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Abstract
The bandwidth and number of users in computer networks are rap

growing today. The need for added functionality in the network node
also increasing. The requirements on the processing devices get h
and harder to meet using traditional hardware architectures. Hence,
of effort is currently focused on finding new improved hardware archit
tures.

In the emerging research area of programmable network interfaces,
exist many hardware platform proposals. Most of them aim for rou
applications but not so many for terminals. This thesis explores a num
of different router design alternatives and architectural concepts. The
cepts have been examined to see which apply also to terminal design

A novel terminal platform solution is proposed in this thesis. The pl
form is accelerated using a programmable protocol processor. The pro
sor uses a number of different dedicated hardware blocks, that opera
parallel, to accelerate the platform. The hardware blocks have b
selected and specified to fulfill the requirements set by a number of c
mon network protocols. To do this, the protocol processing procedure
been investigated and divided into processing tasks. The different t
have been explored to see which are suitable for hardware acceler
and which should be processed in other parts of the platform.

The dedicated datapath, simplified control, and minimal usage of
buffers makes the proposed processor attractive from a power perspe
Further it accelerates the platform so that high speed operation is ena
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1Introduction

1.1 Background and motivation
In the semiconductor industry it is a well known fact that the device p

duction scales according to Moores law illustrated by the table below.
scaling factor S has been 0.7 since 1974 which means that the feature
becomes half as big every second year. Further we can see that the
frequency scales almost with S and that the number of transistors /

will scale as S2. Historically the design community has been able to ta
advantage of this development to improve the processing bandw
according to Moore’s law by using improved design methodologies
architectures. As shown in the roadmap there will however be difficul
fill the chips with useful content in the future. To deal with this proble
normally re-use methodologies are addressed as the key issues for su
Together with the cost issue this means that future platforms must pro
flexibility enough to survive over several product generations. To make
situation even worse, today a new problem has emerged when it com
communication processing. Historically, I/O data rates increased at app
imately the rate of Moore’s law, which allowed servers to maintain I/O p
cessing performance from one product generation to the next.
1
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Networking technologies, however, have historically increased data r
in 10 times increments according to the Fibre Channel Industry Asso
tion [1.2]. Gigabit Ethernet (GE) today and 10 Gigabit Ethernet (10 Gig
tomorrow together with high-speed back-bone networks, provides the
work bandwidth overhead to accommodate the rapid growth in organ
tions today. Further more and more services are requested to be provid
the network. This makes the processing more complex and increases
bility demands. It becomes harder and harder to improve the devices so
they provide the speed and functionality specified by the network s
dards.Using traditional design methods, we are already experiencing
O processing gap problem illustrated by figure 1.1. The obvious solutio
this problem is to offload the communication processing from the appl
tion processing device and instead use dedicated devices.

Example:

Consider a general purpose RISC machine in a 10 Gbps network. Ass
min-sized packets (64 bytes), no gap between the packets arriving (w
case) and that data arrives 32 bits in parallel. The data arrival then o
takes 51 ns. A traditional 500 MHz RISC machine would then have to m
age all the packet processing using 25 instructions per packet. The alte
tive is to buffer the data and fill the memory. Neither alternative is realis

Table 1: Projections of the ITRS Semiconductor Roadmap

2001 2003 2005 2007 2010 2016

Feature size nm 90 65 45 35 25 13

On-chip clock
GHz

1.68 3.09 5.17 6.74 11.5 28.75

IO Speed
GHz

1.68 3.09 5.17 6.74 11.5 28.75

# signal pins
(ASIC)

1500 1700 2000 2200 2400 3000

total # pins
micro processor

480 -
1200

500 -
1452

550 -
1760

600 -
2140

780 -
2782

1318 -
4702

Functions / chip
Mtransistors

276 439 697 1106 2212 8848
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1.1.1 Research project

This thesis as well as the research project behind tries to attack the p
lem described in the previous section. The Ph.D. student project has
restricted to only deal with packet reception because of the complexit
the problem. The reason for this is that we consider the packet recep
area more challenging and important due to the very hard real time req
ments. Hence, the process of packet creation and sending is not very
described in this thesis. No architectural discussion regarding sending
be included, but all the architectures included in the network processor
vey in chapter 4 does include sending functionality. Interested reader
encouraged to search for sender related information in the reference l
chapter 4.

The contribution of my work described in this thesis, is to explore the f
ther architectural for network processing. The ongoing research, condu
by me and my colleagues, is partly focusing on defining problems, de
mine the requirements on a network hardware platforms, attacking
challenging problems described earlier in this section. Based on req
ments we defined from the reality, a programmable network interface p
form is proposed in this thesis. The project is going on and the architec
is constantly improving.

Network bandwidth

I/O Bandwidth

Time

Gbit/s

1

Today

I/O Processing
gap

Figure 1.1: The I/O processing gap has started to become a problem us
traditional CPU architectures. The reason is that while the I/O bandwid
approximately follows Moores law (1.5-2X) the Network bandwidth ha

10X improvement for each generation.
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1.2 Outline
This thesis consists of two main parts, organized as follows. The first

including this and the 3 following chapters, describes available solut
and applications. Chapter 2 describes the basic concepts of compute
works, including common protocols, applications, processing tasks
equipment. Chapter 2 should be regarded as a introductory tutoria
readers with no or little background in the area of computer networks.

In chapter 3, a number of different hardware design considerations im
tant for the design of programmable network interfaces (PNI) are includ
These design considerations applies to any types of applications, prot
and networks. The chapter also lists a number of ways to classify and c
pare, the type and performance of PNI hardware platforms.

Chapter 4 consists of a survey of available PNI solutions. The survey
ers many different applications and architectures, both from industry
university research groups.

The second part of the thesis contains my research proposals, resul
the three included papers. In chapter 5 a set of protocols is prese
Based on this protocol set, a number of required processing tasks have
determined. The tasks are listed in chapter 5. Finally the chapter includ
proposal of a hardware architecture and methodology, dedicated for h
speed and flexible processing of the required processing tasks. The a
tecture is described in detail and measured using the performance pa
ters introduced in chapter 3.

Finally the last three chapters consist of the three papers included in
thesis.

References 1

[1.1] International Technology Roadmap for Semiconductors, on the internet, h
public.itrs.net/
[1.2] FC Magazine, Fibre Channel Industry Association - Europe, on the internet, h
/data.fibrechannel-europe.com/magazine/
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2Network basics

2.1 Packet based networks
This chapter includes a brief introduction to the concept of packet ba

networks including computer networks. For readers seeking deeper un
standing in this area, I recommend the following books. A good fi
encounter of the area and an excellent starting point for further readin
provided in [2.1]. In [2.2] the most common physical layer protocol, Eth
net and Gigabit Ethernet are explained. TCP/IP is described in dept
[2.3] and [2.4]. Readers with a background knowledge in the area of c
puter networking, may go directly to the next chapter for further readin

2.1.1 ISO/OSI Protocol layers

The standard model for networking protocols and distributed applicat
is the International Standard Organization’s Open System Intercon
(ISO/OSI) model. It defines seven network layers.

Figure 2.1: The 7 layer ISO/OSI reference model

Layer 2: Data Link Layer

Layer 3: Network Layer

Layer 4: Transport Layer

Layer 5: Session Layer

Layer 6: Presentation Layer

Layer 7: Application Layer

Stack on computer 1

Layer 2: Data Link Layer

Layer 3: Network Layer

Layer 4: Transport Layer

Layer 5: Session Layer

Layer 6: Presentation Layer

Layer 7: Application Layer

Stack on computer 2

Layer 1: Physical layer (network

Logical links

Data
Transport

Data
Transport
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• Layer 1 - Physical

Physical layer defines the cable or physical medium itself, e.g. unshie
twisted pairs. All media are functionally equivalent. The main difference
in bandwidth, convenience and cost of installation and maintenance.
verters from one media to another operate at this level.

• Layer 2 - Data Link

Data Link layer defines the format of data on the network. A network d
frame, a.k.a. packet, includes checksum, source and destination ad
and data. The largest packet that can be sent through a data link
defines the Maximum Transmission Unit (MTU). The data link layer ha
dles the physical and logical connections to the packet’s destination, u
a network interface. For example, a host connected to an Ethernet w
have an Ethernet interface to handle connections to the outside world,
loopback interface to send packets to itself.

Ethernet addresses a host using a unique, 48-bit address called its E
net address or Media Access Control (MAC) address. MAC addresse
usually represented as six colon-separated pairs of hex digits,
8:0:20:11:ac:85. This number is unique and is associated with a partic
Ethernet device. The protocol-specific header specifies the MAC addre
the packets source and destination. When a packet is sent to all
(broadcast), a special MAC address (ff:ff:ff:ff:ff:ff) is used.

