have been received. The length counter
adder is closely controlled by the C&C which uses it to schedule its
actions. The length counter FP consists of a adder, and 2 registers. One reg-
ister holds a stop value and the other is used as an accumulator register.
When the two register values are equal, an output flag is generated. The FP
also produces a flag when the content of the accumulator register is zero.

All of the FP can perform high throughput processing due to their rela-
tively dedicated architecture. The slowest and most complex one is the
CRC FP. It still manage a multi Gigabit throughput in such a mature stan-
dard cell process as the 0.8t AMS 3-M 3.3 V if the number of covered
CRC algorithms are low.

In my research group a parallel project have found a different set of FP.
The main difference between the two projects, is that the other does not
handle fragmented packets and uses a more dedicated C&C architecture.
The alternative set of functional pages are described in [5.2].

Apart from the FPs mentioned above we can also consider other types of
FPs if the protocol coverage would be changed. Examples on such FPs are
cryptographic FP, coding FP etc. With a different set of FPs it would also
be possible to cover wireless protocols and ATM protocols. This illustrates
the generic nature of the architecture.

5.3.3 CMAA

In paper 3 in chapter 8 an acceleration engine included in the PPP is dis-
cussed. The Control Memory Access Accelerator (CMAA) operates both
as a memory controller and as a packet classifier. The CMAA performs re-

Proposed datapath 51

assembly of fragmented packets. The CMAA also accelerates the access to
control variables stored in the control memory. The access is based on data
extracted from the packet headers using the XAC FP. The core parts of the
CMAA are two look-up engines (LUE). The LUE mainly consist of Con-
tent Addressable Memories (CAM). The throughput and latency of the
CMAA are strongly depending on the number of entries the LUE have in
their connection tables. If the number of entries implemented after the
bench-marking and optimization procedure, is relatively low, e.g. 16 or 32,
the latency, throughput, area, and power consumption will not be bad. Also
with this small number of entries the CMAA would significantly relax and
accelerate the overall PP processing. A deeper investigation of the applica-
tion is however required before the final number of entries can be decided.
This process also requires the use of network processing benchmarks. A
behavioral VHDL model of the CMAA has been implemented by me. |
have also implemented a structural model of the control path. The critical
path of the CMAA consists of the LUE which remains to be implemented.

5.3.4 Processing tasks allocation

The different processing tasks described in section 5.2, are allocated to
different processing units within the PP according to the table below.

Table 3: Allocation of processing tasks listed in section 5.2.

Protocol Task Processing hardware
Ethernet Calculate CRC CRCFP
Check Ethernet DA XAC FP
Check type field XAC FP, C&C
Demultiplexing of data C&C together with CMAA
Extract length field XAC FP
Length counting C&C
ARP/RARP | Update ARP table Micro controller
Trigger ARP reply Micro controller
IP Check version XAC FP, C&C
Calculate header checksum Checksum adder FP
Extract and check IP DA XAC FP
Extract IP SA XAC FP
Reassembly fragments CMAA

52 Proposed Architecture

Table 3: Allocation of processing tasks listed in section 5.2.

Protocol Task Processing hardware
Handling time-out of fragments Micro controller
Check protocol field XAC FP, C&C
Demultiplexing C&C
Check lengths XAC FP, C&C, CMAA
Process options Micro controller
ICMP/IGMP | Compute header checksum Checksum adder FP
Check ICMP version and type Micro controller
Check IGMP type and code Micro controller
Demultiplexing CMAA, Micro controller
TCP Extract ports XAC FP
Check connection CMAA

Check sequence number and reort Micro controller
der data

Extract acknowledgment and triggerMicro controller
reply

Check and process options and flags Micro controller

Update connection state variables| Micro controller, hardware

and timers timer
UDP Extract ports XAC FP
Check connection CMAA
Extract and manage length XAC FP, C&C
Calculate header checksum Checksum adder FP

5.4 Interfaces

The PP consists of two parts, the PPP andi@eThe interfaces between
them and towards the surroundings can be divided into three parts.

5.4.1 Network interface

The interface between the network and the protocol processor consists of
a PHY ASIC. Normally we consider it to be the Gigabit Media Indepen-
dent Interface (GMII), but MIl, XGMII or others could also be considered.
The GMII ASIC is a part of the PPP and it produces 32 bit wide data that
will be delivered to the input buffer. The use of such an interface means

Control path 53

that the FPs does not need to handle the processing of the physical layer
protocols even if it would be possible to integrate such FPs.

5.4.2 Micro controller interface

The interface between the PPP and the micro controller consists of 2 data
busses, the shared control memory and control signaling using flags. The
micro controller also uses the two data buses when it configures the func-
tional pages or the program memory of the C&C.

5.4.3 Host system interface

The interface between the host processor, including application, memory,
DMA, and others remains to be investigated. It is however clear that it will
be the micro controller that will be responsible for this communication in
the PP. The micro controller will control the communication both with the
DMA and the application through the hosts operating system (OS). One
might also consider using a standard back-plan bus such as PCI as interface
between the two.

5.5 Control path

5.5.1 Counter and controller

The C&C is responsible for starting and stopping FP processing, based on
the program and the result flags from the FPs. The C&C is also responsible
for the decision to discard or accept the packets. The C&C is essentially a
small RISC machine with a minimal internal datapath. It uses only an
ALU. It also includes a register file, flag decoder, a program counter and a
program flow controller. Further, a special conditional jump support must
be included. The conditional branch support selects one out of four pro-
gram counter values based on the flags from the FPs. This is used to select
the correct program flow when the incoming packets protocol type has
been checked. The C&C executes a set of programmed finite state
machines. The FSM top level packet reception control is illustrated by sec-
tion 5.9. The C&C produces start and stops flags for the FPs and simple
instructions for the CMAA. To trigger the firing of the flags it uses the two
counters. The C&C operates at a higher clock frequency compared to the
rest of the PPP. The research on C&C is going on and its HW will be
implemented after the licentiate defense.

54 Proposed Architecture

Wait for synchronization

Y

New Ethernet fran

Store IP packet in
ARP or RARP——Y» control memory

New IP packet

v
IP v4 @ IP V6

discard

else
discard
- — ICMP
Layer 4 protocol’QICMF WriteWrite . | | ayer 4 protocol?
IGMF vd |v6 /
TCP UDP TCP Ubp
v4 v4 v6 v6
l gisLord l l distard l

discard
Checksum result

Y

Header OK

Figure 5.9: The control FSM controlling the PPP during packet reception
will be implemented in the C&C in a programmable way.

5.5.2 Hardware timer

Managing and updating the timers can become a large part of the process-
ing of the TCP and IP protocols. The number of timers is proportional to
the number of network connections, so the problem is not as severe in a
network terminal as it is in routers. Despite this, it is a task that must be

Configuration 55

considered to offload from the micro controller since the hardware cost is
limited and the hardware is very efficient. A hardware timer consist of a
counter, a memory including all the timer events in order and some small
control logic.

5.6 Configuration
The proposed architecture supports three levels of configuration.
* Design time selection

First of all it is possible to select and configure a number of FPs during
the design phase, before manufacturing.

» Data path configuration

Secondly the micro controller can configure the FPs using a relatively
small number of clock cycles. This means that the data path of the PPP is
configured. The program flow of the C&C can also be fully configured dur-
ing this phase by rewriting the contents of the program memory.

« Programmable data path selection

The data path can be controlled and selected in a programmable way
using the C&C.

All together the three levels of configuration possibilities gives the archi-
tectures a very high flexibility.

5.7 Performance

Using the performance parameters introduced in chapter 3 we can dis-
cussed the performance of the proposed architecture.

* Flexibility

The architecture is programmable with a configurable data path. It is
capable of processing up to layer 4 packets and handles fragmented pack-
ets. The FP are selected to be as general as possible. That way they might
be reused for other protocols. The micro controller provides all the flexibil-
ity needed.

* Throughput

Using dedicated hardware blocks enables a very high performance. My
simulations indicates that the PPP functional pages and CMAA manage
more than 4 Gb/s throughput, using a mature, not to say old standard cell
process. The throughput of the processing in the micro controller and the
interface remains to be investigated.

* Inter-operability

56 Proposed Architecture

The general purpose micro controller can be programmed to interact with
the host operating system, but that is not a part of this research project.
However, it is clear that the flexibility, provided by the PPP and micro con-
troller programmability, makes it possible to optimize the user interface.
Further investigations on host operating systems optimization must be per-
formed.

e Cost

CMAA cost depends on the number of entries that will be used. The
power must be considered low since there is so little processing overhead.
Further the dedicated datapath is only performing tasks they are dedicated
for which increase the power efficiency. The SoC approach means reduced
number of pins. The PPP will not use much area as long as the CMAA does
not include to many entries. This means that the packaging cost is small.
The flexibility of the design will also help to keep the cost low since it both
increase the time on market and the application coverage.

References

[5.1] PERSSON, N.: ‘Specification and Implementation of a Functional Page for Inter-
net Checksum CalculationMaster’s thesisLinkdping University, March 2001, No.:
LiTH-IFM-EX-959

[5.2] Tomas Henriksson, “Hardware Architecture for Protocol Processingéntiate
Degree Thesid.inkdping Studies in Science and Technology, Thesis No. 911, Decem-
ber 2001, ISBN: 91-7373-209-5.

[5.3] Tomas Henriksson, Henrik Eriksson, Ulf Nordqgvist, Per Larsson-Edefors, and
Dake Liu, “VLSI Implementation of CRC-32 for 10 Gigabit Etherndti,proceedings

of The 8th IEEE International Conference on Electronics, Circuits and Sysidaits,
September 2-5, 2001, vol. I, pp. 1215-1218

Paper 1.

Configuration-Based Architecture for
High Speed and General-Purpose Proto-
col Processing

Dake Liu, UIf Nordgvist, and Christer Svensson
In the Proceedings of SIPS 1999
Abstract

A novel configuration based general-purpose protocol processor is pro-
posed. It can perform much faster protocol processing compared to gen-
eral-purpose processors. As it is configuration based, different protocols
can be configured for different protocols and different applications. The
configurability makes compatibility possible, it also processes protocols
very fast on the fly. The proposed architecture can be used as a platform or
an accelerator for network-based applications.

6.1 Background

Networking has been developing very fast and more and more protocols
are emerging for different applications. Higher processing performances
are requested by applications. Requirements could be recognized as:

* Multiple ports and multiple Gigabits per second real-time framing and
de-framing.

57

58 Paper 1:

» To pre-process as much protocol jobs as possible before a memory
access.

* A general, simple, fast, and flexible architecture for different kinds of
protocols.

« A built in protocol recognition and automatic configuration capability.

« Low power, high speed, and memory (size and access) efficient archi-
tecture.

Two kinds of protocol processors are available on the market nowadays,
one is the specific single protocol-limited ASIC (we call it SPASIC in this
paper), the other is the processor-based general-purpose CPU (we call it
GPCPU in this paper). None of them can fit the requirements for future
computer communications. The first one, SPASIC, is only used for one
protocol or a few specific protocols included in the design. Obviously, it
does not support future protocols. The second one, GPCPU, cannot work at
very high speed because of the general architecture. As a redundant and
speed-limited architecture, it is not the satisfactory solution for a relatively
stable and control-extensive flow. From another point of view, the protocol
processor must be compacted because it is often used as a pre-processor
and as a small part in a certain kind of application. Therefore, the redun-
dant architecture is not suitable for embedded or integrated solutions.

Most solutions available now use a specific circuit to process the protocol
flow, and use a GPCPU for switching, routing, and other applications.
Because of the limited SPASIC architecture, future flexibility is limited.
For multiple applications, more SPASIC cores are integrated to cover more
protocols and this makes the system redundant.

We need to recognize the protocol of the incoming package and then con-
figure the processor to fit the protocol because the system might be used in
a variable environment. Therefore, a new architecture is strongly requested,
which is as fast as a SPASIC, as flexible as a GPCPU, and as simple as pos-
sible.

6.2 Functional coverage of DPSP

The system proposed is a new architecture for control-extensive pro-
cesses, e.g. protocol processing. One example is to take the data package
from AUI (Attachment Unit Interface of 10Mb Ethernet), or MIl (Medium-
Independent Interface of 100Mb Ethernet), or GMII (for G-bits Ethernet).
Fast pre-process for different level of protocols is performed, for example,
from Ethernet to IP and even up to TCP on the fly.

Application overview 59

We can solve all problems mentioned above by introducingDbep
pipeline serial processor DPSR executes the protocol processing based
on a booted and predefined configuration. Since the control is based on the
configuration instead of software programs, DPSP can process protocols in
real speed, e.g. Gbit Ethernet. After booting, the configuration HW can be
shut down, which gives possibilities of low power. Following this way, the
application, e.g. IP telephone or IP switching can be separated from the
protocol framing and de-framing. The advantages are:

» Framing and de-framing are performed in a separate core; it acts as a
platform or an accelerator and makes more application integration pos-
sible.

e Separated the DPSP as a stand-alone machine working at high speed
with a standard implementation.

» All functional blocks inside the DPSP are self-contained and config-
ured, therefore the adaptation to a long-term unpredictable future proto-
cols is possible.

» The protocol can be recognized by this solution and a correct configura-
tion can be booted to the DPSP after the recognition process. We define
this feature as the self-learning and self-adaptation for any product used
for different environments, e.g. home RF.

The architecture performs protocol processing based on both pre-config-
ured setting and a real time control program. The pre-configured setting
processes the protocol in every cycle inside each field of a data frame. The
real-time control program only works on the higher level such as branch
decisions, macro selections, and job hand over. Thus, the processing speed
can be much higher because there is no program (which is slow in princi-
ple) involved in sub level processing. By planning the configuration, the
architecture can supply as good flexibility as that supplied by a GPCPU.

6.3 Application overview

The goal is to make a platform for all possible network applications. Part
of the possible applications and features supported by the platform can be
listed:

» Fast framing, de-framing for the Internet switching: G-bits Ethernet
source, and destination address extraction, fast IP DA and SA extraction
etc.

» Predict the memory allocation: relax memory traffic, payload reorder-
ing, etc.

» Fast queue and priority check for the real time network applications.

60 Paper 1:

» For certain applications the products recognize the protocol of the com-
ing data, and boot the protocol configuration after learning.

* The user can boot different protocols for different applications.

» [For fast prototyping or SoC integration.

6.4 Architecture

We introduce a new architecture that can work towards the physical limits
of CMOS [3]. It can be implemented using conventional ASIC design flow,
and can be configured by a program to suit different kinds of protocols and
applications. The proposed architecture is divided into two parts. The first,
which is the key part, namely Deep Pipeline Serial Processor (DPSP).
Serial does not mean bit serial, it is a byte or a word based serial architec-
ture. The second part is a normal micro-controller, the C. The C supports
the DPSP configuration, the interface between DPSP and the application,
and the real-time high-level job control. The DPSP can work much faster
than the micro controller can.

The proposed architecture executes the protocol process based on both
programs and pre-set configurations. The program only controls macro
jobs, which are based on the frame rate instead of the byte rate. The pre-set
configuration controls real time protocol processing at high speed with a
relatively fixed control and working mode. Therefore, the program control
induced speed limit is completely eliminated.

The proposed architecture is configured for a specific protocol before the
protocol process. The configuration is performed by writing coefficients
and control codes into control registers in a Functional Page, FP. All Func-
tional Pages are scheduled in the order in which the protocol is processed
in sequence.