• Layer 3 - Network

Almost all computer networking applications uses Internetwork Proto
(IP) as its network layer interface. IP is responsible for routing, e.i. dire
ing datagrams from one network to another. The network layer may hav
break large datagrams, larger than the MTU, into smaller packets an
host receiving the packets will have to reassemble the fragmented
gram. The Internetwork Protocol identifies each host with a 32-bit
address. IP addresses are written as four dot-separated decimal nu
between 0 and 255, e.g., 129.79.16.40. The leading 1-3 bytes of th
identify the network and the remaining bytes identifies the host on that
work. The network portion of the IP is assigned by InterNIC Registrat
Services, under the contract to the National Science Foundation, an
host portion of the IP is assigned by the local network administrators.
large sites, the first two bytes represents the network portion of the IP,
the third and fourth bytes identify the subnet and host respectively.

Even though IP packets are addressed using IP addresses, har
addresses must be used to actually transport data from one host to an
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The Address Resolution Protocol (ARP) is used to map the IP address
hardware address.

• Layer 4 - Transport

The transport layer subdivides user-buffer into network-buffer sized d
grams and enforces desired transmission control. Two transport proto
Transmission Control Protocol (TCP) and User Datagram Protocol (UD
sits at the transport layer. Reliability and speed are the primary differe
between these two protocols. TCP establishes connections between
hosts on the network through sockets which are determined by th
address and port number. TCP keeps track of the packet delivery orde
the packets that must be resent. Maintaining this information for each
nection makes TCP a connection oriented protocol. UDP on the other h
provides a low overhead transmission service, but with less error check

• Layer 5 - Session

The session protocol defines the format of the data sent over the con
tions.

• Layer 6 - Presentation

External Data Representation (XDR) sits at the presentation level. It c
verts local representation of data to its canonical form and vice versa.
canonical uses a standard byte ordering and structure packing conve
independent of the host

• Layer 7 - Application

Provides network services to the end-users. Mail, file transfer proto
(ftp), telnet, and Domain Name System (DNS) are examples of netw
applications.

2.1.2 TCP/IP Protocol layers

Although the OSI model is widely used and often cited as the stand
TCP/IP protocol has become the totally dominant protocol stack desc
tion. TCP/IP is designed around a simple four-layer scheme. It does
some features found under the OSI model. Also it combines the featur
some adjacent OSI layers and splits other layers apart. The four net
layers defined by TCP/IP model are as follows.

• Layer 1 - Link

This layer defines the network hardware and device drivers.
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• Layer 2 - Network

This layer is used for basic communication, addressing and routing. T
IP uses IP and ICMP protocols at the network layer.

• Layer 3 - Transport

Handles communication among programs on a network. TCP and U
falls within this layer.

• Layer 4 - Application

End-user applications reside at this layer. Commonly used applicat
include DNS, rlogin, talk, and ftp.

2.1.3 Traditional layer processing

A traditional way of describing a protocol layer is illustrated by figu
2.2. The figure is a very general description of protocol layers but it sh
the layered structure that causes many of the problems emerging today
layers are today very well specified and it provides us with an interf
between the different service entities, e.g. devices or pieces of softw
The problem is the waisted processing this architecture gives when pro
ing services on all layers while it is only the top layer services that is go
to be used by the application processing host. The different services
further discussed in section 2.2.

2.1.4 Local Area Networks

Local Area Networks (LAN) protocols function at the lowest two laye
of the OSI reference model, between the physical layer and the data
layer. A LAN is a high-speed data network that covers a relatively sm
geographic area. It typically connects workstations, personal compu
printers, servers, and other devices. Devices commonly used in L
include repeaters, hubs, bridges, LAN switches, and routers. A repeate
physical layer device used to interconnect the media segments o
extended network. Repeaters receive signals from one network seg
and amplify, retime, and retransmit those signals to another network
ment. Repeaters are incapable of performing complex filtering and o
traffic processing. In addition, all electrical signals, including electrical d
turbances and other errors, are repeated and amplified.

• Wireless LAN

Today there exist a number of different protocols for wireless LAN ap
cations. They differentiate a lot in terms of performance, cost-figures, c
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standard 802.11 and HiperLAN ([2.5] and [2.6]).

2.1.5 Storage Area Networks (SAN)

The usage of SAN is currently growing very fast. SAN is normally us
for connections to and from file servers. They provide a very high ba
width and the dominating protocol is Internet SCSI (iSCSI). Normally t
SAN protocols are used on top of TCP/IP. Some examples on host

Figure 2.2: Traditionally layered protocol processing concept. During
reception each protocol layer receives data and other services from 
layer below. The data is processed in order to provide the peer servi
to the transmitting computer. In the same way all protocol layers pro

vides services to the layer above. Each layer’s service provider is call
an entity. The entities can be implemented in software or hardware or

a combination.

Transmitting Receiving

Data Data

Service con-
trolling

Receiving Transmitting

Data Data

Protocol Layer i

Receiving

Computer

From layer i+1 To layer i+1

From layer i-1To layer i-1

Service Ser-

Ser-Service

Peer services
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adaptors (HBA) and SAN accelerators will be discussed in chapter 4. M
information regarding SAN protocols, devices and applications can
found in [2.7].

2.1.6 Mixed traffic

Today it becomes more and more common to use the same networ
booth data transfer and voice or video. One reason is that network
dards and quality have reached the level where it is economically bene
to share the network resources. The main applications, except norma
traffic, for mixed traffic are:

• Voice over ATM
• Voice over Frame Relay
• Voice over IP

2.1.7  Quality of Service

Fundamentally, QoS enables the possibility to provide better servic
certain flows. This is done either by raising the priority of a flow or by lim
iting the priority of another flow. Using congestion-management, it is p
sible to raise the priority of a flow by servicing queues in different wa
The queue management used for congestion avoidance raises prior
dropping lower-priority flows before higher-priority flows. Policing an
shaping provide priority to a flow by limiting the throughput of other flow
The QoS concept has been a huge research area for several years b
However QoS has not been used in many networks so far. The reaso
this is the complex administration required for billing which makes
costly.

2.1.8 Network performance figures

Some common networks and their performance figures are listed be

Table 2: Common networks and their performance figures.

Network Speed

Fast Ethernet 100 Mb/s

GEthernet - GMII interface 1 Gb/s

10 GEthernet - XGMII interface 10 Gb/s

OC-1 52 Mb/s

OC-48 2.5 Gb/s

OC-192 10 Gb/s
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The networks listed in table 2 are and will continue to be some of
most common for a number of years. They all have such high through
that host processors benefit from efficient offloading.

2.2 Protocol services
Regardless of the protocols used in a computer network, there ex

common set of processing tasks that each node in the network must
form in order to make the network function correctly. There are als
number of tasks, that are specific for the protocol. Since each protocol
a unique set of requirements on the processing this common set can n
a bit level correct processing description. Instead they describes the n
of different processing tasks for different protocols on different layers. T
main reason for grouping the processing tasks is to analyze flexibility
throughput requirements for a larger set of protocols, before deciding
resource needs. This results in a classification of a task based on its de
on the processing resources, not based on protocol or layer type. C
quently I have chosen to classify the processing tasks using five
groups.

2.2.1 Parsing

In order to perform any processing on a packet, the first step is to re
nize the packet and the set of rules to apply on it. This identification o
packet and its rule-set is commonly known as parsing. During transm
sion, both the payload and the set of rules can easy be passed betwee
ferent processes or processors. Hence, this group of processing
mainly concerns protocol reception. During protocol reception, the fi
task is to detect a valid packet and its data alignment. To identify and de
a packet, coding algorithms or hardware devices can be used. Second
information describing which rule-set to apply on the packet must
extracted. The rule-set is normally stipulated by the protocol type and o
parameters such as addresses stored in the packet header.

2.2.2 Control flow selection

Decisions on how to process the packet can be made based on the p
information. This decision making normally consists of selecting a num
of operations to perform. These operations can then be performed in h
or software. The control flow selection is by nature very different from
standard Harvard architecture, where the program flow defines the op
tions to apply to the data in the data path. Here the program flow is sele
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based on the data extracted from the data path. The control-flow-sele
can be implemented in software as a pseudo-code illustrated by figure

If the protocol processing (or parts of it) is implemented in hardware
control flow selection does not (only) select the program flow. Instead
control flow selection is implemented as a configuration and selectio
hardware, that meet the requirements of the current protocol. The com
tasks within this group can be listed as:

• Program flow selection
• Hardware configuration
• Hardware multiplexing
• Hardware scheduling

2.2.3 Transport control

The purpose of the transport control is to provide a secure and regu
communication between a sender and a receiver. In the telecommunic
community this is commonly known as signaling. The transport contro
a network terminal normally consists of two main types:

• Acknowledgement control including timer triggered events
• Receiver management e.g. policing, filtering, and QoS providing

The acknowledgment control must produce acknowledgments and
them back to the sender when packets have been received. It also inc
keeping track of incoming acknowledgments to see if the transmitted p
ets have been successfully received.