For implementation convenience, data coming into every functional page
Is pipelined. Functional pages are connected one by one following the job
schedule. Each FP manages its process in its own sub field. For example,
the FP for CRC manages only the CRC check on the fly. Another example,
the FP for header matching only matches the protocol header for its syn-
chronization.

The System block diagram is given in figure 6.1. The left part is DPSP
and the right part is the C for configuration, applications, and for support-
ing applications. Different protocols can be executed according to the con-
figuration given by C. The C performs the service support. Which is
divided into three parts. The first part is booting, including the boot of con-
figurations for all FP and programs in the counter and controller. The sec-

Architecture 61

4->Q—> bit to byte
+ | application interface
] —| 8 .
©
1 e R S
- o
“ & £
2 L data buffer
< O - - 9 .
> £11s 3
2 s (Elllg] . 5
7 RN £ N—— | configuration ¢« =
— - <
- 3 i kS vectors S
o 2 - <)
= - £
i@ counter I
and P
_>controller ? *
T control memory
byte to bit “
Figure 6.1: The system block diagram.

ond part is the DPSP monitoring, including checking the DPSP executing
status, receiving and transmitting payload data, and sending interactive
control. The third part is to coordinate DPSP with the application hard-
ware. The configuration is performed during the power-on boot. When the
protocol of the incoming data is unknown, the booting is performed for the
protocol recognition first, and secondly, the normal protocol specific con-
figuration according to the result of the recognition is booted. The DPSP
top level architecture is given in Fig. 2. Following functions will be allo-
cated as FP’s in the DPSP given in the above figure:

Matching: It sets up the synchronization by recognizing the preamble.
Error checking: Check errors according to the coding of the protocol.
The field extraction: It extracts fields and accelerates processes further.

Level hierarchy transparent process The HW can make levels of net-
work hierarchies transparent. The upper level payload can be extracted.

Payload managementTo measure the length of the payload and to vali-
date the correctness of the data. Then allocate the data into a suitable posi-
tion.

Other QoS options According to the applications, QoS can be sup-
ported.

Application interfacing : Before data allocation, check the application,
find the possibility to send data to the application on the fly.

62 Paper 1:

Fast acknowledgement The acknowledgement can be compiled in an
easy and fast way according to extracted fields.

Fast ACK as an important function is performed on the fly in DPSP. Nec-
essary messages such as DA and SA are kept for building the fast ACK.
The FP for ACK is allocated between the shift-in and shift-out. The fast
ACK packet can get TCP ACK, IP address and LAN address, e.g. Ethernet
address from the buffer.

y shiftin 8xn bit shift in data
l ™1 M M V] V] V] V] V] ~
(B G o e o
sl =IE BB BB
o El | [2] B & || F| I
© o i L .
ENERIEE|) 5] E] B E| B
QlLs| g i)] I
g\ g2 A Al A Al Al A
= |5 3 dafa o the micro controfier >
s i
SRHE YN IV IV IV IV [V]
= <
% >
< > counter and controller
) >
W shift out

Figure 6.2: Dataflow of the DPSP.

The data flow is given in figure 6.2. The data coming from the physical
level has been converted to byte level format and data rate is one eighth of
the bit rate. Control signals (single pins) are handover start-finish strobes
from the counter and controller. Control signals coming to the counter and
controller gives timing status. Shift in and out are 8 bits input-output data
of DPSP. Other width of data busses can be configured.

6.4.1 Functional Pages

Simple FP implementation can be done by custom design. Complicated
FP will be implemented using synthesis. The flags are outputs from the
sythesised logic using the configuration, the incoming data, and the control
conditions as inputs. As an example, the matching unit uses configuration
registers to save the header pattern. When the shifted input data matches

Architecture 63

configurationregisters

control ¢¢“‘*““‘*‘*““““*‘*‘

Logic can be configured data

Y_flag = f (data, configuration, control, logic, counter)

v v v v

Figure 6.3: FP structure

ey
I

the pattern at a certain point, a matching flag is given as Y_match = &
(data, configuration_register).

The active period of a FP is decided by its function. Most FP’s are only
active part of the time. Some FP’s are active all the time during a frame
process, e.g. the CRC check.

6.4.2 Counter and Controller

The counter and controller is a counter based state machine (FSM)
adapted by configurations. A complete configuration set will be written
into a register file. Each one or few lines in the register file are configured
for the control of a FP.

There are two levels of controls performed in the "counter and control-
ler”. The upper level control is specified as the handover process. The
lower level control supports only the counting status. The upper level con-
trol is a kind of interactive control. The lower level control is not interac-
tive because the FP uses the status as a control reference without giving
feedback. The deep pipeline is scheduled inside each FP. The control of the
deep pipeline is given by the lower level control from the "counter and con-
troller”. Status of the state machine is configured according to the recog-
nized protocal A group of control vectors for a specific FP is selected
(addressed) by the counter. Therefore, the control procedure is scheduled
following the configuration. The deep pipeline data path performs the pro-
tocol jobs in N+ cycles. Here N is the number of bytes (or words, according
to which protocol is used) and is the number of cycles used for hand over
one job from one FP to another FP.

64 Paper 1:

The control is scheduled in the following way:

« Starta FP

* Letthe FP run itself

« Monitoring flags coming from all active FP’s.

» Make new control decision according to flags.

* Monitor the control interface between the micro controller and the
DPSP.

« Change the control procedure if the micro controller gives a new
request.

* Inform the micro controller to that the data is available.

« Responde to the micro controller to accept data.

« Send the accepted data to a FP responsible for the acknowlegement.

6.5 Conclusion

We have described a configuration based DPSP architecture as a platform
for network applications. The architecture implements the infrastructure of
an accelarator which gives the necessary framing and de-framing, and a
fast acknowledgement. Most protocol processes can be supported by DPSP
architecture because of the flexible configuration. The configuration-based
architecture can also support protocol recognition based on predefined pro-
tocol preambles. As the DPSP is a specific architecture for protocol pro-
cesses, it can accelarate protocol processing on the fly for high speed
applications.

configuration in I

address control of the configuration

b

configuration out 'S control logic
handover control counter states

configuration handover RN R
FP handover control iiiii iiiii

Figure 6.4: Counter and Controller

Acknowledgments 65

6.6 Acknowledgments

Authors would thank to the useful discussions with Dr. Kenny Ranerup
Switchcore, Sweden. The research is supported by the Center for Industrial
Technology at Linkdping University (CENIIT) and Exellence Center in
Computer Science and Systems Engineering in Linkoping (ECSEL).

REFERENCES

[6.1] Andrew S. Tanenbaum, Computer Networks, 3rd Edition, Printice Hall PRT,
ISBN 0-13-349945-6, 1996.

[6.2] Jayant Kadambi et al, Gigabit Ethernet, Printice Hall PRT, ISBN 0-13-913286-4,
1998.

[6.3] Anders Edman, and Bjorn Rudberg, SDH 10Gb/s regenerator frame in 0.6m
CMOS, 97 IEEE ISSCC, pp 156-157, 1997.

[6.4] Axel Jantsch, Johnny Oberg, and Almed Hemani, Is there a Niche for a general
protocol processor? Proceedings of the 16th IEEE NORCHIP conference, pp 214-221,
Lund, Sweden, Nov. 98.

66

Paper 1:

Paper 2:

CRC Generation for Protocol
Processing

UIf Nordqvist, Tomas Henrikson and Dake Liu
In the Proceedings of NORCHIP 2000

Abstract

In order to provide error detection in communication networks a method
called Cyclic Redundancy Check has been used for almost 40 years. This
algorithm is widely used in computer networks of today and will continue
to be so in the future. The implementation methods has on the other hand
been constantly changing.

A comparative study of different implementation strategies for computa-
tion of Cyclic Redundancy Checks has been done in this paper. 10 different
iImplementation strategies was examined. A novel architecture suitable for
use as an IP in an protocol processor is presented. As conclusion, different
implementation techniques have been divided into application areas
according to their speed, flexibility and power-consumption.

7.1 Introduction

Both computer and human communication networks, uses protocols with
ever increasing demands on speed, cost and flexibility. In the market seg-

67

68 Paper 2:

ment of hardware for network nodes such as routers, switches and bridges,
the performance needs can be fulfilled by using Application Specific Inte-
grated Circuits (ASIC) or Application Specific Standard Products (ASSP).
This will probably be the case also in the future due to there relatively cost-
insensitive costumers. In order to let the end-user take advantage of the
bandwidth enhancement in today networks, tomorrows Network Terminal
(NT) hardware must support transmission speeds of Gbit/s [7.10. Hardware
for such NT components is on the other hand sold on a cost-sensitive mar-
ket share with high demands on flexibility and usability.

Traditionally NT has been implemented as ASIC:s for the lower layers in
the OSI-Reference Model [7.17 with an CPU-RISC based SW implemen-
tation of the upper layers [7.8, or completely implemented in software [7.1,
[7.3, [7.17. In [7.6, [7.7 we presented a new architecture for configurable
protocol processing that supports programmability on the upper layers and
gives both configurability and high performance on the lower layers. This
kind of solution is also supported by [7.18, [7.19 and [7.14. This architec-
ture specifies that, the without any doubt most computational extensive
task, Cyclic Redundancy Check (CRC) [7.3, [7.20, should be implemented
as configurable hardware, supporting buffering free processing.

The speed requirement is very important since a protocol processor must
buffer incoming data if jobs are not completed at wire-speed. This leads to
high costs in terms of power consumption, area and manufacturing costs
due to the usage of buffers.

The aim of this paper is to compare different implementations of CRC
computational units in order to specify a suitable one for protocol proces-
sors.

7.1.1 The CRC algorithm

Cyclic Redundancy Check is a way of providing error control coding in
order to protect data by introducing some redundancy in the data in an con-
trolled fashion. It is a commonly used and very effective way of detecting
transmission errors during transmissions in various networks. Common
CRC polynomials can detect following types of errors:

» All single bit error

» All double bit errors

» All odd number of errors

* Any burst error for which the burst length is less than the polynomial
length

* Most large burst errors

Implementation theory 69

The CRC encoding procedure can be described by equation 1.

V() = s+ X" U -
V(x) is the n bit long data word transmitted and it consists of the original
data and U(x) followed by a codeword S(x) called the CRC-sum. S(x) is
computed according to equation 2.
n-k
XU = a(xg(x) + (X (EQ2)
S(x) is by other words the reminder resulting from a division of the data
stream and a generator polynomial g(x).

The actual coding-procedure is the same on both the receiving and trans-
mitting end of the line. The CRC encoding/decoding principle is illustrated
by figure 1.

V(x)
U > »U(X) + errors
X | S U(x) |
ta___ | g —— —
data CRC 7< Transmission > CRC Il =07

line (Network)
Figure 7.1: Principle of error detection using the CRC algorithm.

As can be seen in figure 1 the receiving NT perform a CRC-check on the
incoming message and if the result is zero, the transmission was error free.
One more practical way of solving this is to compute the CRC only for the
first part of the message U(x), and then do a bitwise 2-complements addi-
tion with the computed checksum S(x) on the transmission side. If the
result is non-zero the receiver will order a retransmission from the sender.

7.2 Implementation theory

This section introduces the commonly used and presents one new archi-
tecture for implementation of the CRC algorithm.

» Software(SW) Solution[7.3, [7.1: The CRC algorithm can always be
implemented as an software algorithm on a standard CPU, with all the
flexibility reprogramming then offers. Since there in most communica-
tion network terminals exists a CPU, the SW-solution will be cheap or
free in terms of hardware cost. The drawback is obviously the computa-
tional speed since no general purpose CPU can achieve the same
troughput as dedicated hardware.

70

Paper 2:

Traditional Hardware Solution: Linear Shift Register (LSR) with

serial data feed [7.20 has been used since the sixties to implement the
CRC algorithm, see figure 2. As all hardware implementations, this
method simply perform a division and then the reminder which is the
resulting CRC checksum, is stored in the registers (delay-elements)
after each clock cycle. The registers can then be read by use of enabling
signals. Simplicity and low power dissipation are the main advantages.
This method gives much higher throughput than the SW solution but
still this implementation can not fulfill all the speed requirements of
today network nodes. Since fixed logic is used there is no possibility of
reconfigure the architecture and change the generator polynomial using
this implementation.

ol ol elo @Lﬂ

Figure 7.2: Linear Shift Serial Data Feed

Parallel Solution: In order to improve the computational speed in CRC
generating hardware, parallelism has been introduced [7.2, [7.4, [7.5,
[7.9,[7.11, [7.12. The speed-up factor is between 4 and 6 when using a
parallelism of 8. By using fixed logic, implemented as parallelized hard-
ware, this method can supply for CRC generation at wire speed and
therefore it is the pre-dominant method used in computer networks. The
parallel hardware implementation is illustrated by figure 3. If the CRC
polynomial is changed or a new protocol is added, new changed hard-
ware must be installed in the network terminal. The lack of flexibility
makes this architecture non suitable for use in a protocol processor.

00—V §

Fombinational
ogic

Y

State registers
[s

Figure 7.3: Parallel Fixed Logic Implementation

Implementation theory 71

Configurable Hardware: One way of implementing configurable hard-
ware is by using Look-Up-Tables (LUT) as proposed by [7.3, [7.12 and
[7.2. The architecture is illustrated by figure 4.

CRC regs 32 B Data in 8 b Polynomial

Combiral — LUT
ombinationa : :

. nfiguration
<Log|c 3 ~ (L:J(I?lit 'guratio

Figure 7.4: Look Up Table based configurable hardware.

This implementation can be modified by using a larger or smaller LUT. If
the size of the LUT is reduced the hardware-cost in terms of power con-
sumption and area will be reduced but in the same time the Combinational
Network will be increased so the effect will be cancelled. The optimal solu-
tion has not been derived.

Another, novel implementation method is thadix-16 Configurable
CRC Unit, which is presented for the first time in this paper. By noticing
that any polynomial of a fixed length can be represented by implementing
the CRC using a LSR with switches on the reconnecting wires as illus-
trated by figure 5, a configurable hardware can be implemented using
NAND-gates to represent the switches.

y | (" |

uoq ‘OK
- *Iilﬂ S-{D-om{D]- >

Figure 7.5: Configuration by use of switches in the circuit reconnecting
wire.

In order to improve the speed of the Radix-16 Configurable CRC, a 4 - bit
wide input data stream is used as can be seen in figure 6. The resulting bit
in each positiork in the CRC register then depends on the value oktde
CRC bit, the last four CRC bits, the polynomial bit description and the

72 Paper 2:

input bits. The logic, which consists mainly of XOR and NAND-functions
provides the necessarily configurability.

Dy »é/ ‘ » Dy | - — — - [Dna
D 3 »é - D - — = = DN-Z*‘ Input
k-3 k1 _/ Logic ata
Dy-2 ><l/ » Diig| - — — - |Dnog f
RC Polynomial
0w wDd - — — - [Bn]

Figure 7.6: Radix-16 Configurable CRC engine

The polynomial input makes it possible to implement any given CRC
algorithm of a given size. Using shut-down logic on parts of the circuit
enables N to be configured for 16, 24 or 32 bit polynomials. This means
that for example CRC polynomials for protocols such as HIPERLAN and
Ethernet is manageable.

7.3 Experimental results

10 different implementations of the CRC algorithm, including one CPU
RISC based SW-implementation, have been examined. They have been
described using Mentor Graphics Renoir and VHDL, synthesized and opti-
mized using Build Gates from Cadence and the Place & Route was done
using Ensemble P&R from Cadence. The technology used is AMS 0.35
pm.