In a network terminal, the receiver management normally only consis
a decision to store or discard the received packet. It may also include a
oritizing of the incoming packets. The decisions are then made base
the parsed information.

Figure 2.3: Control flow selection pseudo-code.

case protocol_type is

    when A jump to flow1

    when B jump to flow2

    when C jump to flow3

    when D jump to flow4
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2.2.4 Data processing

The purpose of data processing is to support the transmission contr
that a secure and error-free channel is maintained. Since this type of
cessing tasks only is controlled by the packet type and is very throug
demanding, it has been given its own processing task group. These
intensive tasks are normally included in the lower layers in the ISO/O
reference model. Some common types of data processing are:

• CRC calculation
• Checksum calculation
• Other Coding/Decoding
• Encryption/Decryption

2.2.5 Datastream management

In network terminals the datastream management consists of diffe
kinds of buffer management. When transmitting a certain amount of da
may have to be divided into several packets and then sent to the co
address. The data must be re-assembled and then stored in the c
memory location at the receiving terminal. In network infrastructure no
(e.g. routers) the data stream management includes deciding where to
packets.

2.3 Traditional network components

2.3.1 Network Terminals

Network terminals (NT) exist for many different applications. Som
examples are desktops, printers and IP phones which are normally
nected to the network using wired connections, e.g. Ethernet LANs. T
also exist many wireless applications where the NTs are used, e.g. a m
phone or a PDA, connected to a WAN. Due to the diversity of the appl
tions the requirements on the network interfaces are very different.
only common characteristics of a NT is that it terminates the packets.
means that no routing decisions have to be made.

As an example on the type of processing going on in a desktop PC we
consider the TCP/IP protocol stack processing introduced in section 2
An example of some processing tasks in the NT and the simplified h
ware allocation, is illustrated by figure 2.4.
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2.3.2 Routers

Even though router manufacturers of today tend to include more
more intelligence in their devices, they normally do not handle protoc
above the network layer in the protocol stack. The main reason for th
that a transport layer protocol such as TCP might have its payloads b
segmented into many packets, which then are transmitted through sep
network paths. Hence, it is only in the terminals the protocols in the tra
port layer and above will be processed. There are also simpler routers,
capable of lower layer processing. Layer 1 processing routers are norm
called repeaters. Layer 2 routers are known as switches.

The main goals of a router are:

• To pass on incoming packets to the correct network link.
• To provide error control and security to the communication channe

established.

• Check address
• Error control incl length check,

CRC
• Data buffering
• Discard erroneous packets
• Create and trigger reply pack-

ets
• Check IP address
• Checksum calculation
• Reassembly and data buffering
• Timer handling
• Discard erroneous packets
• data stream management
• Create and send Acknowledg-

ment packets
• Update connection state vari-

ables
• Discard erroneous packets

Link layer

Network

 layer

Transport

layer

Figure 2.4: Examples of processing tasks and hardware allocation in a
ditional type of desktop NT. As illustrated above the host processor ha

do a lot of the processing while the NIC only process the link layer.

Network

Network
Interface
Card (NIC)

Host processor

Processing tasks Hardware allocation
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• To monitor and control the traffic flow so that it is optimal from the
Internet Service Providers (ISP) point of view. E.g. management of b
ing and bandwidth resources.

Normally a router includes 3 basic components. They are line ca
interfacing backplane and a slow path processor (normally a Power
Some examples on processing tasks and a typical router hardware arc
ture is illustrated by figure 2.5.

References 2
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• Classify packet
• Send to the correct link
• Check options and update

variables
• Calculate new and check

old IP checksum
• Prioritizing
• Logging statistics
• Monitoring the traffic

Processing tasks

Line
card

Line
card

Line
card

Line
card

Line
card

Line
card

Line
card

Line
card

Interface

Slow path
processor

Typical hardware setup

Figure 2.5: Example of processing tasks and allocation in a traditiona
type of router.
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3.1 Architectural challenges
When designing high speed programmable network interfaces (P

there are a number of challenges that the designer has to overcome.
of these challenges are common to all micro electronic designs, e.g.

• Data transfer to/from external memories
• Power dissipation
• Pin limitation
• Packaging
• Verification

Others are specifically important in PNI designs, e.g.

• Line-rate processing (fast path processing)
• Link-rate processing (slow path processing)
• Device integration (accelerators, memories, ASIC:s)
• Shared resources management (e.g. data and program memories

To overcome these challenges three main approaches exist today.
common goal is to provide sufficient processing power so that the ho
efficiently offloaded. The three main alternatives are:

• Application Specific Logic

Special Instruction Set

On- or Off-chip accelerators
17
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• Advanced Processor Architectures

Data level parallelism

Instruction Level Parallelism (ILP)

• Multi processor solutions

Task level parallel or pipelined architectures

Combinations of these design approaches are also possible. Before s
ing design methodology and architecture a number of design cons
ations and performance requirements have to be examined. Dependi
application, cost sensitivity and other factors, the optimal solution m
vary. For further information on the design challenges and considera
when designing PNIs, I strongly recommend the new book [3.1]. In
Ph.D. thesis [3.2] a deep discussion on memory architectures can be fo

3.2 Design alternatives
Today, there are a number of different hardware platforms available

use as PNI. In order to investigate the need for, and type of PNI hardwa
classification of the different solutions is useful. When selecting hardw
solution the first step is to analyze the requirement and then select the
of hardware platform to use. Some of the most common PNI hardw
platform design alternatives are discussed in the following subsections

3.2.1 Inter- or intra-layer processing

Intralayer processing means that each protocol layer is processed
rately according to figure 3.1. This way of processing and concep
thinking is a result of the invention of computer networks and proto
stacks for more than 30 years ago. In the seventies the communication
considered to be a precious resource while the processor had infinite
cessing power. Today, the opposite is true.

Intralayer processing gives a processing overhead since a lot of inte
diate results and data transports must be performed. However, the
established protocol standards support verification when intralayer
cessing devices are designed. There is also a need to support all the
services stipulated by the different layer standards. This is the reason
so many companies and research groups propose intralayer process
be considered.

The main advantage with interlayer processing is the reduced amou
data transportation and processing since we reduce the need for inter
ate results. Another advantage that the interlayer processing gives us i
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the processing can be divided and then distributed to different compu
devices depending on the type of processing rather than layer type.
coarse separation is normally into tasks to be performed in hardwar
software. Traditionally the physical layer was implemented in hardw
while the rest was processed in software. Today, architectures where
of all layers are accelerated in hardware emerge.

To distribute the processing according to processing requirements
type in an interlayered way results in an orthogonal description of the
cessing tasks, compared to the traditional protocol stack.

3.2.2 Type of control

The hardware components in a network interface can have different k
of control. The three main alternatives are:

• Fixed function. E.g. ASIC with no flexibility.
• Configurable. The function of the data path can be changed but it c

not be changed every clock cycle. The control ability and flexibility ca
be high (e.g. in an FPGA).

• Programmable.The function of the data path can be changed in ev
clock cycle.

Protocol layer

Protocol layer

Protocol layer
Multi layer
Processing

Figure 3.1: Interlayer (to the right) processing means that all or parts o
several protocol layers are being processed simultaneously on one dev
It does not mean that all processing is done on one piece of hardware
software. Several devices can still share the processing. Intralayer pr
cessing means that each protocol is processed sequentially, in order 
on one single device. Higher layer protocols will not be processed un

the lower has been finished.

Data and services

P
e

e
r 

se
rv

ic
e

s

Multi layer
Processing

Device 1 Device 2

Device 2

Device 1

Device 2
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In a PNI the need for configurability and programmability can be redu
by the use of many different fixed function blocks, each capable of proc
ing a small part of the tasks. The different blocks are then used only
specific tasks and do not need any configuration. Many protocols a
higher layers in the protocol stack have very high requirements on flex
ity. Hence, the amount of flexibility and the type of control a hardware p
form uses, is an important design parameter.

3.2.3 Application coverage

The ability to run a certain set of network applications on the host us
the interface in certain networks is described by the application coverag
the PNI. The problem is that the complexity and hardware cost grow
the application coverage grows.

The basic requirement for a large application coverage is that the b
width is sufficient for processing of the received data. The higher ba
width the PNI can provide the more applications can be supported.

The second requirement for a PNI to have a large application covera
that it is flexible enough so that it can process all the different applicat
(protocols). The application coverage defines what the PNI can be use
Therefore it is the single most important classification parameter. Norm
it is useless to compare the performance figures of two different PNI ar
tectures that have different application areas.

3.2.4 Offloading coverage

The solutions available today from the academic research community
the industry are extremely diverse. Despite this diversity, the commun
tion network platforms can be divided into four main groups according
their offloading strategy illustrated by figure 3.2.