Since most network protocols are bytebased, there is no meaning in
investigating a parallelism of more than 8 even if the other parts of a proto-
col processor might run on other clock frequencies using for example a 32
bit wide input stream.

As seen in table 1 the fixed logic and parallel input implementation is the
fastest. That is in the order of what have been reported in earlier work. We
can also see that the LUT based method gives about twice the speed as the
Configurable Radix 16 implementation at the cost of a 4.5 times higher
area. A big part of the area in the LUT based architecture is the LUT regis-
ters, but the power consumption will anyway be considerably higher than
the power consumption in the Radix-16 implementation. In many upcom-
ing applications such as HIPERLAN [7.15, [7.16, the power consumption
will be crucial. The speed supported by the Radix-16 implementation
exceeds 0.6 Gbit/s, which is sufficient since today NT applications do not
demand higher troughput. Since the logic in that specific implementation
dominates and the connection delay is quite small, there will be a consider-

Conclusions 73

able increase of the speed powered by downscaling in future technologies.

The speed-up factor due to scalingill be up tos? which means that even
protocols as 10-GEthernet which will come in the future can be supported
by the Radix-16 implementation [7.13 thanks to scaling.

Conflict with other processes makes interlayer processing difficult, not to
say impossible when using the SW algorithm run on a CPU. This means
that even if the SW-algorithm alternative can be implemented on a high-
performance CPU that provides the speed that is needed, it is not suitable
for protocol processors such as those described by [7.6 and [7.7.

Table 4: Comparison between different CRC implementations. The Pads are not
included in the area computation.

Max Max
Polyn. | Area Clk Speed

CRC implementation Length | [mm? | freq. | [Mbit/

[MHZ] s]
Serial Input - fixed Ethernet Polynomial 32 0.014 413 413
Serial Input - any polynomial 32 0.017 369 369
Serial Input - any polynomial 16 0.011 355 355
Parallel(8) Input - any polynomial 32 0.061 109 875
Parallel(8) Input - any polynomial 16 0.038 130 1039
Parallel(8) Input - fixed Ethernet
Polynomial 32 0.035 208 1663
Parallel(8) Input LUT Based 32 0.225 169 1358
Configurable Radix-16 CRC - any poly- | 32 0.050 166 663

nomial

Configurable Radix-16 CRC - any poly- | 16,24,3| 0.052 153 612

nomial 2
SW Pure RISC (43893 clk cycles / 1500| any 600 164
Bytes)

7.4 Conclusions

Because of the superior performance of a parallel ASIC implementation,
it will be used for implementation of network-node-components. The con-
cept of using several ASIC implementation as Functional Units in a proto-
col processor and just letting the processor turn on the CRC that is
currently used, as in VLIW architectures, might also be of interest although
you then have no configurability for supporting new protocols.

74 Paper 2:

Software solutions for low speed protocols will also be used for low-
speed applications, but a increasing area of applications demands high-
speed configurable protocol processing, including CRC generation. An
hardware architecture that can fulfill this specifications is the Look-Up
table -based structure proposed in [7.1 and implemented in this paper.

A novel architecture for this application area has also been presented,
which has a superior power-delay product. The architecture implemented
can be configured for CRC encoding/decoding using any 16, 24 or 32 bit
polynomial. Power consumption will be kept low using shut-down logic.
The architecture support the speed requirements of today protocol process-
ing in NT:s. For upcoming protocols used in NT network processing, scal-
ing will provide necessarily speed-enhancements.

REFERENCES

[7.1] A. Perez, “Byte-wise CRC CalculationdEEE Micro, Vol. 3, No. 3, June 1983,
pp. 40-50

[7.2] G. Albertango and R. Sisto, “Parallel CRC GeneratidBEE Micro, Vol. 10, No.

5, October 1990, pp. 63-71

[7.3] T.V.Ramabadran and S. S. Gaitonde, “A Tutorial on CRC ComputatitiBEE
Micro, Vol.8, No. 4, August 1988, pp. 62-75

[7.4] T. B. Pei and C. Zukowski, “High-speed parallel CRC circuits in VLSEEE
Transaction Communicatioivol. 40, No. 4, pp. 653-657, 1992.

[7.5] R. F. Hobson and K. L, Cheung, “A High-Performance CMOS 32-Bit Parallel
CRC Engine” JEEE Journal Solid State Circuit§ol. 34, No. 2, Feb 1999

[7.6] D. Liu, U. Nordgvist, and C. Svensson, “Configuration-Based Architecture for
High-Speed and General-Purpose Protocol-Processitigteedings of IEEE Signal
Processing Systems 19%. 540-547, Taipei

[7.7] T. Henrikson, U. Nordqvist, and D. Liu, “Specification of a Configurable Gen-
eral-Purpose Protocol-Processd?tpceedings of CSNDSP 20@hurnemouth

[7.8] C. J. Georgiou and C.-S. Li, “Scalable Protocol Engine for High-Bandwidth
Communications”)EEE International Conference on Communications. ICC'97 Mont-
real, Volume: 2, 1997, Page(s): 1121 -1126 vol.2

[7.9] R. Nair, G. Ryan, and F. Farzaneh, “A Symbol Based Algorithm for Implementa-
tion of Cyclic Redundancy Check (CRC)”, ProceedingdDL International Users’
Forum, 1997, Page(s): 82 -87

[7.10]J. Kadambi et al, “Gigabit EthernetPrentice Hall PRT, ISBN 0-13-913286-4
1998

[7.11]G. Castagnoli, S. Brauer, and M. Herrmann, “Optimization of cyclic redundancy-
check codes with 24 and 32 parity bit$EEE Transactions on Communicationgl-
ume: 41 6, June 1993, Page(s): 883 -892

[7.12]R. J. Glaise, X. Jacquart, “Fast CRC calculatidi®93 IEEE International Con-
ference on Computer Design: VLSI in Computers and Proces$6€3, Page(s): 602-
605

[7.13]A. P. Chandrakasan, R. W. Brodersen, “Minimizing power consumption in digital
CMOS circuits”,Proceedings of the IEER/OI, 83 No. 4, pp. 498 -523, April 1995

Conclusions 75

[7.14]M. Yang, A. Tantawy, “A design methodology for protocol processdPsiceed-

ings of the Fifth IEEE Computer Society Workshop on Future Trends of Distributed
Computing System$995, pp. 376 -381

[7.15]“Technical Specification of BRAN and Hiperlan-2. Common paBTSI TS 101
493 -1 V1.1.1 2000

[7.16]“Technical Specification of BRAN and Hiperlan-2. Ethernet Service Specific
Convergence SublayerETSI TS 101 493 - 2, V1.12000

[7.17]A. S. Tannenbaum, “Computer Network8"d Edition, Prentice Hall PRTISBN
0-13-349945-6, 1996

[7.18]“Building Next Generation Network Processor#Vhite paper, Sep 1999, Agere
Inc., http://www.agere.com/support/non-nda/docs/Building.pdf

[7.19]D. Husak, “Network Processors: A Definition and Comparisthjte paper, C-
PORT http://www.cportcorp.com/solutions/docs/netprocessor_wp5-00.pdf

[7.20]W. W. Peterson and D. T. Brown “Cyclic Codes for Error Detectidrgc. IRE
Jan 1961, pp. 228-235

76

Paper 2:

Paper 3.

Packet Classification and Termination in

a Protocol Processor

UIf Nordqgvist and Dake Liu
Submitted to the HPCA Network Processor Workshop

Abstract

This paper introduces a novel architecture for acceleration of control
memory access in a protocol processor dedicated for packet reception in
network terminals. The architecture enables the protocol processor to per-
form high performance reassembly and also offloads other parts of the con-
trol flow processing. The architecture includes packet classification engines
and concepts used in modern high-speed routers. The protocol processor
combined with a general purpose micro controller, fully offload up to layer
4 processing in multi gigabit networks when implemented in mature stan-
dard cell processes.

8.1 Introduction

Both computer and human communication networks use protocols with
ever increasing demands on speed, cost, and flexibility. There is also a
strong development towards an increased use of network protocols for
applications that traditionally used other implementation techniques, e.g.
voice and video. One reason is that packet based network protocols can

77

78 Paper 3:

normally handle a mixture of any kind of traffic. For network node compo-
nents such as routers, switches and bridges, the performance needs have
been fulfilled using Application Specific Integrated Circuits (ASIC) or
Application Specific Standard Products (ASSP) since these applications
traditionally have had quite moderate demands on programmability. These
traditional approaches will probably continue to co-exist with more pro-
grammable solutions such as network processors (NP) in the future, due to
their relatively cost-insensitive and performance demanding consumers.
Having said this, it is clear that the networking industry is requesting
moore programmable devices in tomorrows network.

In order to let the end-users take advantage of the bandwidth enhance-
ment in todays networks, tomorrows Network Terminal (NT) hardware
must support transmission speeds of Gbit/s. Hardware for such NT compo-
nents is on the other hand sold on a cost-sensitive market share with high
demands on flexibility and usability. Traditionally NT has been imple-
mented using ASIC:s situated on the network interface card processing the
lower layers in the OSI-Reference Model [12] and a CPU-RISC based SW
iImplementation of the upper layers. Usage of standard, general purpose
CPU:s, is expensive in terms of cost, space and power due to their lack of
dedicated hardware. There is also an upper capacity limit, set by the 1/0
capacity and the instruction rate of the CPU. Today it is easy to find Net-
work Interface Card (NIC) supporting multi-gigabit networks but such
bandwidth can not be utilized by the host since it requires the host to be
fully loaded processing layer 3 and 4 protocols, leaving nothing for the
application and system processing. The research focus has mainly been on
router and switching applications so far, but in the future the terminals will
also require offloading using programmable high-speed solutions.

To meet these new requirement a new area of communication handling
hardware platforms has emerged. These are commonly denoted as TCP
Offload Engines (TOE). One of these TOE solutions is called programma-
ble protocol processor (PPP) and it was introduced by this papers authors
in [9] and [10] 1999. As most of the TOE it consist of programmable parts
that can accelerate and offload a terminal host processor by handling the
communication protocol processing. The protocol processor platform is a
domain specific processor solution with superior performance over a gen-
eral purpose CPU, that still provides flexibility through programmability
within the limited application domain. The PPP architecture is intended for
integration on a ASIC chip, it is not a board-level integrated programmable
NIC. The protocol processor hardware platform is further discussed in
chapter 2. In chapter 3 a novel methodology and architecture for handling

Programmable protocol processor 79

and distributing, control flow information to and from our protocol proces-
sor is introduced.

8.2 Programmable protocol processor

The main task of the protocol processor is to process the packets trans-
ferred between the application on the host processor and the network, so
that a secure and reliable connection is provided between the sender and
transmitting function. The protocol processing architecture (and the
research project behind) discussed in this paper, only deals with the recep-
tion of packets. Since the transmitting of packets is limited by the applica-
tions construction of packets and have lower demands on low latency, we
have chosen to concentrate our research on the packet reception problem
before discussing packet creation acceleration. The goal of this research
project is to process as much of the protocol stack as possible before stor-
ing the data payload to the systems main memory. By reducing the memory
access and buffering, illustrated by figure 8.1 , both memory bottlekneck
problems and power consumption can be reduced. In order to achieve this,
the protocols must be processed at network speed and multiple layers are
being processed simultaneously as proposed in [18].

SoC

Host processor

r— - - - — — =
S
PPP a
(WDt buer = -L——~[oMA
| :
Main
c&C e Memory

Network-a——m»

GMil |

| Ctrl memory |

Figure 8.2: The PPP together with a general purpose micro controller
handles the communication of one network port. In a system on chip
(SoC) many PPP can be used as port-processors in order to provide high
bandwidth between the application and the network. A control memory is

used for storage of inter packet control variables.

In order to deal with the fact that the nature of the different processing
task in a protocol processor is very versatile the hardware platform has
been divided into two parts. This is illustrated by figure 8.2 . The first part
Is the Programmable Protocol Processor (PPP) which is dedicated for data
intensive processing task mainly originating from the lower level protocols
in the OSI-protocol stack standard. Examples on such tasks are checksum

80 Paper 3:

< Layer N protocol >
Data Buffer Data Buffer
C Layer N-1 protocol >

Figure 8.1: Using inter-layer processing the power consumption and
required memory usage in the protocol processor can be reduced since all
buffering of data between different protocol layers can be eliminated.

calculations, address checks, length counters etc. Normally they are intra-
packet processing tasks that have to be performed even if the protocols
covered are very simple. The other part off the platform is a general pur-
pose micro controllery(C) that deals with control intensive protocol pro-
cessing tasks such as connection state handling and other inter-packet
processing tasks. The micro controller is also used for the configuration of
the PPP for different type of protocols as well as firewall updates. Further
the micro controller handles the control communication with the host pro-
cessor and the DMA, e.g. setting up and closing sockets etc. Using DMA
communication between the PPP and the host reduces the interrupts com-
pared to bus-communication [17]. In the NP research community there is
today a clear trend towards a separation of the processing in a slow and
fast-path similar to our approach. In figure 8.3 there is an illustration show-
ing how different layers in the protocol stack are distributed to different
processing resources.

The micro controller is very suitable for implementation of the various
finite state machines (FSM) which contributes to a big part of the control
processing. Never the less, there are other tasks within the inter-packet pro-
cessing domain, which the micro controller efficiently can be offloaded
from. One of the main operations is a search and access of control data
based on header information in a receiving packet. This operation is com-
parable to the bind and in_pcblookup C-functions used in software imple-
mentations. In a receiving situation the PPP will process the packet and
then discard it or hand it over to the micro controller.

Programmable protocol processor 81

HOST CPU |ULP
Inter packet/

control intensive
processing uc |[Laver4
PPP Layer 3
Intra packet/
data intensive PHY AC
processing ASIC (X)GMII - interface
PHY

Figure 8.3: Offloading the host using various types of accelerators for dif-
ferent types of processing tasks and protocols. Typically higher layer pro-
tocols require more flexibility through programmaubility.

The proposed platform, including a PPP together withitfe is essen-
tially a TCP offloading engine (TOE) dedicated for network terminals. A
TOE for NT does not make any routing decisions. It only discards packets
or accept them before they are passed on to the correct host memory buff-
ers. Further the number of connections is much less than in a layer 4 router.
Hence the architectural design of such an offloading device have other
goals and requirements. Consequently the research on such devices must
divert from the network processor research area.

As illustrated by figure 8.4 the PPP hardware architecture for protocol
processing consists of four main parts. One is the input buffer chain that
provides the data to the accelerating functional pages (FP). By using a 32
bit wide chain of flip-flops, the fan-out from the flip-flops can be kept on a
tolerable level even if the number of FP increases with new protocols and
an increased protocol coverage. Using a RAM based FIFO buffer instead
of flip-flops would decrease the activity but the fan-out would be a huge
problem. As long as the fan-out is kept low it is still possible to replace the
last flip-flops in the chain with a minimal RAM-based FIFO. The total
buffer size is dependent on the decision latency of the PPP. The decision
answer is normally discard or send packet to memory for further process-
ing. Some payloads should be sent to the host memory and some to the
control memory.

The control of the various accelerators (FP) in the PPP, mainly consists of
start and stop flags. These flags are provided from the Counter and Control-
ler (C&C). The flags are generated based on an internal program in the
C&C, result flags from the FPs and counter values generated in the C&C.