Depending on application, throughput requirements, power aware
and customer cost sensitivity different platforms selects one of the four
ferent offloading strategies while offloading the host processor. The
loading PNI can then typically process protocols at layer 2 up to layer
is not certain that all parts of the protocols are offloaded from the host
cessor. Hence, the offload efficiency can vary within the four main gro
in figure 3.2. Consequently it is very important to clearly examine b
which protocol and how big part of the protocols should be offloaded. P
tocols not offloaded must of course be processed by the host.
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3.2.5 Chip or board integration

Processors and memories in a PNI ASIC chip are integrated in the s
silicon chip, which means almost all the processing work can be d
internally without having to wait for slower external memory access. O
chip memory is a major advantage since many protocols require exten
memory access when being processed.

An ASIC can have multiple processors integrated into the chip to han
heavy workloads. This means that a single chip may be simultaneo
working on many different processes for many independent protocol
sions. Parallel processors within an ASIC (SoC) provide enormous pe
mance advantages beyond those achievable with single-processor b
level products.

One particularly noteworthy example of parallel processing in a netw
processor ASIC is the implementation of timers. TCP processing dep
on session timers to manage flow control and identify transmission er
At gigabit and higher transmission rates, the accuracy of flow control
error detection becomes increasingly important to the health of the
work. Board-level solutions have to implement TCP timers in software
use one or two general timers provided in a general processor core.
means that the events and timers are processed sequentially by a
CPU. Obviously, multiple hardware-based timers running in a cus
ASIC add a great deal of efficiency as well as accuracy, resulting in
most consistent and predictable network operations.

Host Offload Efficiency

Th
ro

ug
hp

ut

No offload

Data path
offload

Dedicated
Logic based
Full offload

Standard
Processor
based
offload

Figure 3.2: Host offloading strategies
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Beyond accessing memory in silicon, ASICs also facilitate the use
advanced memory technologies that have been developed for high s
networking applications. Specifically, where TCP processing is concer
a special memory technology for high throughput networking called CA
(content addressable memory) can be used very effectively. While C
can be implemented in both board-level as well as ASIC solutions, it is
expensive and more efficiently utilized when implemented in an ASIC
general, the content-based indexing of CAM virtually guarantees that e
connection table lookup only needs a single memory operation. Wi
high volume of lookup operations occurring every second on a Gigabit
ernet link, it is easy to see why an ASIC approach with integrated CAM
so efficient. More on accelerated memory access using CAMs is prese
in paper 3, chapter 8.

3.2.6 Configurable logic

To implement parts or the whole of a PNI in a Field Programmable G
Array (FPGA) would give a very high degree of flexibility due to the co
figurability of the FPGA. Since the cost of FPGAs today is acceptable
low volume products, it would be a very cost effective solution if the nu
ber of units sold is small. There are however four major drawbacks w
FPGA implementation. First of all the throughput of an ASIC implemen
tion will always be significantly higher than the FPGA solution can ma
age. Secondly the power consumption is much higher in the FPGA.
third drawback with a standard FPGA is the limitations in size and co
plexity of the design that can be implemented on one FPGA. The mem
communication and use of distributed embedded memories are also
fiting from an ASIC chip implementation.

3.3 Performance measures
A number of different performance figures must be compared in orde

evaluate and compare different hardware platforms to find the most
able one for use as a PNI. The most important ones are described in
section.

3.3.1 Flexibility

A PNI must provide flexibility and adaptability to the changing enviro
ment it might operate in. This results in some flexibility requirements t
all PNIs has to meet to some extent:
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• Reconfigurable media adaptation.In order for a PNI to be used in dif-
ferent networks and survive over time it must be capable of adapta
for different medias.

• Programmable connection policy.A PNI must support on-line change
and control of the traffic flow.

• Programmable host interface.The interface between the PNI and th
host system must be operating in real time and be highly flexible in
order to avoid unnecessary interrupts in the host.

• Data controlled datapath selection.The datapath must be config-
urable or selectable depending on the data header information.

Providing the flexibility bulleted above gives a large protocol covera
but it increases the complexity of the hardware. There is always a trad
between flexibility and throughput since flexible general purpose hardw
never can reach the same throughput as dedicated hardware blocks. H
flexibility is an important performance parameter.

3.3.2 Throughput

The need for bandwidth is ever increasing and is not going to disapp
Further it is a fact that an increased bandwidth supports larger applica
coverage which is very attractive. The conclusion is that throughput is
will continue to be a very important performance parameter when a h
ware platform is designed.

3.3.3 Inter operability

The main purpose of a PNI is to offload and relax the host processo
much as possible. Hence, it is very important that the interfacing comm
cation between the PNI and the host does not disturb or interrupts the
cessing on the host CPU. Further it is important that the host opera
system can manage and access the data buffers as well as communi
with the PNI in an efficient and non-interruptive way. In order to reach
optimal way of integrating the PNI device into the system, both the P
interface and the host operating systems must be optimized. To opti
the PNI interface is much easier than the host operating system since
proprietary architecture. I have chosen to call this integration of the P
with the host operating system, inter operability and it is a very import
for the overall system performance.

3.3.4 Cost

The cost of the PNI chip or board is very important performance figu
The cost is important for any customer but network terminal user are e
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cially cost sensitive. The cost is always an important part of architect
design tradeoffs. The cost off a PNI chip mostly depend on the package
the number off chips manufactured.

In order to make the package cheap, the area, power dissipation
number of pins must be minimized. The power dissipation is normally
important optimization criteria in all micro-electronic system but it is esp
cially important for network terminals. The power figures are of cou
even more important in portable systems. The number of pins is har
lower since a PNI by nature includes a lot of communication over the c
edge. The area is possible to minimize by architectural exploration. M
mizing the design can be either used for cheap packaging and/or to a
for more resources on-chip, e.g. memory.

The number of chips that can be manufactured is strongly connecte
the flexibility of the design. A general design can be used for more app
tions and can also stay longer on the market. Hence, it is important tha
design is reusable and flexible enough for a long life-time.

3.4 Application Specific Accelerators
In order to improve the performance of PNIs used either in network no

or terminals, dedicated hardware blocks are often used. The main pu
is to offload the offloading devices (PNI) by taking care of the compu
tional heavy data intensive processing. New accelerator types for hi
layer offloading emerges every year. Some of the accelerator types a
able today are:

• Two- or one-dimensional classification engines. Could be CAM,
TCAM or RAM based.

• Storage Area Networks (SAN) Engines. Used in file servers.
• PHY and MAC layer ASICs
• Segmentation and reassembly (SAR) engines.
• Crypto engines
• Hardware timer assisting engines

Reference 3

[3.1] Crowley, Patrick, et al, “Network Processor Design”, first edition, Morgan Ka
man Publishers, ISBN: 1-55860-875-3
[3.2] Mattias Gries, “Algorithm-Architecture Trade-offs in Network Process
Design”, Ph.D. thesis, Diss. ETH No. 14191, Swiss Federal Institute of Techno
Zurich, 2001
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4.1 Naming convention

Depending on application coverage and marketing reasons, platfo
dedicated for processing of packet based communication channels
different names. Common names on various communication network
forms are:

• Network Processors (NP)
• TCP Offload Engines (TOE)
• Protocol Processors (PP)
• Programmable Network Interfaces (PNI)
• Network Interface Cards (NIC)
• Packet processors (PaP)

The two most general names are NP and PNI. The other ones are
mally regarded as subsets of the NP type but no naming convention
been agreed upon. The application coverage may vary a lot between
architectures within the same group. For example a TOE may process
or the hole TCP protocol. Regardless which, it will still be presented to
customers as a TOE.
25
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4.2 Commercial architectures

4.2.1 Motorola C-Port C-5e Network Processor

The C-5e NP is a part of Motorolas C-Port family. It supports the use
16 line interfaces, each controlled by a channel processor (CP). The
contains a receive and a transmit processor. They are serial data proc
(SDP) which can be used for various layer 2 implementations. Furthe
CP contains a dedicated channel processor RISC core (CPRC) with a
cated 32 bit instruction set. Each CPRC uses a 8 kB instruction mem
and a 12 kB data memory. Each channel processor can manage 156
line cards but when used in clusters, much higher bandwidths is supp

Further the C-5e NP includes an eXecutive Processor (XP) for con
plane operations. C-5e NP also includes a number of dedicated co-pr
sors:

• A Table lookup unit (TLU) classifies incoming packets based on inf
mation in a external SRAM memory.

• Buffer management unit that controls the payload data storage while
header is being processed.

• Queue management unit that is shared between all the processors
provide QoS.

• Fabric processor provides a high-speed network interface.