82 Paper 3:

The C&C is responsible for sceduling the start of the processing in the FPs
at the correct clock-cycle, as the data streams through the register chain.
Based on the result from the FPs, the C&C can either discard the packet or
continue the processing by configuring and starting new FPs. If a packet is
discarded, e.g. because the destination address was errornous, all the FPs
are immediately shut down in order to save power.

PPP

. ____>

FP FP | FP FP| FP| FP| FAP
A A A A

A

Interconnect Network

wmm CMAA 4%
Flag decodel
- # * dbusO |
e - Y Y dbusl _ |

Figure 8.4: The programmable packet processor consists of 4 parts: The
Counter and Controller (C&C), the input buffer chain, accelerating func-
tional pages and a Control Memory Access Accelerator (CMAA).

Since the processor operates on streaming data, instead of stored data in
memory, decisions on which program flow to execute requires minimal
latency. Different protocol configurations uses different program flows.
Hence program flow selection is dependent on the type and content of the
receiving packet. The C&C includes a special instruction buffer for accel-
eration of multi-choice conditional jump instructions in order to provide
maximum system performance. The payload of received packets of TCP or
UDP type will be sent to the host while the payload of control oriented pro-
tocols such as ARP, RARP, ICMP, IGMP will be stored in the control
memory. The control memory acceleration part is further discussed in
chapter 3.

Control Memory Access Accelerator 83

8.2.1 Functional pages

The FPs must operate at wire speed. FPs are configured from the micro
controller during set up for a specific set of protocols or a single protocol.
Each of the FP are dedicated ASIC with a limited configurability. Together,
the micro controller and the C&C supports a high degree of programmabil-
ity. To better understand the nature of the FP a common set of network pro-
tocols has been used. The protocols are TCP, UDP, ICMP, IGMP, IPv4,
IPv6, ARP, RARP and Ethernet (Fast E and GIigE). In order to support pro-
cessing of these protocols, the following FPs, have been implemented:

1 CRC FP described in [15]

» 2 eXtract And Compare (XAC) FP responsible for checking address
numbers and port numbers against the actual host address. Further they
are used to extract and compare checksums.

* 2 length counting adders.

» 2 checksum calculation adders

e 1 generic adder

Other possible processing tasks suitable for acceleration in a FP is various
types of decoding and decryption algorithms. They are however not used
since such algorithms is not included in the selected protocol suite.

As mentioned earlier, the FPs are self-contained dedicated ASICs. After
configuration the control needed for their operation is very limited. Actu-
ally, most of the control signaling can be reduced to only start and stop
flags since most control is distributed to the individual FPs.

8.3 Control Memory Access Accelerator

As mentioned earlier the micro controller is responsible for the communi-
cation control or signaling handling. Using a general micro controller is a
straightforward method similar to the traditional way of slow path process-
ing in a GP CPU. The problem with this solution is that the control infor-
mation must be transferred between the micro controller, the PPP and the
control memory with low latency in order for the PPP to process its part at
wire-speed and make the decision if the packet should be discarded. Fur-
ther, acceleration of slow path processing off-loads the micro processor.
Hence, a platform including accelerating hardware assist and control inter-
face dedicated for packet recognition and control memory access have been
developed. The Control Memory Access Accelerator (CMAA) presented in
this article uses 2 Look Up Engines (LUE) in order to recognize and clas-
sify the incoming packet. These LUE essentially consists of Content
Addressable Memories (CAM) which are well known and commonly used

84 Paper 3:

in routing and switching applications. One of the early work in this area is
[16].

8.3.1 Header data

The purpose of storing control information is to ensure that connection
oriented protocols (e.g. TCP) can perform protocol processing on the pay-
load which can be divided or segmented into many lower layer packets.
These packets can arrive out-of-order and in case of connection oriented
protocols the routing information is not included in all packets. Hence it is
obvious that some information on the current status of a connection must
be stored in order to be able to continue the processing when the next
packet arrives. In the case of the protocol set discussed earlier in this chap-
ter the following information is normally needed.

« Protocol type
* Length (received so far)
« Total length (transmitted in the last IP packet)

The length field(s) is provided to the length counter adder in the PPP
which updates the number and finally sends the updated value to one of the
XAC FP. There it is compared to the total length value which is stored in
the control memory. If they are equal, the micro controller is notified that
all packet fragments have been received and this entry will be removed
from the search list. If unequal, the new length value is written back to the
control memory.

 Accumulated checksum results

The checksum results is provided to one of the checksum calculating
adders which adds it to the recent packets checksum using a 1-complement
addition which produces a new checksum. If the length is equal to the total
length which means that the hole payload message has arrived the updated
checksum it is sent to one of the XAC FP for comparison with the received
checksum.

 |P Source and Destination Address.

The source address is extracted from the data-stream by the PPP. The
adress value is then used to construct a pseudo header. The pseudo header
Is used in the checksum calculation. Normally, only one destination
address is used for unicast packets in a terminal. This means that it is not
needed to be stored in the control memory.

e TCP Source and Destination Ports

Control Memory Access Accelerator 85

The type, ports and addresses identifies a specific connection. To see if a
incoming packet should be discarded or accepted these fields must be
checked. They are also used to identify which application the payload
should be directed to.

e Identification number

The IP identification number is used to find the correct memory buffer in
the control memory.

» Pointers to the memory position of proceeding and succeeding packets/
segments.

In order to provide all of the services stipulated by the TCP standard,
more connection related information than listed above needs to be stored.
On the other hand the only information needed for the PPP to perform its
processing is the information high-lighted in bulleted text. The information
stored in the control memory can also be used to calculate the host memory
adress. An algoritm for this type of memory address calculation remains to
be implemented for the general case even if it is simple for special applica-
tions, e.g. VoIP. A general algoritm for in-order data-buffering in the host
memory would significantly reduce the host processor interrupts. This type
of algoritm would benefit from an accelerated access to the control mem-
ory. This issue will not be further discussed in this paper.

8.3.2 Accelerator interface

The CMAA interface to the rest of the PPP and the micro controller is
illustrated by figure 8.5 .

Mask (4
Instr (8) - Ready
Type (8 . » ID found
mem access (4) CMAA » Packet ready
check buffer (1 . Memory locked
release packet (%2 —— > Packet discarded
discard (1 — > New packet
first_fragment (1
fragmented (1

'

dbus0 dbus1
Figure 8.5: Accelerator interface.

86 Paper 3:

Basically the input to the CMAA consists of flags and an instruction gen-
erated in the C&C. In table 5 the simple instruction set (6 instructions) is
listed.

Table 5: Lightweight instruction set

Name Source Internal configuration
New packet dbusO=IP ID field Packet type
Load register dbus0 Port or Address word
ID CAM operation dbus0 write, read or remove
PA CAM operation dbusO0 write, read or remove
Release to micro con-
troller
Set memory buffer dbusl1 Packet type

As output the CMAA generates a number of flags. The two data buses are
being used for data transport.

8.3.3 Data path

data bus 0
no_match i
P ID 1 Ctrl unit write adress
™ | Primary generator
LUE
A riw
Y — > w > Control
Secondary LUE — MEMORY
LﬂLT
| mem buffer geh
data bus 1
- -

Figure 8.6: CMAA architecture. An accelerating hardware architecture for
control memory access in the protocol processor. Based on traditional
packet classification techniques it support low latency access to stored

connection variables in the control memory

An overview of the CMAA architecture is illustrated in figure 8.6 . The
CMAA data path includes two LUE, a buffer pointer generator, and a sim-
ple memory access selector. The Primary LUE (PLUE) only includes one

Control Memory Access Accelerator 87

CAM which has 16 bit wide entries, has M entries and the result memory is
W bits wide. The purpose of this unit is to check if we already have
received an fragment of the incoming packet. This is checked using the IP
Identification field (IP ID). If an arriving packet is fragmented, the frag-
mented flag will be produced in the C&C and provided to the CMAA.
Then the fragment is checked in the PLUE to see if a packet buffer exist in
the Control memory. If the CAM in the PLUE does not have a matching
identification field entry, a new packet buffer will be created and the IP ID
will be written to the PLUE CAM. In the packet buffer, inter-packet vari-
ables such as length and checksums will be stored. If the packet is non-
fragmented there is no need to store its IP ID so the packet buffer is created
directly on the control memory address provided from the mem buffer gen
unit in figure 8.6 . The SLUE is a classification engine including 6 CAMs
and its purpose is to check for valid connections. The two data buses is 32
bit wide. The mem buffer gen generates new buffer addresses for both
packet buffers and connection buffers. The adress generation is controlled
from thepC.

As the other accelerating devices in our protocol processor, e.g. FPs, the
CMAA remains in idle mode while not in operation. Power-up will be per-
formed when a new packet arrives. This reduces the power dissipation sig-
nificantly in a network terminal due to the un-even time distribution of the
packet reception.

In this paper we leave the final CAM design and implementation to be
further investigated and optimized. The reason behind this is that they are
extremely important for the overall performance and they require different
design techniques, tools and expertise than the rest of the PPP. Final imple-
mentation of the LUE will of course have an huge impact on the perfor-
mance of the CMAA. This issue is further discussed in section 8.3.7.

A layout of the CMAA excluding the two LUE and the buses has been
produced. The number of standard cells and the area of the CMAA exclud-

ing the input registers, and the two LUE are 716 and 0.105 nespec-
tively. This part of the CMAA has been simulated, using static timing
analysis on the layout, to run at almost 300 MHz. This means that it is not
included in the critical path of the PPP. Since we use registered inputs and
outputs in the CAMs, it is the SLUE that will be the critical path of the
CMAA.

88 Paper 3:

8.3.4 Control procedure

Al

(Wait for new packe}

(Ioad ports, addresses and search for} ID

send mem adr
to C&C

v

(wait for C&C >

(release tuC)
v

< update >

I

Figure 8.7: Control handling procedure within the CMAA.

Store connectio
in packet buffer

The normal packet reception procedure of operation in the CMAA, is
illustrated by figure 8.7 . The procedure is controlled by the control unit
finite state machine (FSM) in the CMAA.

If a new packet arriving is fragmented, the PPP provides CMAA with the
IP Identification number and gives a new-packet instruction to the CMAA.
The IP ID is then stored in the input registers to the PLUE. Next 2 clock
cycles, the CMAA continues to load ports and IP addresses while the
PLUE checks if a fragment of this payload has already been received. If
there is a match in the PLUE search, the corresponding address pointer to
the buffer in the control memory, which is stored in the PLUE result mem-
ory, is stored in the input register to the control memory. While the PPP
continues the packet processing, it can then access the control memory
directly. If the new fragment contains the layer 4 header, the port, source
and type fields are loaded from the PPP and then checked in the SLUE. If
this loading is completed after the PLUE search, e.i. itis a IPv4 packet, the
SLUE can immediately check the connection information. Otherwise the
control unit remains in the check connection state while the loading contin-
ues. Based on the SLUE result, the packet is either discarded or the match-
Ing connections adress pointer is provided to the data bus 1. Next clock

Control Memory Access Accelerator 89

cycle, the data bus 1 value will be stored at the packet buffer adress which
Is already stored in the input register to the control memory. This means
that theuC easily can access the connection information. Then the CMAA
hands over to the PPP using the packet-ready flag.

After the PPP has received the packet-ready flag, it continues to process
the packet and updates the control memory.

After successful packet processing, the PPP releases the packet to the
CMAA. Next clock cycle, the CMAA releases the lock of the control mem-
ory, starts buffer pointer updating and sends the new-packet flag fathe
During the update state, the CMAA also updates the write adress for new
entries to the two LUE. This is only done if a write operation has been per-
formed. During the write adress search, the CMAA uses one of the generic
adders in the PPP to search for empty entries. When the pointer updating
and the CAM write search is finished the CMAA returns to the wait-for-
new-packet state.

8.3.5 Control memory organization

‘Control memory

Connection pointer T Ea%et\bu\ffe WW

total length | length

Creckun | Sl /4444

~ I
|

TCP buffe
IP adress Portnumbers | T — — =
Packet list and memory locatipn - /
Other connection variables - g A
7
Pad Other buffers, e.g. UDP

Entire control packets
e.g. IGMP, ICMP, ARP, RARP

Figure 8.8: Memory organization in the control memory.

The control memory is organized according to figure 8.8 . As illustrated
the control memory consists of a number of different buffers storing inter-
packet information. Further the memory include all the control oriented
packets that is going to be processed in the micro controller software. Since
these protocols is completely processed by the micro controller, also the
payload of these packets is stored in the control memory. For TCP and
UDP type of packets only preprocessed header information is stored. In the

90 Paper 3:

packet buffers, layer 3 information needed for reassembly is stored. Each
packet buffer is deleted when the entire layer 3 packet has arrived.

8.3.6 Look-up Engine architectures
3 dbus0

Typ
E dbusl
} 32 >

128

Y i | Y

M Port&Type Mas Address Adr RAM
as STCAM STCAM N X W
- r— "
IConv. L
T T A N IIogic |
Er
| | N L — 4
flag E:éete generator [nof N —
P . ew_buffer
no_connection pointer

Figure 8.9: Secondary Look-Up Engine (SLUE) architecture. Note that
the conversion logic that converts the matching vector to a result memory
adress can be eliminated if the matching vector is used directly as word
lines in the memory. This however require that the RAM must be imple-
mented in the same manufacturing process.

The SLUE consists of 6 CAMs as illustrated by figure 8.9 . The outputs
generated by the CAMs are vectors containing zeros or ones describing
table matches. These are used to select the address pointer in the result
memory, e.i. the control memory address for the received packet.

Input key

Content 1 1

Mask
? ? ?»Dmatch

Content f\B/IFOlf(p
as STCAM
match
’

Figure 8.10: Simplified TCAM principle.

TCAM

Control Memory Access Accelerator 91

The 7 different CAMs we propose to be used in the CMAA architecture
will have an huge impact on the performance, size and power figures of the
entire design. Therefor they require a thorough investigation and optimiza-
tion procedure, in order to obtain the optimal system performance. Even if
the optimization of these CAMSs not is in the scope of this paper, some
characteristics and requirements on the CAMs can be noted. First of all we
propose that CAMs should be instead of TCAMs ([19] and [20]). This
reduces the cell size and power dissipation. The primary LUE is a standard
CAM memory 16 bit content and M entries. The result memory is M times
the length of the control memory adress W.

In order to provide flexibility for different protocols we use a concept we
call Simplified TCAM (STCAM) illustrated by figure 8.10 in the second-
ary LUE. Instead of using ternary bit comparisons as in TCAMs we only
provides an wildcard function to the entire CAM. In figure 8.11 there is an
illustration showing how the secondary LUE uses the STCAM principle.

Mem

Type SPort SPort IP Adr IP Adr IP Adr ptr
CAM CAM CAM CAMO| | cAM1| | CAM2 Result
Memory

[Mask [Mash (RAM)
;:D—»L’D L’D. pE=_p I
? no_connection

Figure 8.11: The two different STCAM in the SLUE each consists of three
ordinary CAMs and some masking functions. Each of the CAMs uses N
entries.

The mask input enables a wildcard functionality for different fields when
recognizing an incoming packet according to table 6. The table shows that
the proposed SLUE architecture can be used for various types of protocols.
A careful use of these wild cards is needed in order to avoid multiple
matches. By using the type field, which is an internal type, it is possible to
avoid multiple matches which means that the priority logic in the SLUE
can be eliminated. Further it enables the connections to be written in the
CAM in an arbitrary order..

Table 6: Configurations using masking for different packet types and applications.