The SDP in the CP is responsible for the bit- and byte-wise proces
and can be considered as the fast path. The SPDs are responsible f
layer 2 interfaces, e.g. GMII. They also handle encoding/decoding, fr
ing, formatting, parsing and error checking (e.g. CRC and header ch
sum calculation). The SPD may also initiate a classification search in
TLU. The receive SPD include two FIFO buffers. The first one is a sm
FIFO storing incoming data before the bit processing. The other FIFO
larger and it stores the data before byte processing. The SPD are
responsible for framing and synchronization of the incoming packets.

Several CP can be concatenated using the very high bandwidth inte
bus (35 Gbps) for pipelined processing.

4.2.2 iSNAP

The IP Storage Network Access Processor from Silverback [4.1] te
nates and process IP-based storage traffic in a GE with full duplex. It s
rates the header and data traffic processing. The header proce
generates an event which is placed in a queue that communicates via
to the host. Meanwhile the packet data is stored in a DRAM until the ev
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is finally created. At the host level the data can then be stored in sep
application buffers depending on the upper layer protocol (ULP). Thi
called PDU awareness. ULP covered are iSCSI, NFS, CIFS and m
application areas are servers, storage devices and Network Area St
(NAS) appliances.

4.2.3 IBM PowerNP

First of all the PowerNP consists of a number of interfaces to memo
(control and data) and networks (PHY/MAC ASICs). The packet proce
ing is performed in the programmable Embedded Processor Com
(EPC) assisted by co-processors. The EPC contains 16 programm
engines known as picoprocessors. The picoprocessors operates in
called DPPUs. Each DPPU have a shared set of co-processors that op
in parallel. The picoprocessors are essentially 32 bit scaled-down R
machines with an dedicated instruction set. The DPPU also contai
small (4 kB) shared memory. The co-processors handles tree search
storage, control access, queues, checksums, string copy, policy, cou
buses and system semaphoring.

4.2.4 Trebia SNP

This architecture [4.2] includes MAC block for mixed medias (wired a
fibre-based), a security accelerator, various classification block, a TCP

load engine and a Storage Area Network (SAN)1 Protocol processor as
illustrated by figure 4.1. The TCP offload engine can operate stand al
terminating TCP connections without involving the host processor. Fo

1. Storage Area Networks (SAN) today sees a rapidly increasing use of PP to offload the hos
The host is then typically acting as a file server. SAN was previously discussed in chapter 2
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Figure 4.1: Trebia SNP architecture.
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storage applications they claim that their TCP offload engine manage u
10 GigE. The SAN PP is optimized for processing of storage I/O flows
especially iSCSI termination.

4.2.5 iReady EthernetMAX

The Media Access Xccelerator [4.4] from iReady is intended for tra
port offload [4.3]. It fully terminates TCP/IP at GE speed. The TCP
accelerator uses a streaming data architecture similar to the one pro
by this papers author. The data is not stored but instead processed w
is streaming through a 64 bit wide pipeline. The 64 bit wide datapath t
process the data using multiple dedicated hardware blocks impleme
different state machines. Each state machine block process a specifi
of the incoming headers. The processor also uses hardware accelerat
iSCSI and IPSec. Since the complexity of the IPSec processing is 2
times higher than TCP/IP this architecture is not suitable from a power
cost point-of-view if the use of IPSec packets not is large in the netw
The implementation does not use standard programmable devices. In
dedicated logic for optimal performance is used.

4.2.6 Alacritech Internet PP

Alacritech [4.5] provides a Session Layer Interface Card (SLIC) [4.7] t
includes accelerators for GE, network acceleration [4.6], storage acce
tion and dual-purpose server and storage acceleration. Especially
Internet Protocol Processor (IPP) which offloads TCP/IP and iSCSI
cessing is interesting. The IPP offers acceleration of non-fragmented
connections. This means that data transfers to and from the TCP/IP sta
handled by the IPP while the host system must take care of the conne
state processing. Parts of the TCP that IPP does not handle are:

• TCP Connections and breakdowns (SYN segments)
• Fragmented segments
• Retransmission timeout
• Out of order segments
• Finish segments (FIN)

Despite this down-sized functional coverage in the accelerators, A
ritech claims that 99.9 percent of the TCP/IP traffic is handled by the
while the other 0.1 percent is processed by the host processor. Alacr
further stresses the low power and low cost figures of their architectur
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4.2.7 LayerN UltraLock

The UltraLock [4.9] illustrated by figure 4.2 uses a patented architec
named SIGNET [4.8]. The UltraLock chip offloads both the Network p
cessing, including packet classification, and provides acceleration
Secure Socket Layer (SSL). The UltraLock also includes GE MAC ac
erators.

In the TCP/IP processor the tasks are distributed among several diffe
dedicated functional blocks in order to improve the throughput. Th
TCP/IP processors are also pipelined.

4.2.8 Seaway Streamwise NCP

Seaway Networks [4.10] offers a streamwise Network Content Proce
(NCP) capable of multi-gigabit layer 4 (TCP) termination. The NCP a
examine, modifies and replicate data streams based on their content (
5-7). The NCP uses a streamwise switch to send data streams to diff
content processing devices, e.i. co-processors or general purpose CP

4.2.9 Emulex LightPulse Fibre HBA

The host bus adapter (HBA) from Emulex [4.11] includes an ASIC co
troller, a RISC core and a SAN accelerator. The SAN accelerator us
context cache hardware so that context (PDU information) not mus
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TCP/IP
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Figure 4.2: The UltraLock provides acceleration for SSL connections
Ordinary http packets are passed on without any processing in the S

engine.
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transported to and from the host and thereby offloading the server PCI
The systems have 1 Gbit/s performance and the main feature is the im
mentation of a strong SAN accelerator for high end servers.

4.2.10 Intel IXA/IXC/IXS/IOP processors

Intel offers a number of chips to solve different tasks when it comes
what they call Network Infrastructure Processing [4.13]. First of all th
have the Internet eXchange Architecture (IXA) which includes differ
NP. They uses Xscale instruction set (improved Strong-ARM) and the p
capacity is today 10 Gbit/s using high-end MAC interfacing chips, wh
the normal IXP 1200 uses Fast Ethernet. In for example the IXP 1200
datapath includes 6 different micro engines which supports multithr
programmability. The second generation NP IXP2400 includes
microengines. The microengines in the IXP 2400 are connected in
clusters of four engines. The microengines uses a application spe
instruction set. The microengines shares memory resources and hav
vate connections to its neighboring engines. Each microengine conta
4096 times 40 bits program memory. Each microengine can process 8
ferent contexts, e.i. threads. There are 128 general purpose register
640 data transfer registers available in each microengine. Furthe
includes a memory capable of storing 640 32 bit data values.
microengines also includes the following dedicated hardware blocks:

• CRC unit for 16 and 32 bit computations.
• Pseudo Random Number generator (used for QoS in congestion a

rithms).
• Hardware timers.
• Multiplier
• 16-entry CAM used for cache search and assists software pipelinin

TCAM can be connected as an external accelerator working in par
with the IXP2400.

The IXA type chips is mainly intended for packet processing for swit
ing, protocol conversion, QoS, firewalling and load balancing. Further I
offers Control Plane Processors in the IXC family. IXC is mostly efficie
when they are being used for exception handling and connection states
cessing. They are normally used in high end systems, e.g. Base Trans
Stations, Radio Network Controllers and MAN servers. They norma
operates together with a IXA type of chip handling the control plane p
cessing. The IXS family contains Media Processors used for acceler
of voice, fax, and data- communication. In a big server a number of th
IXS could be used together with one IXA chip. Finally Intel offers I/O pr
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cessors (IOP) that is a quite general architecture which can be use
SAN acceleration.

4.2.11 LeWiz Content processor

LeWiz processor [4.12] process layer 3-7 with hardware accelera
with a line rate capability of Gbit/s. Among other things it performs tab
lookup for connections, controls a external header data memory, sup
different types of connections based on URL/source address, and ha
XML and URL switching. LeWiz sells both hard and soft cores. The co
tent processor architecture is further described in figure 4.3.

4.2.12 Qlogic SANblade

The SANblade [4.14] manage 2 Gbit/s line rate using GE or fibre chan
medias while performing iSCSI as a HBA. It completely offloads the TC
IP protocol stack from the host. The SANblade also handles all I/O p
cessing. The SANblade contains internal on-chip memory which t
claim to be faster, cooler and moore scalable than using shared me
architectures.

Content Processor

Packet Engine

Packet pre-
processing

Syst Interface

Packet forward
engine

Protocol
parser

Classifier
engine

PCI

Content Memory

Figure 4.3: LeWiz content processor. The Packet pre-processor is a T
The Protocol parser examines the ULP data (layer 5-7) and based on
it start a search for a classifier using the classifier engine. The classi

then decides priority and is used for re-direction of the traffic according
the QoS policy.
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4.2.13 Agere Systems - PayloadPlus

PayloadPlus provides a complete solution for OC-48c (2.5 Gbps)
works. The board solution includes 3 chip, capable of up to layer 7 proc
ing. They are the Fast Pattern Processor (FPP), the Routing Switc
Processor (RSP), and the Agere System Interface (ASI).

The FPP is programmed with a dedicated protocol processing lang
(FPL). The FPP does not contain any accelerators for classification
reassembly such as CAM or Segmentation and Reassembly (SAR) de

The Pattern Processing Engine (PPE) matches fields in the data s
based on the program stored in the program memory. The program is
ten in FPL. The FPP operates on 64 PDU at a time. Each PDU is proce
by a separate processing threds called contexts. The CS/CRC engin
forms 4 different checksums based on the FPL program, generic chec
(1-complement), IP v4 checksum, CRC-10 and CRC-32. The input fra
can be configured for 8, 16 or 32 bit wide datastreams.

The RSP handles the traffic management and flow modifications in a
grammable way.

The ASI is a PCI like standardbus. The main applications is layer
routing and switching. The PayloadPlus architecture also supports v
and data processing (e.g. over IP, AAL5, AAL2), access control
enables QoS functionality.

RAM

Data controllerInput
framer

Output
interface

Block buffer

CS/CRCPattern Processing
Engine (PPE)

Program
memory

Control
Memory

Queue engine

engine
ALU

32 bit data

8 bit ASI

Configuration interface8 bit
ASI

Functional bus
interface

32 bit

Figure 4.4: FPP architecture.
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The ASI, the RSP and the FPP is connected to the same 8 bit config
tion bus. The configuration bus is used for updating of routing tables
programs during runtime.

4.2.14 Cisco - Toaster2

Toaster2 is a multiprocessor ASIC solution. The chip includes 16 unifo
processors each including a dedicated microcontroller (TMC). The 16
cessors are organized in a 4 by 4 matrix. Each node also includes a
gram memory and a memory controller. The Toaster2 is typically u
together with other Toaster2 chips, a packet buffer ASIC, PHY/MA
ASICs and a routing processor. The routing processor is typically a gen
purpose RISC machine. The packet buffer stores the payload data whil
header is being processed.

The TMC is essentially a SIMD architecture that uses a 64 bit instruc
to operate on multiple 32 bit data. The architecture schedules ILP in s
ware and then 4 stages of Toaster microcode is processed in a pipeline
parallel way by each row of four TMC.

XMC

IH
B

from
packet
buffer

XMC

XMC XMC

ICM

TMC
TMC

ICM

TMC
TMC

ICM

TMC
TMC

ICM

TMC
TMC

O
H

B

TMC
TMC

TMC
TMC

TMC
TMC

TMC
TMC

To
packet

buffer

SDRAM SDRAM

SDRAMSDRAM

Figure 4.5: The Toaster2 architecture. IHB/OHB are uni-directional bu
interfaces that are 64 bit wide and can operate at 100 Mhz and above. T
TMC blocks are memory controllers that controls the access to each Int

nal Column Memory (ICM) while the XMC handles access to externa
memory devices.
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4.2.15 PMC-Sierra ClassiPI

The ClassiPI is not really a network processor. Instead it is a classifica
device that can assist many different NP with the complex task of pa
classification. The ClassiPI architecture consists of two main engines.
is the Field Extraction Engine (FEE) and the other one is the Classifica
Engine (CE). The FEE can extract IP, UDP, and TCP header data from
incoming packet. The extracted data is then passed on to the CE for c
fication search operations. The CE is a RAM based classification en
that includes four ALUs and other processing logic. The CE uses an e
nal memory for storage of programs and control state variables,
counters and time stamps.

4.3 Academic architectures

4.3.1 EU Protocol Processor Project PRO3

The architecture proposed by PRO3 [4.15] consists of 5 parts. Most inter
esting is the Reconfigurable Pipelined Module which process the
intensive tasks, and the embedded RISC core which takes care of th

naling processing. An illustration of the PRO3 can be found in figure 4.6.

4.3.2 UCLA Packet decoder

This decoder [4.17], decodes packets on layer 2-4. The decoder arch
ture illustrated in figure 4.7 consists of one datapath for each layer, e
data paths totally. It only uses one control path for the signaling proces
It operates on streaming data using a application specific instruction
and the intended application area is routers.

Packet
recogn.

Decoder EncoderRPM

RISC

Figure 4.6: The PRO3 architecture.
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4.3.3 TACO processor from Turku University

Based on a Transport Triggered Architecture (TTA). The TTA archit
ture only uses one instruction (move). The architecture uses the m
instruction to transport data between different dedicated functional blo
The main focus has been on optimization of the distribution of tasks
data between different dedicated hardware blocks. To do this, a deve
ment and simulation framework has been developed. The intended app
tion area is primary the ATM protocol. The framework and the architect
is described in [4.18].

4.3.4 PICO project from Berkeley

The PICO project is a focused on low power terminal processing
wireless networks. Examples on protocols covered are Bluetooth
Home RF. Sensor based networks has also been part of the project
design consists of a fast path implemented in FPGAs and a slow
implemented in Programmable Logic Devices (PLD). The PICO proces
is further described in [4.19].

4.4 Conclusions from survey
A number of different PNI solutions is included in the survey. They all a
focused on different application areas. Some fully offloads complex pr
cols, while others mainly focus on high-speed operation. As one can

L2
datapath

L3
datapath

L4
datapath

Data
flow

RAM

Ctrl
Path

Counter

Control signals

Program
flow
decisions

Figure 4.7: Simplified view of the UCLA processor architecture propos
showing how to accelerate case-jump functions.



36 Programmable Network Interfaces - A Survey

area
rtain
much
he
AN
ntly.

aces
rely
I:s are
ng.
for

ains
data
main
uff-
used.

tion.
new
d in

far
ation
st OS

or”,

434

ess-
from the survey, a trend against separation of the network processor
into more dedicated specialized network processors optimal for a ce
application area emerges. There is a general disagreement on how
functionality to include in the PNI and how much should be left for t
host. Instead it is clear that TOE, MAC, Encryption accelerators and S
control accelerators are being designed and optimized independe
Hopefully this means that we soon can have standardized interf
between different communication accelerators. In the future we will su
see new protocol processing application areas where area specific PN
worth using. SAN is just the first one becoming commercially interesti
There is no clear trend on the amount of offloading needed in a TOE
NT so here further exploration is needed. One big question that rem
unanswered is where the re-ordering of the incoming application
should be done. The question is if the data should be delivered to the
memory unordered or if it should be stored in order in the application b
ers. The second alternative demands an embedded data memory to be
The data delivery format has off course a big impact on the host opera
The comparison clearly shows that there exists solutions to the various
PNI specific implementation problems and considerations discusse
chapter 3. It is also clear that the academic research community is
behind the industry and just have started to examine these implement
issues. Examples on interesting research areas still remaining are ho
interface, shared memory control etc.
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5Proposed Architecture

5.1 Introduction
This chapter describes a hardware architecture proposal which is a r

of my research during 1999-2002. The architecture is a PNI Acceler
dedicated for packet reception in a network terminal. The architecture
originally introduced in the paper presented in chapter 6.

My and my colleagues have investigated and implemented different p
of the architecture to find optimal architectural solutions. These invest
tions have resulted in the two papers in chapter 7 and 8.

This chapter will give an overview of the architecture. It also include
performance discussion based on performance parameters introduc
chapter 3.

5.1.1 Naming convention

During the progress of the research work, our architecture has cha
name several times. The reason for this is that the research field is so im
ture that no naming conventions has been agreed on. During the
design time we have used the name Protocol Processor (PP) describin
PNI. The PP consists of two parts. One is the general purpose micro
troller. The micro controller hardware architecture has not been inve
gated in the research project. Instead the focus has been on the other p
the PP which implements the fast path.
39
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In the papers included in the following 3 chapters, the PP fast path
been characterized as Deep Pipelined Serial Processor (DPSP), c
urable port protocol processor (CPPP) and programmable protocol pro
sor (PPP). The names reflects the ongoing rapid development, both i
research and in the research community. The name that will be used in
chapter is PPP. Note that the PPP is a part of the PP.

5.1.2 System perspective

As mentioned earlier the proposed PNI architecture is called prot
processor and it consists of two parts. The first part is the Programm
Protocol Processor (PPP) and the other is the micro controller (µC). The
platform also includes two RAM memories. They are used as prog
memory and as a control memory which stores interpacket control v
ables. The PP is intended to be a part of a SoC where one or severa
together with theµC acts as a high speed PNI. An overview of the syst
is illustrated by figure 5.1.

NT SoC

PPP

Input buffer

C&C µCFP

Host

DMA
Host

Memory

Application

Figure 5.1: The PPP together with a general purpose micro controlle
(µC) handles the communication of one network media port. In a sys
on chip (SoC) many PPP can be used as port-processors in order to

vide high bandwidth between the application and the network.