Protocol Tvoe Source Destination Source Destination

examples yp Port Port Address Adr
IPv6 Optional Optional 16 128 *
Unicasting

92 Paper 3:

Table 6: Configurations using masking for different packet types and applications.

Protocol Tvoe Source | Destination| Source | Destination
examples yp Port Port Address Adr
IPv6 Optional Optional 16 * 128
Broad or
multi casting
IPv6 alt Optional Optional 16 64 64
IPv4 Optional Optional 16 32 32
IPv4 Optional Optional 16 32 *
UDP Optional 16 16 32

It can always be discussed how much the IP version 6 (IP v6) protocol
that will be used in the future but we have chosen to include it since the
penalty is not as severe in network terminals as it is in routers. The reason
for this is that in network terminals we only have one destination address to
check for unicasting. This can be done in other parts of the PPP. Hence 128
bits can be excluded from the CAMs entries. For broad and multicasting
packets a different type field is generated and only the destination is
checked (instead of the source address). This reduces the penalty we have
to pay in forms of larger CAMs when including IP v6. There exist however
routers where only 64 bits out of the 128 in the IP v6 address is used for
packet classification. The reason is that in such networks the other 64 bits
Is just a copy of the MAC address. If such method would be applied the
CAMs can reduce the wordlength of the content with additionally 64 bits
by eliminating the IP Adr 2 in figure 8.11 Since this architecture will be
used in a network terminal the activity will not be as high in the CAMs as it
would be in a router. The reason is that we only do a load and search oper-
ation when a new packet arrives, not every clock cycle. The low activity
significantly reduces the power consumption in the CAMs.

8.3.7 CAM implementation issues

The total size of the 7 CAMs and there result memories will be a major
part of the system chip area. Itis very hard to make predictions on the sizes
of these CAMs since that is a matter of optimization effort and implemen-
tation strategy. Further the complex placement and routing requires a full
custom approach even for standard cell based designs. Even without a final
layout, a lower bound on the chip-area can be estimated. Using standard
cells from our design process (AMS 0.5 3.3 V 3-M) an optimized bit-

slice cell in a CAM is approximately 35Qm? which results in a lower

Control Memory Access Accelerator 93

bound on the combined CAM area according to EQ 1. The result memories
must store M + N times W bits using approximately 180%reach.

Acay = (16X M +(128+ 40 x N) x 350+ (M + N) x W x 180 pm’
(EQ3)
As an example M=16, N=64 and W=20 can be considered. The chip-area

for the two LUE would then be at least 4 MnThis figure is acceptable but

if more entries are to be considered a process migration to smaller geome-
tries is natural. The number of entries to implement is a matter of optimiza-
tion. This optimization procedure requires a careful analyze of application
requirement and network traffic. Never the less it is clear that in NT, the
required number of network links is not as high as in routers. Hence M and
N does not need to be very large for most applications and networks.

In order to examine our architectural performance, it is crucial to know
how many clock cycles each search operation in the two LUE requires. We
expect the system clock to have a period of maximally 7.5 ns in a 0.35
micron process, based on timing analysis on other parts of the PPP. Hence
the maximum network speed is 4.3 Gbit/s using the specified 32 bit wide
input buffers. Since we are sure that there is only one packet being pro-
cessed at any given time, we do not necessarily need the LUE:s to be pipe-
lined, e.i. we do not need any internal intermediate results to be stored.
Instead a multi-cycle-path design technique can be used. To use pipeline
stages or not is an implementation issue for the CAM designers. Simula-
tions shows that the small PLUE will not require more than 2 clock cycles
to complete one search, e.i. it has a critical path shorter than 15 ns. Then
we assume M is maximally 64.

The number of clock cycles required for a search operation in the SLUE
Is equal to the critical path divided by 7.5 ns. The critical path consists of
circuit delays and wire delays. If the SLUE are being implemented using
standard cells the logic delay is simple to calculate. For N=64 there will be
approximately 15 logic cells in the critical path which leads us into believ-
ing that 2 clock cycles is enough. The problem is that in larger CAMSs a big
part of the critical path, is wire delay. In my research design (N=256) |
have used synthesis and P&R tools from Cadence. The resulting imple-
mentation result is very far from optimal and does not meet my require-
ment 3 clock cycles. The design is simply to large and hence the P&R
problem to complex. Therefor the conclusion is that the design strategy
must be changed to something more custom oriented even if the CAM is
rather small compared to the one used in routers. Clearly a bitslice manipu-
lating placement strategy has to be used for efficient CAM design regard-

94 Paper 3:

less of the size. Anyway the conclusion after studies of other comparable
CAM designs and discussion with industry CAM designers is that, for N
less than or equal to 256, a search operation will require maximally 4 clock
cycles (or pipeline stages). For N=64, 3 clock cycles is definitely enough.
These figures apply to standard cell based designs.

Even with a pessimistic feature size projection (Moores law), there is no
reason to believe that scaling not can support the CMAA to run at clock
periods around 3 ns using 3 clock cycles for one search operation. Hence
the CMAA could be used in a 10 Gbit/s network such as 10 Gigabit Ether-
net, using already available processes, e.i. 0.13 micron. The resulting
latency for CMAA operations is further discussed in section 8.3.8.

The latency, critical path, power consumption in the LUE is of course
depending on M, N and W. To optimize these variables simulation on real
world network traffic is required. Until this optimization phase is com-
pleted the numbers M=16, N=64 and W=20 will be considered for further
architectural development.

8.3.8 Latency

The proposed architecture for access of the control memory, reduce the
control memory access latency to a few clock-cycles. The fast path latency
determines how big the input buffer chain has to be. The latency of the
CMAA must be added to the latency of the PPP in order to calculate the
total fast path latency. We propose that the SLUE should use 3 clock cycles
to perform a search. A 3-clock-cycle type of SLUE would give a maximum
memory access latency of 11 according to table 7 when a new packet has
been received. Further the table shows that a four cycle type of CAM archi-
tecture, will give a maximum memory access latency of 12 clock cycles.
This of course have an impact on the pipeline register chain in the PPP and
the total latency for a packet reception and delivery to the micro controller.

The PPP can start the processing of an incoming packet before the control
data has been accessed from the control memory. Therefore this latency
only sets a lower limit on the latency of the total packet reception. The total
latency is however mainly dependent on the processing activities, including
interrupts and stalls, in the micro controller.

Conclusions

95

(PLUE requires 2 clock cycles to perform a search)

Table 7: Examples on memory access latency for various packets received.

Layer 3 protocol

clock cycles
latency for CMAA
operation
3 stage SLUE

clock cycles
latency for CMAA
operation
4 stage SLUE

IPv4 - new packet 9 10
IPv4 - old packet, new fragment 4 4
IPV6 - new packet 11 12
IPv6 - old packet, new fragment 4 4

8.3.9 Enabling flow based QoS

Using the fast control memory access, it is possible to enable quality of
service (QoS) to the reception. Any kind of priority parameters or flow
parameters can be stored in the different buffers in the control memory.
These can then be used for multiplexing of the incoming data stream, if a
flow based operation is demanded.

8.3.10 Shared control memory

The motivation for separating the protocol processing into one PPP-part
and oneuC-part is of course to use the programmability of i@ when
processing control intensive tasks, and still have high-performance and
low-power implementation of the data intensive processing. This distrib-
uted architecture however requires an interface, and that interface is the
control memory unit together with control flags to and from the C&C. As
mentioned before, the PPP only need to access the memory when a new
packet is received and then only a limited part of the control information is
used. Since the latency of this access directly effects the length of the input
buffer chain, the PPP must have priority over € when it comes to
memory access. In fact theC only have access to the control memory
when the CMAA resides in the update or wait-for-new-packet state accord-
ing to figure 8.7 .

8.4 Conclusions

A novel architecture for acceleration of control memory access in a proto-
col processor for network terminals was presented. The architecture uses
classification engines and concepts which has traditionally been used for
network infrastructure components. The proposed architecture enables low

96 Paper 3:

latency access to connection state variables, partial checksum results and
any other control information stored in the shared control memory. Hence
inter-packet processing such as reassembly has been accelerated using our
flexible protocol processor architecture for network terminals. Further it
offloads the micro controller so that a wide variety of protocols can be pro-
cessed in a programmable way, using the proposed protocol processor plat-
form in high-speed networks. The proposed architecture can process the
fast path in a multi gigabit network, implemented in a mature standard cell
process such as AMS 0.8&.

8.5 Further work

In order to complete the specification of the protocol processor three main
research areas remains. The first one is to specify the interface between the
HC and the host system and its DMA. Secondly the counter and controller
unit is not finally implemented and programmed. The third issue regards
the configuration method of the protocol processor. What does the pro-
gramming and re-configuration interface look like from

8.6 Acknowledgments

This research was funded by ECSEL graduate research school and TFF
the Swedish Scientific Research Foundation.

References

[9] D. Liu, U. Nordgvist, and C. Svensson, “Configuration-Based Architecture for High-Speed
and General-Purpose Protocol-Processing”, Proceedings of IEEE Signal Processing Systems
1999, pp. 540-547, Taipei

[10] T. Henrikson, U. Nordgvist, and D. Liu, “Specification of a Configurable General-Purpose
Protocol-Processor”, Proceedings of CSNDSP 2000, Bournemouth

[11] M. Yang, A. Tantawy, “A design methodology for protocol processors”, Proceedings of the
Fifth IEEE Computer Society Workshop on Future Trends of Distributed Computing Systems,
1995, pp. 376 -381

[12] A. S. Tannenbaum, “Computer Networks”, 3nd Edition, Prentice Hall PRT, ISBN 0-13-
349945-6, 1996

[13] “Building Next Generation Network Processors”, White paper, Sep 1999, Agere Inc., http:/
www.agere.com/support/non-nda/docs/Building.pdf

[14] D. Husak, “Network Processors: A Definition and Comparison”, White paper, C-PORT,
http://lwww.cportcorp.com/solutions/docs/netprocessor_wp5-00.pdf

[15] U. Nordgvist, T. Henriksson, D. Liu, “CRC Generation for Protocol Processing”, NOR-
CHIP 2000, Turku, Finland

[16] McAuley A. et al., “Fast Routing Table Lookup Using CAMs”, IEEE INFOCOM ‘93,
March 1993

[17] P. Steenkiste, “A Systematic Approach to Host Interface Design for High-Speed Net-
works”, IEEE Computer, v.27 n.3, pp.47-57, March 1994

Acknowledgments 97

[18] M. B. Abbott, L. L. Peterson, “Increasing network throughput by integrating protocol lay-
ers”, IEEE/ACM Transactions on Networking, vol. 1, pp 600-10, 1993

[19] van Lunteren J., Engbersen A.P.J., “Multi-field packet classification using ternary CAM”,
Electronics Letters, Volume: 38 Issue: 1, 3 Jan. 2002, pp 21 -23

[20] Huang N-F, Chen W-E, Luo J-Y, Chen J_M, “Design of multi-field IPv6 packet classifiers
using ternary CAMs”, GLOBECOM'01. IEEE, Volume: 3, 2001, pp 1877 -1881

98

Paper 3:

	Linköping Studies in Science and Technology
	Thesis No. 998
	A Programmable Network Interface Accelerator
	Ulf Nordqvist
	LIU-TEK-LIC-2002:
	Department of Electrical Engineering
	Linköpings universitet, SE-581 83 Linköping, Sweden
	Linköping 2002

	Linköping Studies in Science and Technology
	Thesis No. 998
	A Programmable Network Interface Accelerator
	Ulf Nordqvist
	LIU-TEK-LIC-2002:71
	Department of Electrical Engineering
	Linköpings universitet, SE-581 83 Linköping, Sweden
	Linköping 2002
	Abstract
	The bandwidth and number of users in computer networks are rapidly growing today. The need for ad...
	In the emerging research area of programmable network interfaces, there exist many hardware platf...
	A novel terminal platform solution is proposed in this thesis. The platform is accelerated using ...
	The dedicated datapath, simplified control, and minimal usage of data buffers makes the proposed ...

	Acknowledgments
	First of all, I would like to thank my supervisor, Professor Dake Liu, for guidance, inspiring di...
	I would like to acknowledgment my fellow PhD student Tomas Henriksson for valuable discussions, f...
	I would also like to thank the professor at my former research group, Electronic Devices, Profess...
	The interesting discussions and especially the software related support of my former office-mate ...
	Sharing the working environment with a inner circle of PhD students like, including Daniel Eckerb...
	All of the former and present members of the Electronic Devices and the Computer Engineering grou...
	I would like to thank ECSEL graduate school for killing my time schedules, financing the work and...
	Finally I would like to thank my family for supporting (but not understanding) my work.

	Preface
	This thesis presents the results of my research during the period 1999-2002. The following three ...
	Other publications, not included in the thesis:
	Abstract i
	Acknowledgments iii
	Preface v
	Abbreviations xi
	Introduction 1
	Background and motivation 1
	Research project 3

	Outline 4

	Network basics 5
	Packet based networks 5
	ISO/OSI Protocol layers 5
	TCP/IP Protocol layers 7
	Traditional layer processing 8
	Local Area Networks 8
	Storage Area Networks (SAN) 9
	Mixed traffic 10
	Quality of Service 10
	Network performance figures 10

	Protocol services 11
	Parsing 11
	Control flow selection 11
	Transport control 12
	Data processing 13
	Datastream management 13

	Traditional network components 13
	Network Terminals 13
	Routers 14

	Hardware platforms 17
	Architectural challenges 17
	Design alternatives 18
	Inter- or intra-layer processing 18
	Type of control 19
	Application coverage 20
	Offloading coverage 20
	Chip or board integration 21
	Configurable logic 22

	Performance measures 22
	Flexibility 22
	Throughput 23
	Inter operability 23
	Cost 23

	Application Specific Accelerators 24

	Programmable Network Interfaces - A Survey 25
	Naming convention 25
	Commercial architectures 26
	Motorola C-Port C-5e Network Processor 26
	iSNAP 26
	IBM PowerNP 27
	Trebia SNP 27
	iReady EthernetMAX 28
	Alacritech Internet PP 28
	LayerN UltraLock 29
	Seaway Streamwise NCP 29
	Emulex LightPulse Fibre HBA 29
	Intel IXA/IXC/IXS/IOP processors 30
	LeWiz Content processor 31
	Qlogic SANblade 31
	Agere Systems - PayloadPlus 32
	Cisco - Toaster2 33
	PMC-Sierra ClassiPI 34

	Academic architectures 34
	EU Protocol Processor Project PRO3 34
	UCLA Packet decoder 34
	TACO processor from Turku University 35
	PICO project from Berkeley 35

	Conclusions from survey 35

	Proposed Architecture 39
	Introduction 39
	Naming convention 39
	System perspective 40

	Processing tasks 41
	Protocol suite overview 41
	Ethernet 42
	Address Resolution Protocol (ARP) 43
	Reversed ARP (RARP) 43
	Internet Protocol (IP) 43
	ICMP and IGMP 45
	TCP 45
	UDP 45

	Proposed datapath 46
	Input buffer 46
	Functional pages 47
	CMAA 50
	Processing tasks allocation 51

	Interfaces 52
	Network interface 52
	Micro controller interface 53
	Host system interface 53

	Control path 53
	Counter and controller 53
	Hardware timer 54

	Configuration 55
	Performance 55

	Paper 1: 57
	Background 57
	Functional coverage of DPSP 58
	Application overview 59
	Architecture 60
	Functional Pages 62
	Counter and Controller 63

	Conclusion 64
	Acknowledgments 65

	Paper 2: 67
	Introduction 67
	The CRC algorithm 68

	Implementation theory 69
	Experimental results 72
	Conclusions 73

	Paper 3: 77
	Introduction 77
	Programmable protocol processor 79
	Functional pages 83

	Control Memory Access Accelerator 83
	Header data 84
	Accelerator interface 85
	Data path 86
	Control procedure 88
	Control memory organization 89
	Look-up Engine architectures 90
	CAM implementation issues 92
	Latency 94
	Enabling flow based QoS 95
	Shared control memory 95

	Conclusions 95
	Further work 96
	Acknowledgments 96

	Abbreviations
	ASIC Application Specific Integrated Circuit
	CAM Content Addressable Memory
	CMAA Control Memory Access Accelerator
	CRC Cyclic Redundancy Check
	FP Functional Page
	FPGA Field Programmable Gate Array
	GMII Gigabit Media Independent Interface
	HBA Host Bus Adaptor
	ILP Instruction Level Parallelism
	IP Internetwork Protocol
	iSCSI Internet Small Computer System Interface
	LAN Local Area Network
	MTU Maximum Transmission Unit
	NIC Network Interface Card
	NP Network Processor
	NT Network Terminal
	PaP Packet Processor
	PDU Protocol Data Unit
	PHY Physical Layer
	PLD Programmable Logic Devices
	PNI Programmable Network Interface
	PP Protocol Processor
	PPP Programmable Protocol Processor
	SAN Storage Area Network
	SAR Segmentation And Reassambly
	SSL Secure Socket Layer
	TCAM Ternary Content Addressable Memmory
	TCP Transport Control Protocol
	TOE TCP Offload Engine
	UDP User Datagram Protocol
	ULP Upper Layer Protocol
	XAC eXtract And Compare
	XDR External Data Representation

	1
	Introduction
	1.1 Background and motivation
	In the semiconductor industry it is a well known fact that the device production scales according...
	Table 1: Projections of the ITRS Semiconductor Roadmap

	Networking technologies, however, have historically increased data rates in 10 times increments a...
	Figure 1.1: The I/O processing gap has started to become a problem using traditional CPU architec...
	Example:
	Consider a general purpose RISC machine in a 10 Gbps network. Assume min-sized packets (64 bytes)...