N
et

w
or

k

Control MemoryProgram Memory
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5.2 Processing tasks

5.2.1 Protocol suite overview

To test our architecture we have used a common set of protocols. The
tocols are useful for investigations on architectural requirements and p
bilities. This however does not mean that the architecture not is suitabl
other application areas and protocols. The protocols we have chose
include in our protocol coverage are:

• Fast Ethernet with PHY interface MII
• Gigabit Ethernet with PHY interface GMII
• 10 Gigabit Ethernet with PHY interface XGMII
• IP version 4 and version 6
• Address Resolution Protocol (ARP)
• Reversed Address Resolution Protocol (RARP)
• Internet Control Message Protocol (ICMP)
• Internet Group Management Protocol (IGMP)
• TCP
• UDP

The selected protocols are very commonly used today and there is no
son to believe that they will not continue to be used for a long time ahe
Further, the protocols are required for many of the existing application p
tocols used today. When a data frame from the ethernet interfac

Ethernet

ARP RARPIP v4   IP v6

ICMP IGMP TCP UDP

Appl Appl Appl Appl

Figure 5.2: The data demultiplexing of a received Ethernet frame.
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received, it will be passed on to different processing units depending
which protocols that have been used, according to figure 5.2.

Each header includes a number of header fields which have to
extracted and processed according to the protocol standard. The h
encapsulation format is illustrated by figure 5.3.

In order to process all the headers and providing the services stipulate
the protocol standard, a number of processing tasks are required to be
formed by the receiving terminal. This set of processing tasks are spe
to the selected protocol suite. If new protocols should be included,
processing task types may, or may not, be needed. The processing tas
listed in the subsections following.

5.2.2 Ethernet
• Calculate CRC

Cyclic Redundancy Check is a error detecting code that is used to d
transmission errors. The CRC checksum is computed over the hole f
before it is compared with the transmitted CRC checksum. The transm
checksum has been calculated using the same algorithm by the transm
and it is transmitted in the trail of the frame, after the data. The CRC c
putation is a very data intensive operation. In a simple RISC machin
1500 Byte long frame require almost 44000 (non-optimized) instructi
to process only the CRC checksum according to paper 2. Hence, the
calculation is normally done using dedicated hardware assist. Pap
describes such a hardware block dedicated for CRC acceleration.

• Check Ethernet Destination Address (Eth DA)

To be sure that the received frame is intended for the terminal, it m
check that the destination address is correct. If the address is incorre
discard the packet.

• Check the type field

The type field describes what sort of layer 3 packets is encapsulated i
frame. The valid options according to my protocol suite are ARP (0x08
RARP(0x0835) and IP.

• Extract length field

Eth header IP header TCP/UDP header DATA CRC

Figure 5.3: One Ethernet frame encapsulate the IP packets. Each la
includes a header and data.
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The length field must be extracted to know how long the packet is. I
especially important to know since the CRC value stored in the last 32
of the frame, must be extracted and compared to the computed CRC 

• Demultiplex data

When the terminal has identified the layer 3 protocol used (ARP, RA
or IP) it can send the Ethernet data to the correct location for further
cessing.

5.2.3 Address Resolution Protocol (ARP)
• Extract and check the ARP code

The ARP protocol is used to query the network for a MAC address w
we have a IP address but do not know the MAC address. The ARP c
typically tells if the packet is a query or a reply.

• Update ARP table

We should update our table describing which MAC addresses belong
which IP addresses.

• Send reply

If needed a reply packet should be triggered.

5.2.4 Reversed ARP (RARP)

RARP is typically used during a booting procedure. We know our MA
address from the NIC but do not have any IP address. To get an IP ad
we send out a RARP request. The header format and processing tasks
same as for the ARP protocol.

5.2.5 Internet Protocol (IP)
• Check the version

The version field tells if it is IP version 4 or 6 that has been used. T
main difference is that IP version 6 allows for a larger number of us
since 128 bits are used for the addresses instead of 32.

• Calculate header checksum

The IP checksum is a 16 bit wide 1-complement addition of the hea
The data is not included in the checksum addition since transport layer
tocols (e.i. TCP, UDP, ICMP, IGMP) have their own checksums. This op
ation must be performed for all headers which can be a heavy load f
host processor.

• Extract and check IP Destination Address (IP DA)
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The IP DA is unique for a terminal, no other terminal share the sa
address. Each network terminal can have several IP DA but normal
only has one. If the IP DA is erroneous the packet should be discarde

• Extract the IP Source Address (IP SA)

The IP SA is used for checking if we should accept a packet or not. T
procedure will be described in section 5.2.7.

• Reassembly fragments

An IP packet might be to big for some parts of the network. In that ca
the servers will divide it into several smaller IP packets according to
Maximum Transmission Unit (MTU). This is called segmentation. In ord
to obtain the original packet the receiving terminal must reassembly
packets. In order to do this the fragmentation offset and IP identifica
(IP ID) fields must be extracted and processed. The IP ID is the same fo
the fragments and the fragmentation offset shows the order of the
ments. There are also flags saying if the packets has been fragmen
not. Another flag shows if the fragment is the last.

• Handle time-outs

If a fragment gets lost, a request for a retransmission must be sent a
certain time period.

• Check protocol field and demultiplex data

The protocol field shows the transport layer protocol used. The valid
ues in my protocol set-up are 1=ICMP, 2=IGMP, 6=TCP, 17=UDP. Wh
the protocol field has been checked the data can be directed to the c
transport layer data buffer.

• Check lengths

There is two types of lengths involved in IP processing. One describe
header length which is used to know when the data starts. The o
describes the total length which is used to see if all fragments have
received. The names of the fields differs between the two IP versions
the length information is essentially used in the same way.

• Process options

There are a number of different fields remaining that has to be proces
Among them are IP v6 extension headers, IP v4 options, and IP v6
labels.
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5.2.6 ICMP and IGMP

ICMP normally communicates error messages and exceptions, or co
tions that require attention. IGMP is used for setting up and managing m
ticast groups.

• Compute header checksum

Same procedure as for IP checksum calculation.

• Check ICMP version and type field

The version field is normally 1. If the type is 1, the packet is a query, a
if it is 2 it is a reply.

• Check IGMP type and code field

This header information describes the type of request or reply.
parameter field should be processed if it is included.

• Send ICMP payload to application

Some control messages should be passed on to the application for fu
processing.

5.2.7 TCP
• Extract Ports and check connection

The Source Port (SP) and Destination Port (DP) together with the IP
IP DA and transport layer type defines a connection. A receiving term
should discard all packets not belonging to a valid connection. For s
connections not all of the fields must be matched, instead these field
wild-cards. The procedure is described in detail in paper 3.

• Check Sequence number and reorder data

The sequence number describes where in the data buffer the curren
load should be placed.

•  Extract acknowledgment field and trigger a reply payload
• Check and process options and flags

Including the finish flag.

• Update connection state variables and timers

This is the complex traffic flow management, controlling all traffic.

5.2.8 UDP

The main difference between UDP and TCP is that UDP is connec
less.

• Extract Ports and check connections
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Similar to the TCP task. I call it a connection although we only chec
the port is open.

• Extract length field

To know when the hole payload has been received.

• Calculate header checksum

5.3 Proposed datapath
A datapath of the PPP has been developed and optimized based o

processing tasks introduced in section 5.2. The datapath of the
includes 3 types of components, the input buffer, the functional pages a
control memory accelerator. An overview of the PPP architecture is il
trated by figure 5.4

5.3.1 Input buffer

When data arrives from the network interface (GMII) to the PPP
streams through a chain of 32 bit wide flip-flop registers illustrated by
ure 5.5.

C&C

Flag decoder

FP FP FP FP FP FP FP

PPP

Interconnect Network

CMAA

dbus0
dbus1

Figure 5.4: Overview of the PPP architecture.

Timer
Hardware

Control memoryProgram memory

GMII
PHY
ASIC



Proposed datapath 47

sed
ssi-
, we
r of

d on
r pro-
e we
e a
of

deci-

ited
they
FPs

for
very

mes
ted
re
.1).
g in

.

ess
are
e a
The purpose of using a flip-flop chain instead of a normal RAM ba
buffer, is that we want to keep the fan-out from the register as low as po
ble. If the number of functional pages (FP, see section 5.3.2) is large
have to use a large number of registers in the chain, but if the numbe
FPs are moderate or low the chain can be minimized. The lower boun
the number of registers is then set by the decision latency of the heade
cessing. We do not want to send the payload data to the host befor
know if it should be discarded or not. But there is no reason not to us
low power RAM based FIFO in the end of the input buffer if the number
FPs is low and the decision delay is large. The number of FPs and the
sion latency are set by the protocol coverage, at design time.