	1.1.1 Research project
	This thesis as well as the research project behind tries to attack the problem described in the p...
	The contribution of my work described in this thesis, is to explore the further architectural for...

	1.2 Outline
	This thesis consists of two main parts, organized as follows. The first part including this and t...
	In chapter 3, a number of different hardware design considerations important for the design of pr...
	Chapter 4 consists of a survey of available PNI solutions. The survey covers many different appli...
	The second part of the thesis contains my research proposals, results and the three included pape...
	Finally the last three chapters consist of the three papers included in the thesis.

	References
	[1.1] International Technology Roadmap for Semiconductors, on the internet, http:// public.itrs.net/
	[1.2] FC Magazine, Fibre Channel Industry Association - Europe, on the internet, http:/ /data.fib...

	2
	Network basics
	2.1 Packet based networks
	This chapter includes a brief introduction to the concept of packet based networks including comp...
	2.1.1 ISO/OSI Protocol layers
	Figure 2.1: The 7 layer ISO/OSI reference model
	The standard model for networking protocols and distributed applications is the International Sta...
	• Layer 1 - Physical

	Physical layer defines the cable or physical medium itself, e.g. unshielded twisted pairs. All me...
	• Layer 2 - Data Link

	Data Link layer defines the format of data on the network. A network data frame, a.k.a. packet, i...
	Ethernet addresses a host using a unique, 48-bit address called its Ethernet address or Media Acc...
	• Layer 3 - Network

	Almost all computer networking applications uses Internetwork Protocol (IP) as its network layer ...
	Even though IP packets are addressed using IP addresses, hardware addresses must be used to actua...
	• Layer 4 - Transport

	The transport layer subdivides user-buffer into network-buffer sized datagrams and enforces desir...
	• Layer 5 - Session

	The session protocol defines the format of the data sent over the connections.
	• Layer 6 - Presentation

	External Data Representation (XDR) sits at the presentation level. It converts local representati...
	• Layer 7 - Application

	Provides network services to the end-users. Mail, file transfer protocol (ftp), telnet, and Domai...

	2.1.2 TCP/IP Protocol layers
	Although the OSI model is widely used and often cited as the standard, TCP/IP protocol has become...
	• Layer 1 - Link

	This layer defines the network hardware and device drivers.
	• Layer 2 - Network

	This layer is used for basic communication, addressing and routing. TCP/ IP uses IP and ICMP prot...
	• Layer 3 - Transport

	Handles communication among programs on a network. TCP and UDP falls within this layer.
	• Layer 4 - Application

	End-user applications reside at this layer. Commonly used applications include DNS, rlogin, talk,...

	2.1.3 Traditional layer processing
	A traditional way of describing a protocol layer is illustrated by figure 2.2. The figure is a ve...
	Figure 2.2: Traditionally layered protocol processing concept. During reception each protocol lay...

	2.1.4 Local Area Networks
	Local Area Networks (LAN) protocols function at the lowest two layers of the OSI reference model,...
	• Wireless LAN

	Today there exist a number of different protocols for wireless LAN applications. They differentia...

	2.1.5 Storage Area Networks (SAN)
	The usage of SAN is currently growing very fast. SAN is normally used for connections to and from...

	2.1.6 Mixed traffic
	Today it becomes more and more common to use the same network for booth data transfer and voice o...
	• Voice over ATM
	• Voice over Frame Relay
	• Voice over IP

	2.1.7 Quality of Service
	Fundamentally, QoS enables the possibility to provide better service to certain flows. This is do...

	2.1.8 Network performance figures
	Some common networks and their performance figures are listed below.
	Table 2: Common networks and their performance figures.

	The networks listed in table 2 are and will continue to be some of the most common for a number o...

	2.2 Protocol services
	Regardless of the protocols used in a computer network, there exist a common set of processing ta...
	2.2.1 Parsing
	In order to perform any processing on a packet, the first step is to recognize the packet and the...

	2.2.2 Control flow selection
	Decisions on how to process the packet can be made based on the parsed information. This decision...
	Figure 2.3: Control flow selection pseudo-code.
	If the protocol processing (or parts of it) is implemented in hardware the control flow selection...
	• Program flow selection
	• Hardware configuration
	• Hardware multiplexing
	• Hardware scheduling

	2.2.3 Transport control
	The purpose of the transport control is to provide a secure and regulated communication between a...
	• Acknowledgement control including timer triggered events
	• Receiver management e.g. policing, filtering, and QoS providing

	The acknowledgment control must produce acknowledgments and send them back to the sender when pac...
	In a network terminal, the receiver management normally only consists of a decision to store or d...

	2.2.4 Data processing
	The purpose of data processing is to support the transmission control so that a secure and error-...
	• CRC calculation
	• Checksum calculation
	• Other Coding/Decoding
	• Encryption/Decryption

	2.2.5 Datastream management
	In network terminals the datastream management consists of different kinds of buffer management. ...

	2.3 Traditional network components
	2.3.1 Network Terminals
	Figure 2.4: Examples of processing tasks and hardware allocation in a traditional type of desktop...
	Network terminals (NT) exist for many different applications. Some examples are desktops, printer...
	As an example on the type of processing going on in a desktop PC we can consider the TCP/IP proto...

	2.3.2 Routers
	Even though router manufacturers of today tend to include more and more intelligence in their dev...
	The main goals of a router are:
	• To pass on incoming packets to the correct network link.
	• To provide error control and security to the communication channels established.
	• To monitor and control the traffic flow so that it is optimal from the Internet Service Provide...

	Figure 2.5: Example of processing tasks and allocation in a traditional type of router.
	Normally a router includes 3 basic components. They are line cards, interfacing backplane and a s...

	References
	[2.1] A. S. Tannenbaum, “Computer Networks”, 3nd Edition, Prentice Hall PRT, ISBN 0-13-349945-6, ...
	[2.2] J. Kadambi et al, “Gigabit Ethernet”, Prentice Hall PRT, ISBN 0-13-913286-4, 1998
	[2.3] W. R. Stevens, “TCP/IP Illustrated, Volume 1 The Protocols”, Addison-Wesley, 1994
	[2.4] G. R. Wright, W. R. Stevens, “TCP/IP Illustrated, Volume 2 The Implementation”, Addison-Wes...
	[2.5] Technical Specification of BRAN and Hiperlan-2. Common part.”, ETSI TS 101 493 - 1, V1.1.1,...
	[2.6] “Technical Specification of BRAN and Hiperlan-2. Ethernet Service Specific Convergence Subl...
	[2.7] Storage Networking Industry Association, on the internet, http://www.snia.org/ home

	3
	Hardware platforms
	3.1 Architectural challenges
	When designing high speed programmable network interfaces (PNI) there are a number of challenges ...
	• Data transfer to/from external memories
	• Power dissipation
	• Pin limitation
	• Packaging
	• Verification

	Others are specifically important in PNI designs, e.g.
	• Line-rate processing (fast path processing)
	• Link-rate processing (slow path processing)
	• Device integration (accelerators, memories, ASIC:s)
	• Shared resources management (e.g. data and program memories)

	To overcome these challenges three main approaches exist today. Their common goal is to provide s...
	• Application Specific Logic

	Special Instruction Set
	On- or Off-chip accelerators
	• Advanced Processor Architectures

	Data level parallelism
	Instruction Level Parallelism (ILP)
	• Multi processor solutions

	Task level parallel or pipelined architectures
	Combinations of these design approaches are also possible. Before selecting design methodology an...

	3.2 Design alternatives
	Today, there are a number of different hardware platforms available for use as PNI. In order to i...
	3.2.1 Inter- or intra-layer processing
	Intralayer processing means that each protocol layer is processed separately according to figure ...
	Intralayer processing gives a processing overhead since a lot of intermediate results and data tr...
	Figure 3.1: Interlayer (to the right) processing means that all or parts of several protocol laye...
	The main advantage with interlayer processing is the reduced amount of data transportation and pr...
	To distribute the processing according to processing requirements and type in an interlayered way...

	3.2.2 Type of control
	The hardware components in a network interface can have different kinds of control. The three mai...
	• Fixed function. E.g. ASIC with no flexibility.
	• Configurable. The function of the data path can be changed but it can not be changed every cloc...
	• Programmable. The function of the data path can be changed in every clock cycle.

	In a PNI the need for configurability and programmability can be reduced by the use of many diffe...

	3.2.3 Application coverage
	The ability to run a certain set of network applications on the host using the interface in certa...
	The basic requirement for a large application coverage is that the bandwidth is sufficient for pr...
	The second requirement for a PNI to have a large application coverage is that it is flexible enou...

	3.2.4 Offloading coverage
	The solutions available today from the academic research community and the industry are extremely...
	Figure 3.2: Host offloading strategies
	Depending on application, throughput requirements, power awareness and customer cost sensitivity ...

	3.2.5 Chip or board integration
	Processors and memories in a PNI ASIC chip are integrated in the same silicon chip, which means a...
	An ASIC can have multiple processors integrated into the chip to handle heavy workloads. This mea...
	One particularly noteworthy example of parallel processing in a network processor ASIC is the imp...
	Beyond accessing memory in silicon, ASICs also facilitate the use of advanced memory technologies...

	3.2.6 Configurable logic
	To implement parts or the whole of a PNI in a Field Programmable Gate Array (FPGA) would give a v...

	3.3 Performance measures
	A number of different performance figures must be compared in order to evaluate and compare diffe...
	3.3.1 Flexibility
	A PNI must provide flexibility and adaptability to the changing environment it might operate in. ...
	• Reconfigurable media adaptation. In order for a PNI to be used in different networks and surviv...
	• Programmable connection policy. A PNI must support on-line change and control of the traffic flow.
	• Programmable host interface. The interface between the PNI and the host system must be operatin...
	• Data controlled datapath selection. The datapath must be configurable or selectable depending o...

	Providing the flexibility bulleted above gives a large protocol coverage but it increases the com...

	3.3.2 Throughput
	The need for bandwidth is ever increasing and is not going to disappear. Further it is a fact tha...

	3.3.3 Inter operability
	The main purpose of a PNI is to offload and relax the host processor as much as possible. Hence, ...

	3.3.4 Cost
	The cost of the PNI chip or board is very important performance figure. The cost is important for...
	In order to make the package cheap, the area, power dissipation, and number of pins must be minim...
	The number of chips that can be manufactured is strongly connected to the flexibility of the desi...

	3.4 Application Specific Accelerators
	In order to improve the performance of PNIs used either in network nodes or terminals, dedicated ...
	• Two- or one-dimensional classification engines. Could be CAM, TCAM or RAM based.
	• Storage Area Networks (SAN) Engines. Used in file servers.
	• PHY and MAC layer ASICs
	• Segmentation and reassembly (SAR) engines.
	• Crypto engines
	• Hardware timer assisting engines

	Reference
	[3.1] Crowley, Patrick, et al, “Network Processor Design”, first edition, Morgan Kaufman Publishe...
	[3.2] Mattias Gries, “Algorithm-Architecture Trade-offs in Network Processor Design”, Ph.D. thesi...

	4
	Programmable Network Interfaces - A Survey
	4.1 Naming convention
	Depending on application coverage and marketing reasons, platforms dedicated for processing of pa...
	• Network Processors (NP)
	• TCP Offload Engines (TOE)
	• Protocol Processors (PP)
	• Programmable Network Interfaces (PNI)
	• Network Interface Cards (NIC)
	• Packet processors (PaP)

	The two most general names are NP and PNI. The other ones are normally regarded as subsets of the...

	4.2 Commercial architectures
	4.2.1 Motorola C-Port C-5e Network Processor
	The C-5e NP is a part of Motorolas C-Port family. It supports the use of 16 line interfaces, each...
	Further the C-5e NP includes an eXecutive Processor (XP) for control plane operations. C-5e NP al...
	• A Table lookup unit (TLU) classifies incoming packets based on information in a external SRAM m...
	• Buffer management unit that controls the payload data storage while the header is being processed.
	• Queue management unit that is shared between all the processors to provide QoS.
	• Fabric processor provides a high-speed network interface.

	The SDP in the CP is responsible for the bit- and byte-wise processing and can be considered as t...
	Several CP can be concatenated using the very high bandwidth interface bus (35 Gbps) for pipeline...

	4.2.2 iSNAP
	The IP Storage Network Access Processor from Silverback [4.1] terminates and process IP-based sto...

	4.2.3 IBM PowerNP
	First of all the PowerNP consists of a number of interfaces to memories (control and data) and ne...

	4.2.4 Trebia SNP
	This architecture [4.2] includes MAC block for mixed medias (wired and fibre-based), a security a...
	Figure 4.1: Trebia SNP architecture.

	4.2.5 iReady EthernetMAX
	The Media Access Xccelerator [4.4] from iReady is intended for transport offload [4.3]. It fully ...

	4.2.6 Alacritech Internet PP
	Alacritech [4.5] provides a Session Layer Interface Card (SLIC) [4.7] that includes accelerators ...
	• TCP Connections and breakdowns (SYN segments)
	• Fragmented segments
	• Retransmission timeout
	• Out of order segments
	• Finish segments (FIN)

	Despite this down-sized functional coverage in the accelerators, Alacritech claims that 99.9 perc...

	4.2.7 LayerN UltraLock
	The UltraLock [4.9] illustrated by figure 4.2 uses a patented architecture named SIGNET [4.8]. Th...
	Figure 4.2: The UltraLock provides acceleration for SSL connections. Ordinary http packets are pa...
	In the TCP/IP processor the tasks are distributed among several different dedicated functional bl...

	4.2.8 Seaway Streamwise NCP
	Seaway Networks [4.10] offers a streamwise Network Content Processor (NCP) capable of multi-gigab...

	4.2.9 Emulex LightPulse Fibre HBA
	The host bus adapter (HBA) from Emulex [4.11] includes an ASIC controller, a RISC core and a SAN ...

	4.2.10 Intel IXA/IXC/IXS/IOP processors
	Intel offers a number of chips to solve different tasks when it comes to what they call Network I...
	• CRC unit for 16 and 32 bit computations.
	• Pseudo Random Number generator (used for QoS in congestion algorithms).
	• Hardware timers.
	• Multiplier
	• 16-entry CAM used for cache search and assists software pipelining.

	TCAM can be connected as an external accelerator working in parallel with the IXP2400.
	The IXA type chips is mainly intended for packet processing for switching, protocol conversion, Q...

	4.2.11 LeWiz Content processor
	LeWiz processor [4.12] process layer 3-7 with hardware acceleration with a line rate capability o...
	Figure 4.3: LeWiz content processor. The Packet pre-processor is a TOE. The Protocol parser exami...

	4.2.12 Qlogic SANblade
	The SANblade [4.14] manage 2 Gbit/s line rate using GE or fibre channel medias while performing i...

	4.2.13 Agere Systems - PayloadPlus
	PayloadPlus provides a complete solution for OC-48c (2.5 Gbps) networks. The board solution inclu...
	The FPP is programmed with a dedicated protocol processing language (FPL). The FPP does not conta...
	Figure 4.4: FPP architecture.
	The Pattern Processing Engine (PPE) matches fields in the data stream based on the program stored...
	The RSP handles the traffic management and flow modifications in a programmable way.
	The ASI is a PCI like standardbus. The main applications is layer 2-3 routing and switching. The ...
	The ASI, the RSP and the FPP is connected to the same 8 bit configuration bus. The configuration ...

	4.2.14 Cisco - Toaster2
	Toaster2 is a multiprocessor ASIC solution. The chip includes 16 uniform processors each includin...
	Figure 4.5: The Toaster2 architecture. IHB/OHB are uni-directional bus interfaces that are 64 bit...
	The TMC is essentially a SIMD architecture that uses a 64 bit instruction to operate on multiple ...

	4.2.15 PMC-Sierra ClassiPI
	The ClassiPI is not really a network processor. Instead it is a classification device that can as...

	4.3 Academic architectures
	4.3.1 EU Protocol Processor Project PRO3
	The architecture proposed by PRO3 [4.15] consists of 5 parts. Most interesting is the Reconfigura...
	Figure 4.6: The PRO3 architecture.

	4.3.2 UCLA Packet decoder
	This decoder [4.17], decodes packets on layer 2-4. The decoder architecture illustrated in figure...
	Figure 4.7: Simplified view of the UCLA processor architecture proposal showing how to accelerate...

	4.3.3 TACO processor from Turku University
	Based on a Transport Triggered Architecture (TTA). The TTA architecture only uses one instruction...

	4.3.4 PICO project from Berkeley
	The PICO project is a focused on low power terminal processing for wireless networks. Examples on...

	4.4 Conclusions from survey
	A number of different PNI solutions is included in the survey. They all are focused on different ...

	References
	[4.1] Silverback Systems homepage, on the www, http://wwwsilverbacksystems.com
	[4.2] Trebia Networks homepage, on the www, http://www.trebia.com
	[4.3] National Semiconductors, “Enabling Next Generation Ethernet”, on the www, http://www.trebia...
	[4.4] Minami, et al, “Multiple network protocol encoder/decoder and data processor”, US patent, n...
	[4.5] Alacritech Inc. homepage, on the www, http://www.alacritech.com
	[4.6] Boucher, et al, “TCP/IP offload network interface device”, US patent, no. 6 434 620
	[4.7] Boucher, et al, “Intelligent network interface system method for protocol processing”, US p...
	[4.8] LayerN Networks, “SIGNET - Secure In-line Networking”, on the www, http:// www.layern.com/S...
	[4.9] Omura, et al, “The Evolution of Modern Digital Security Techniques”, on the www, http://www...
	[4.10] Seaway Networks homepage, on the www, http://www.seawaynetworks.com
	[4.11] Emulex homepage, on the www, http://www.emulex.com
	[4.12] LeWiz Communication,Inc. homepage, on the www, http://www.lewiz.com
	[4.13] Intel Corp., “Network Infrastructure Processors - Extending Intelligence in the Network”, ...
	[4.14] QLogic Corp. homepage, on the www, http://www.qlogic.com
	[4.15] G. Konstantoulakis, V. Nellas, C. Georgopoulos, T. Orphanoudakis, N. Zervos, M. Steck, D. ...
	[4.16] C. Georgopoulos et al, “A Protocol Processing Architecture Backing TCP/IP- based Security ...
	[4.17] M. Attia, I. Verbauwhede, “Programmable Gigabit Ethernet Packet Processor Design Methodolo...
	[4.18] Virtanen, Seppo A., et al, “A Processor Architecture for the TACO Protocol Processor Devel...
	[4.19] T. Tuan, S.-F- Li, J. Rabaey, “Reconfigurable Platform Design for Wireless Protocol Proces...

	5
	Proposed Architecture
	5.1 Introduction
	This chapter describes a hardware architecture proposal which is a result of my research during 1...
	My and my colleagues have investigated and implemented different parts of the architecture to fin...
	This chapter will give an overview of the architecture. It also includes a performance discussion...
	5.1.1 Naming convention
	During the progress of the research work, our architecture has changed name several times. The re...
	In the papers included in the following 3 chapters, the PP fast path has been characterized as De...

	5.1.2 System perspective
	Figure 5.1: The PPP together with a general purpose micro controller (mC) handles the communicati...
	As mentioned earlier the proposed PNI architecture is called protocol processor and it consists o...

	5.2 Processing tasks
	5.2.1 Protocol suite overview
	To test our architecture we have used a common set of protocols. The protocols are useful for inv...
	• Fast Ethernet with PHY interface MII
	• Gigabit Ethernet with PHY interface GMII
	• 10 Gigabit Ethernet with PHY interface XGMII
	• IP version 4 and version 6
	• Address Resolution Protocol (ARP)
	• Reversed Address Resolution Protocol (RARP)
	• Internet Control Message Protocol (ICMP)
	• Internet Group Management Protocol (IGMP)
	• TCP
	• UDP

	Figure 5.2: The data demultiplexing of a received Ethernet frame.
	The selected protocols are very commonly used today and there is no reason to believe that they w...

	Figure 5.3: One Ethernet frame encapsulate the IP packets. Each layer includes a header and data.
	Each header includes a number of header fields which have to be extracted and processed according...
	In order to process all the headers and providing the services stipulated by the protocol standar...

	5.2.2 Ethernet
	• Calculate CRC
	Cyclic Redundancy Check is a error detecting code that is used to detect transmission errors. The...
	• Check Ethernet Destination Address (Eth DA)

	To be sure that the received frame is intended for the terminal, it must check that the destinati...
	• Check the type field

	The type field describes what sort of layer 3 packets is encapsulated in the frame. The valid opt...
	• Extract length field

	The length field must be extracted to know how long the packet is. It is especially important to ...
	• Demultiplex data

	When the terminal has identified the layer 3 protocol used (ARP, RARP or IP) it can send the Ethe...

	5.2.3 Address Resolution Protocol (ARP)
	• Extract and check the ARP code
	The ARP protocol is used to query the network for a MAC address when we have a IP address but do ...
	• Update ARP table

	We should update our table describing which MAC addresses belongs to which IP addresses.
	• Send reply

	If needed a reply packet should be triggered.

	5.2.4 Reversed ARP (RARP)
	RARP is typically used during a booting procedure. We know our MAC address from the NIC but do no...

	5.2.5 Internet Protocol (IP)
	• Check the version
	The version field tells if it is IP version 4 or 6 that has been used. The main difference is tha...
	• Calculate header checksum

	The IP checksum is a 16 bit wide 1-complement addition of the header. The data is not included in...
	• Extract and check IP Destination Address (IP DA)

	The IP DA is unique for a terminal, no other terminal share the same address. Each network termin...
	• Extract the IP Source Address (IP SA)

	The IP SA is used for checking if we should accept a packet or not. This procedure will be descri...
	• Reassembly fragments

	An IP packet might be to big for some parts of the network. In that case, the servers will divide...
	• Handle time-outs

	If a fragment gets lost, a request for a retransmission must be sent after a certain time period.
	• Check protocol field and demultiplex data

	The protocol field shows the transport layer protocol used. The valid values in my protocol set-u...
	• Check lengths

	There is two types of lengths involved in IP processing. One describes the header length which is...
	• Process options

	There are a number of different fields remaining that has to be processed. Among them are IP v6 e...

	5.2.6 ICMP and IGMP
	ICMP normally communicates error messages and exceptions, or conditions that require attention. I...
	• Compute header checksum

	Same procedure as for IP checksum calculation.
	• Check ICMP version and type field

	The version field is normally 1. If the type is 1, the packet is a query, and if it is 2 it is a ...
	• Check IGMP type and code field

	This header information describes the type of request or reply. The parameter field should be pro...
	• Send ICMP payload to application

	Some control messages should be passed on to the application for further processing.

	5.2.7 TCP
	• Extract Ports and check connection
	The Source Port (SP) and Destination Port (DP) together with the IP SA, IP DA and transport layer...
	• Check Sequence number and reorder data

	The sequence number describes where in the data buffer the current payload should be placed.
	• Extract acknowledgment field and trigger a reply payload
	• Check and process options and flags

	Including the finish flag.
	• Update connection state variables and timers

	This is the complex traffic flow management, controlling all traffic.

	5.2.8 UDP
	The main difference between UDP and TCP is that UDP is connection less.
	• Extract Ports and check connections

	Similar to the TCP task. I call it a connection although we only check if the port is open.
	• Extract length field

	To know when the hole payload has been received.
	• Calculate header checksum

	5.3 Proposed datapath
	A datapath of the PPP has been developed and optimized based on the processing tasks introduced i...
	Figure 5.4: Overview of the PPP architecture.
	5.3.1 Input buffer
	When data arrives from the network interface (GMII) to the PPP it streams through a chain of 32 b...
	Figure 5.5: The input flip-flop chain. The chain of flip-flops enables access to the data stream ...
	The purpose of using a flip-flop chain instead of a normal RAM based buffer, is that we want to k...

	5.3.2 Functional pages
	The functional pages are all dedicated hardware blocks with a limited configurability. Since they...
	Figure 5.6: Funtional page interface.The FP are controlled by flags produced in the C&C. The prim...
	The output from a functional page normally consists of flags. Some functional pages also produce ...
	• Extract and compare (XAC) FP
	• CRC FP
	• MII parallelization FP
	• Checksum FP
	• Length counter FP

	The CRC FP is very important for the overall performance of the PPP. This FP has been implemented...
	The XAC FPs are used for extraction of header information that will be used by other parts of the...

	Figure 5.7: One out of four byte comparing slices in the XAC FP.
	The MII parallelization FP is only included if the PP is going to be used with the MII as interfa...
	The Checksum FP essentially consists of a pair of 1-complement adders and is a simplified version...
	The Length counter FP is responsible for counting the lengths of a packet to find out when all fr...

	Figure 5.8: Checksum FP.
	All of the FP can perform high throughput processing due to their relatively dedicated architectu...
	In my research group a parallel project have found a different set of FP. The main difference bet...
	Apart from the FPs mentioned above we can also consider other types of FPs if the protocol covera...

	5.3.3 CMAA
	In paper 3 in chapter 8 an acceleration engine included in the PPP is discussed. The Control Memo...

	5.3.4 Processing tasks allocation
	The different processing tasks described in section 5.2, are allocated to different processing un...
	Table 3: Allocation of processing tasks listed in section 5.2.

	5.4 Interfaces
	The PP consists of two parts, the PPP and the mC. The interfaces between them and towards the sur...
	5.4.1 Network interface
	The interface between the network and the protocol processor consists of a PHY ASIC. Normally we ...

	5.4.2 Micro controller interface
	The interface between the PPP and the micro controller consists of 2 data busses, the shared cont...

	5.4.3 Host system interface
	The interface between the host processor, including application, memory, DMA, and others remains ...

	5.5 Control path
	5.5.1 Counter and controller
	The C&C is responsible for starting and stopping FP processing, based on the program and the resu...
	Figure 5.9: The control FSM controlling the PPP during packet reception will be implemented in th...

	5.5.2 Hardware timer
	Managing and updating the timers can become a large part of the processing of the TCP and IP prot...

	5.6 Configuration
	The proposed architecture supports three levels of configuration.
	• Design time selection

	First of all it is possible to select and configure a number of FPs during the design phase, befo...
	• Data path configuration

	Secondly the micro controller can configure the FPs using a relatively small number of clock cycl...
	• Programmable data path selection

	The data path can be controlled and selected in a programmable way using the C&C.
	All together the three levels of configuration possibilities gives the architectures a very high ...

	5.7 Performance
	Using the performance parameters introduced in chapter 3 we can discussed the performance of the ...
	• Flexibility

	The architecture is programmable with a configurable data path. It is capable of processing up to...
	• Throughput

	Using dedicated hardware blocks enables a very high performance. My simulations indicates that th...
	• Inter-operability

	The general purpose micro controller can be programmed to interact with the host operating system...
	• Cost

	CMAA cost depends on the number of entries that will be used. The power must be considered low si...

	References
	[5.1] PERSSON, N.: ‘Specification and Implementation of a Functional Page for Internet Checksum C...
	[5.2] Tomas Henriksson, “Hardware Architecture for Protocol Processing”, Licentiate Degree Thesis...
	[5.3] Tomas Henriksson, Henrik Eriksson, Ulf Nordqvist, Per Larsson-Edefors, and Dake Liu, “VLSI ...

	6
	Paper 1:
	A novel configuration based general-purpose protocol processor is proposed. It can perform much f...

	6.1 Background
	Networking has been developing very fast and more and more protocols are emerging for different a...
	• Multiple ports and multiple Gigabits per second real-time framing and de-framing.
	• To pre-process as much protocol jobs as possible before a memory access.
	• A general, simple, fast, and flexible architecture for different kinds of protocols.
	• A built in protocol recognition and automatic configuration capability.
	• Low power, high speed, and memory (size and access) efficient architecture.

	Two kinds of protocol processors are available on the market nowadays, one is the specific single...
	Most solutions available now use a specific circuit to process the protocol flow, and use a GPCPU...
	We need to recognize the protocol of the incoming package and then configure the processor to fit...

	6.2 Functional coverage of DPSP
	The system proposed is a new architecture for control-extensive processes, e.g. protocol processi...
	We can solve all problems mentioned above by introducing the Deep pipeline serial processor DPSP....
	• Framing and de-framing are performed in a separate core; it acts as a platform or an accelerato...
	• Separated the DPSP as a stand-alone machine working at high speed with a standard implementation.
	• All functional blocks inside the DPSP are self-contained and configured, therefore the adaptati...
	• The protocol can be recognized by this solution and a correct configuration can be booted to th...

	The architecture performs protocol processing based on both pre-configured setting and a real tim...

	6.3 Application overview
	The goal is to make a platform for all possible network applications. Part of the possible applic...
	• Fast framing, de-framing for the Internet switching: G-bits Ethernet source, and destination ad...
	• Predict the memory allocation: relax memory traffic, payload reordering, etc.
	• Fast queue and priority check for the real time network applications.
	• For certain applications the products recognize the protocol of the coming data, and boot the p...
	• The user can boot different protocols for different applications.
	• For fast prototyping or SoC integration.

	6.4 Architecture
	We introduce a new architecture that can work towards the physical limits of CMOS [3]. It can be ...
	The proposed architecture executes the protocol process based on both programs and pre-set config...
	The proposed architecture is configured for a specific protocol before the protocol process. The ...
	For implementation convenience, data coming into every functional page is pipelined. Functional p...
	Figure 6.1: The system block diagram.
	The System block diagram is given in figure 6.1. The left part is DPSP and the right part is the ...
	Matching: It sets up the synchronization by recognizing the preamble.
	Error checking: Check errors according to the coding of the protocol.
	The field extraction: It extracts fields and accelerates processes further.
	Level hierarchy transparent process: The HW can make levels of network hierarchies transparent. T...
	Payload management: To measure the length of the payload and to validate the correctness of the d...
	Other QoS options: According to the applications, QoS can be supported.
	Application interfacing: Before data allocation, check the application, find the possibility to s...
	Fast acknowledgement: The acknowledgement can be compiled in an easy and fast way according to ex...
	Fast ACK as an important function is performed on the fly in DPSP. Necessary messages such as DA ...

	Figure 6.2: Dataflow of the DPSP.
	The data flow is given in figure 6.2. The data coming from the physical level has been converted ...

	6.4.1 Functional Pages
	Figure 6.3: FP structure
	Simple FP implementation can be done by custom design. Complicated FP will be implemented using s...
	The active period of a FP is decided by its function. Most FP’s are only active part of the time....

	6.4.2 Counter and Controller
	The counter and controller is a counter based state machine (FSM) adapted by configurations. A co...
	There are two levels of controls performed in the ”counter and controller”. The upper level contr...
	Figure 6.4: Counter and Controller
	The control is scheduled in the following way:
	• Start a FP
	• Let the FP run itself
	• Monitoring flags coming from all active FP’s.
	• Make new control decision according to flags.
	• Monitor the control interface between the micro controller and the DPSP.
	• Change the control procedure if the micro controller gives a new request.
	• Inform the micro controller to that the data is available.
	• Responde to the micro controller to accept data.
	• Send the accepted data to a FP responsible for the acknowlegement.

	6.5 Conclusion
	We have described a configuration based DPSP architecture as a platform for network applications....

	6.6 Acknowledgments
	Authors would thank to the useful discussions with Dr. Kenny Ranerup Switchcore, Sweden. The rese...

	REFERENCES
	[6.1] Andrew S. Tanenbaum, Computer Networks, 3rd Edition, Printice Hall PRT, ISBN 0-13-349945-6,...
	[6.2] Jayant Kadambi et al, Gigabit Ethernet, Printice Hall PRT, ISBN 0-13-913286-4, 1998.
	[6.3] Anders Edman, and Björn Rudberg, SDH 10Gb/s regenerator frame in 0.6m CMOS, 97 IEEE ISSCC, ...
	[6.4] Axel Jantsch, Johnny Öberg, and Almed Hemani, Is there a Niche for a general protocol proce...

	7
	Paper 2:
	In the Proceedings of NORCHIP 2000
	In order to provide error detection in communication networks a method called Cyclic Redundancy C...
	A comparative study of different implementation strategies for computation of Cyclic Redundancy C...

	7.1 Introduction
	Both computer and human communication networks, uses protocols with ever increasing demands on sp...
	Traditionally NT has been implemented as ASIC:s for the lower layers in the OSI-Reference Model [...
	The speed requirement is very important since a protocol processor must buffer incoming data if j...
	The aim of this paper is to compare different implementations of CRC computational units in order...
	7.1.1 The CRC algorithm
	Cyclic Redundancy Check is a way of providing error control coding in order to protect data by in...
	• All single bit error
	• All double bit errors
	• All odd number of errors
	• Any burst error for which the burst length is less than the polynomial length
	• Most large burst errors

	The CRC encoding procedure can be described by equation 1.
	V(x) is the n bit long data word transmitted and it consists of the original data and U(x) follow...
	S(x) is by other words the reminder resulting from a division of the data stream and a generator ...
	The actual coding-procedure is the same on both the receiving and transmitting end of the line. T...
	Figure 7.1: Principle of error detection using the CRC algorithm.
	As can be seen in figure 1 the receiving NT perform a CRC-check on the incoming message and if th...

	7.2 Implementation theory
	This section introduces the commonly used and presents one new architecture for implementation of...
	• Software(SW) Solution [7.3, [7.1: The CRC algorithm can always be implemented as an software al...
	• Traditional Hardware Solution: Linear Shift Register (LSR) with serial data feed [7.20 has been...

	Figure 7.2: Linear Shift Serial Data Feed
	• Parallel Solution: In order to improve the computational speed in CRC generating hardware, para...

	Figure 7.3: Parallel Fixed Logic Implementation
	Configurable Hardware: One way of implementing configurable hardware is by using Look-Up-Tables (...

	Figure 7.4: Look Up Table based configurable hardware.
	This implementation can be modified by using a larger or smaller LUT. If the size of the LUT is r...
	Another, novel implementation method is the Radix-16 Configurable CRC Unit, which is presented fo...

	Figure 7.5: Configuration by use of switches in the circuit reconnecting wire.
	In order to improve the speed of the Radix-16 Configurable CRC, a 4 - bit wide input data stream ...

	Figure 7.6: Radix-16 Configurable CRC engine
	The polynomial input makes it possible to implement any given CRC algorithm of a given size. Usin...

	7.3 Experimental results
	10 different implementations of the CRC algorithm, including one CPU RISC based SW-implementation...
	Since most network protocols are bytebased, there is no meaning in investigating a parallelism of...
	As seen in table 1 the fixed logic and parallel input implementation is the fastest. That is in t...
	Conflict with other processes makes interlayer processing difficult, not to say impossible when u...
	Table 4: Comparison between different CRC implementations. The Pads are not included in the area ...

	7.4 Conclusions
	Because of the superior performance of a parallel ASIC implementation, it will be used for implem...
	Software solutions for low speed protocols will also be used for low- speed applications, but a i...
	A novel architecture for this application area has also been presented, which has a superior powe...

	REFERENCES
	[7.1] A. Perez, “Byte-wise CRC Calculations”, IEEE Micro, Vol. 3, No. 3, June 1983, pp. 40-50
	[7.2] G. Albertango and R. Sisto, “Parallel CRC Generation”, IEEE Micro, Vol. 10, No. 5, October ...
	[7.3] T. V. Ramabadran and S. S. Gaitonde, “A Tutorial on CRC Computations”, IEEE Micro, Vol.8, N...
	[7.4] T. B. Pei and C. Zukowski, “High-speed parallel CRC circuits in VLSI”, IEEE Transaction Com...
	[7.5] R. F. Hobson and K. L, Cheung, “A High-Performance CMOS 32-Bit Parallel CRC Engine”, IEEE J...
	[7.6] D. Liu, U. Nordqvist, and C. Svensson, “Configuration-Based Architecture for High-Speed and...
	[7.7] T. Henrikson, U. Nordqvist, and D. Liu, “Specification of a Configurable General-Purpose Pr...
	[7.8] C. J. Georgiou and C.-S. Li, “Scalable Protocol Engine for High-Bandwidth Communications”, ...
	[7.9] R. Nair, G. Ryan, and F. Farzaneh, “A Symbol Based Algorithm for Implementation of Cyclic R...
	[7.10] J. Kadambi et al, “Gigabit Ethernet”, Prentice Hall PRT, ISBN 0-13-913286-4, 1998
	[7.11] G. Castagnoli, S. Brauer, and M. Herrmann, “Optimization of cyclic redundancy- check codes...
	[7.12] R. J. Glaise, X. Jacquart, “Fast CRC calculation”, 1993 IEEE International Conference on C...
	[7.13] A. P. Chandrakasan, R. W. Brodersen, “Minimizing power consumption in digital CMOS circuit...
	[7.14] M. Yang, A. Tantawy, “A design methodology for protocol processors”, Proceedings of the Fi...
	[7.15] “Technical Specification of BRAN and Hiperlan-2. Common part.”, ETSI TS 101 493 - 1, V1.1....
	[7.16] “Technical Specification of BRAN and Hiperlan-2. Ethernet Service Specific Convergence Sub...
	[7.17] A. S. Tannenbaum, “Computer Networks”, 3nd Edition, Prentice Hall PRT, ISBN 0-13-349945-6,...
	[7.18] “Building Next Generation Network Processors”, White paper, Sep 1999, Agere Inc., http://w...
	[7.19] D. Husak, “Network Processors: A Definition and Comparison”, White paper, C- PORT, http://...
	[7.20] W. W. Peterson and D. T. Brown “Cyclic Codes for Error Detection”, Proc. IRE, Jan 1961, pp...

	8
	Paper 3:
	Abstract
	This paper introduces a novel architecture for acceleration of control memory access in a protoco...

	8.1 Introduction
	Both computer and human communication networks use protocols with ever increasing demands on spee...
	In order to let the end-users take advantage of the bandwidth enhancement in todays networks, tom...
	To meet these new requirement a new area of communication handling hardware platforms has emerged...

	8.2 Programmable protocol processor
	The main task of the protocol processor is to process the packets transferred between the applica...
	Figure 8.1: Using inter-layer processing the power consumption and required memory usage in the p...
	Figure 8.2: The PPP together with a general purpose micro controller handles the communication of...
	In order to deal with the fact that the nature of the different processing task in a protocol pro...
	The micro controller is very suitable for implementation of the various finite state machines (FS...

	Figure 8.3: Offloading the host using various types of accelerators for different types of proces...
	The proposed platform, including a PPP together with the mC, is essentially a TCP offloading engi...
	As illustrated by figure�8.4 the PPP hardware architecture for protocol processing consists of fo...
	The control of the various accelerators (FP) in the PPP, mainly consists of start and stop flags....

	Figure 8.4: The programmable packet processor consists of 4 parts: The Counter and Controller (C&...
	Since the processor operates on streaming data, instead of stored data in memory, decisions on wh...

	8.2.1 Functional pages
	The FPs must operate at wire speed. FPs are configured from the micro controller during set up fo...
	• 1 CRC FP described in [15]
	• 2 eXtract And Compare (XAC) FP responsible for checking address numbers and port numbers agains...
	• 2 length counting adders.
	• 2 checksum calculation adders
	• 1 generic adder

	Other possible processing tasks suitable for acceleration in a FP is various types of decoding an...
	As mentioned earlier, the FPs are self-contained dedicated ASICs. After configuration the control...

	8.3 Control Memory Access Accelerator
	As mentioned earlier the micro controller is responsible for the communication control or signali...
	8.3.1 Header data
	The purpose of storing control information is to ensure that connection oriented protocols (e.g. ...
	• Protocol type
	• Length (received so far)
	• Total length (transmitted in the last IP packet)

	The length field(s) is provided to the length counter adder in the PPP which updates the number a...
	• Accumulated checksum results

	The checksum results is provided to one of the checksum calculating adders which adds it to the r...
	• IP Source and Destination Address.

	The source address is extracted from the data-stream by the PPP. The adress value is then used to...
	• TCP Source and Destination Ports

	The type, ports and addresses identifies a specific connection. To see if a incoming packet shoul...
	• Identification number

	The IP identification number is used to find the correct memory buffer in the control memory.
	• Pointers to the memory position of proceeding and succeeding packets/ segments.

	In order to provide all of the services stipulated by the TCP standard, more connection related i...

	8.3.2 Accelerator interface
	The CMAA interface to the rest of the PPP and the micro controller is illustrated by figure�8.5 .
	Figure 8.5: Accelerator interface.
	Basically the input to the CMAA consists of flags and an instruction generated in the C&C. In tab...
	Table 5: Lightweight instruction set

	As output the CMAA generates a number of flags. The two data buses are being used for data transp...

	8.3.3 Data path
	Figure 8.6: CMAA architecture. An accelerating hardware architecture for control memory access in...
	An overview of the CMAA architecture is illustrated in figure�8.6 . The CMAA data path includes t...
	As the other accelerating devices in our protocol processor, e.g. FPs, the CMAA remains in idle m...
	In this paper we leave the final CAM design and implementation to be further investigated and opt...
	A layout of the CMAA excluding the two LUE and the buses has been produced. The number of standar...

	8.3.4 Control procedure
	Figure 8.7: Control handling procedure within the CMAA.
	The normal packet reception procedure of operation in the CMAA, is illustrated by figure�8.7 . Th...
	If a new packet arriving is fragmented, the PPP provides CMAA with the IP Identification number a...
	After the PPP has received the packet-ready flag, it continues to process the packet and updates ...
	After successful packet processing, the PPP releases the packet to the CMAA. Next clock cycle, th...

	8.3.5 Control memory organization
	Figure 8.8: Memory organization in the control memory.
	The control memory is organized according to figure�8.8 . As illustrated the control memory consi...

	8.3.6 Look-up Engine architectures
	Figure 8.9: Secondary Look-Up Engine (SLUE) architecture. Note that the conversion logic that con...
	The SLUE consists of 6 CAMs as illustrated by figure�8.9 . The outputs generated by the CAMs are ...

	Figure 8.10: Simplified TCAM principle.
	The 7 different CAMs we propose to be used in the CMAA architecture will have an huge impact on t...
	In order to provide flexibility for different protocols we use a concept we call Simplified TCAM ...

	Figure 8.11: The two different STCAM in the SLUE each consists of three ordinary CAMs and some ma...
	The mask input enables a wildcard functionality for different fields when recognizing an incoming...
	Table 6: Configurations using masking for different packet types and applications.

	It can always be discussed how much the IP version 6 (IP v6) protocol that will be used in the fu...

	8.3.7 CAM implementation issues
	The total size of the 7 CAMs and there result memories will be a major part of the system chip ar...
	As an example M=16, N=64 and W=20 can be considered. The chip-area for the two LUE would then be ...
	In order to examine our architectural performance, it is crucial to know how many clock cycles ea...
	The number of clock cycles required for a search operation in the SLUE is equal to the critical p...
	Even with a pessimistic feature size projection (Moores law), there is no reason to believe that ...
	The latency, critical path, power consumption in the LUE is of course depending on M, N and W. To...

	8.3.8 Latency
	The proposed architecture for access of the control memory, reduce the control memory access late...
	The PPP can start the processing of an incoming packet before the control data has been accessed ...
	Table 7: Examples on memory access latency for various packets received. (PLUE requires 2 clock c...

	8.3.9 Enabling flow based QoS
	Using the fast control memory access, it is possible to enable quality of service (QoS) to the re...

	8.3.10 Shared control memory
	The motivation for separating the protocol processing into one PPP-part and one mC-part is of cou...

	8.4 Conclusions
	A novel architecture for acceleration of control memory access in a protocol processor for networ...

	8.5 Further work
	In order to complete the specification of the protocol processor three main research areas remain...

	8.6 Acknowledgments
	This research was funded by ECSEL graduate research school and TFF the Swedish Scientific Researc...

	References