5.3.2 Functional pages

The functional pages are all dedicated hardware blocks with a lim
configurability. Since they are dedicated for the processing they do,
have very little control overhead, which saves power and allows for the
to have a very high throughput. The functional pages are responsible
the data intensive processing in the PPP. Their processing tasks are
diverse both by type and complexity. Hence, the FP hardware beco
very different. What they have in common is that they all have a limi
configurability within their specific application area. Further they all a
controlled by the counter and controller (C&C discussed in section 5.5
The control normally consists of flags that starts or stops the processin
the functional page. The typical FP interface is illustrated by figure 5.6
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more FF
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Figure 5.5: The input flip-flop chain. The chain of flip-flops enables acc
to the data stream with low fan-out. If the number of functional pages
moderate and the header processing delay high the chain might includ

RAM based FIFO in the end to save power.

Discard?
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The output from a functional page normally consists of flags. Some fu
tional pages also produce result data that will be exported to other par
PPP. The FPs can be configured using configuration registers. This con
ration only takes one, up to a few clock cycles. The configuration vec
are produced in the micro controller which also controls the configura
procedure. Using the protocol suit discussed earlier a small set of f
tional pages has been selected and implemented to implement the
intensive part of the protocols. They are

• Extract and compare (XAC) FP
• CRC FP
• MII parallelization FP
• Checksum FP
• Length counter FP

The CRC FP is very important for the overall performance of the P
This FP has been implemented and manufactured using a standard ce
cess. The CRC solution proposed in paper 2 is very flexible and it can
cess a large set of CRC algorithms. If the bandwidth of such a configur
solution is not sufficient, a fixed logic, parallel data CRC implementat
can be used. Such a FP is described in [5.3] and it enables very
throughput. The CRC FP, CRC algorithms and design considerations
discussed in detail in paper 2.

The XAC FPs are used for extraction of header information that will
used by other parts of the PPP. They are also used for comparisons be

Figure 5.6: Funtional page interface.The FP are controlled by flags p
duced in the C&C. The primary output consists of result flags, e.g. disc

flag. Some FP also produces result data.

Configuration register

FP Control path

FP Data path

Control
flags

Result
flags

Configuration vector

Result data
From input
register chain
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the data stream and a data vector stored in the FP. This is used whe
destination address of a packet is checked. A XAC FP contains a ma
registers of 32 bits holding the values to compare with the extracted ve
It also contains a register holding the extracted vector. The XAC FP
compare four 8-bit values, two 16-bit values or one 32-bit values with
extracted vector. It generates a number of result flags based on the com
isons. The XAC FP is functionally divided into four slices each compar
one byte. One of these byte-slices is illustrated in figure 5.7. The XAC
has been implemented and verified in VHDL but the final layout remain
be implemented.

The MII parallelization FP is only included if the PP is going to be us
with the MII as interface. The MII produces 4 bit wide data. The FP
responsible for parallelization and alignment of the data, before it is pa
on to the 32 bit wide input buffer chain.

The Checksum FP essentially consists of a pair of 1-complement ad
and is a simplified version of the FP described in [5.1]. An overview of
checksum calculating FP is illustrated by figure 5.8. According to
investigations done by my colleagues this FP can operate at 10 Gb/s w
is unreachable using a general purpose processor. This FP has not ye
implemented by me.

=

x_vec_slice

data_in

x_vec(31 downto 0)

mask result

data_out

sel_mux

data_in_mux

reg_mux

‘0’

Figure 5.7: One out of four byte comparing slices in the XAC FP.
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The Length counter FP is responsible for counting the lengths of a pa
to find out when all fragments have been received. The length cou
adder is closely controlled by the C&C which uses it to schedule
actions. The length counter FP consists of a adder, and 2 registers. On
ister holds a stop value and the other is used as an accumulator reg
When the two register values are equal, an output flag is generated. Th
also produces a flag when the content of the accumulator register is z

All of the FP can perform high throughput processing due to their re
tively dedicated architecture. The slowest and most complex one is
CRC FP. It still manage a multi Gigabit throughput in such a mature s
dard cell process as the 0.35µm AMS 3-M 3.3 V if the number of covered
CRC algorithms are low.

In my research group a parallel project have found a different set of
The main difference between the two projects, is that the other does
handle fragmented packets and uses a more dedicated C&C archite
The alternative set of functional pages are described in [5.2].

Apart from the FPs mentioned above we can also consider other typ
FPs if the protocol coverage would be changed. Examples on such FP
cryptographic FP, coding FP etc. With a different set of FPs it would a
be possible to cover wireless protocols and ATM protocols. This illustra
the generic nature of the architecture.

5.3.3 CMAA

In paper 3 in chapter 8 an acceleration engine included in the PPP is
cussed. The Control Memory Access Accelerator (CMAA) operates b
as a memory controller and as a packet classifier. The CMAA performs

1-complement adder

1-complement adder

16

1616

Register

Figure 5.8: Checksum FP.

16

Result
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assembly of fragmented packets. The CMAA also accelerates the acce
control variables stored in the control memory. The access is based on
extracted from the packet headers using the XAC FP. The core parts o
CMAA are two look-up engines (LUE). The LUE mainly consist of Co
tent Addressable Memories (CAM). The throughput and latency of
CMAA are strongly depending on the number of entries the LUE have
their connection tables. If the number of entries implemented after
bench-marking and optimization procedure, is relatively low, e.g. 16 or
the latency, throughput, area, and power consumption will not be bad.
with this small number of entries the CMAA would significantly relax an
accelerate the overall PP processing. A deeper investigation of the app
tion is however required before the final number of entries can be deci
This process also requires the use of network processing benchmar
behavioral VHDL model of the CMAA has been implemented by me
have also implemented a structural model of the control path. The cri
path of the CMAA consists of the LUE which remains to be implement

5.3.4 Processing tasks allocation

The different processing tasks described in section 5.2, are allocate
different processing units within the PP according to the table below.

Table 3: Allocation of processing tasks listed in section 5.2.

Protocol Task Processing hardware

Ethernet Calculate CRC CRC FP

Check Ethernet DA XAC FP

Check type field XAC FP, C&C

Demultiplexing of data C&C together with CMAA

Extract length field XAC FP

Length counting C&C

ARP/RARP Update ARP table Micro controller

Trigger ARP reply Micro controller

IP Check version XAC FP, C&C

Calculate header checksum Checksum adder FP

Extract and check IP DA XAC FP

Extract IP SA XAC FP

Reassembly fragments CMAA
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5.4 Interfaces
The PP consists of two parts, the PPP and theµC. The interfaces between

them and towards the surroundings can be divided into three parts.

5.4.1 Network interface

The interface between the network and the protocol processor consis
a PHY ASIC. Normally we consider it to be the Gigabit Media Indepe
dent Interface (GMII), but MII, XGMII or others could also be considere
The GMII ASIC is a part of the PPP and it produces 32 bit wide data
will be delivered to the input buffer. The use of such an interface me

Handling time-out of fragments Micro controller

Check protocol field XAC FP, C&C

Demultiplexing C&C

Check lengths XAC FP, C&C, CMAA

Process options Micro controller

ICMP/IGMP Compute header checksum Checksum adder FP

Check ICMP version and type Micro controller

Check IGMP type and code Micro controller

Demultiplexing CMAA, Micro controller

TCP Extract ports XAC FP

Check connection CMAA

Check sequence number and reor-
der data

Micro controller

Extract acknowledgment and trigger
reply

Micro controller

Check and process options and flags Micro controller

Update connection state variables
and timers

Micro controller, hardware
timer

UDP Extract ports XAC FP

Check connection CMAA

Extract and manage length XAC FP, C&C

Calculate header checksum Checksum adder FP

Table 3: Allocation of processing tasks listed in section 5.2.

Protocol Task Processing hardware
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that the FPs does not need to handle the processing of the physical
protocols even if it would be possible to integrate such FPs.

5.4.2 Micro controller interface

The interface between the PPP and the micro controller consists of 2
busses, the shared control memory and control signaling using flags.
micro controller also uses the two data buses when it configures the f
tional pages or the program memory of the C&C.

5.4.3 Host system interface

The interface between the host processor, including application, mem
DMA, and others remains to be investigated. It is however clear that it
be the micro controller that will be responsible for this communication
the PP. The micro controller will control the communication both with t
DMA and the application through the hosts operating system (OS).
might also consider using a standard back-plan bus such as PCI as inte
between the two.

5.5 Control path

5.5.1 Counter and controller

The C&C is responsible for starting and stopping FP processing, base
the program and the result flags from the FPs. The C&C is also respon
for the decision to discard or accept the packets. The C&C is essentia
small RISC machine with a minimal internal datapath. It uses only
ALU. It also includes a register file, flag decoder, a program counter an
program flow controller. Further, a special conditional jump support m
be included. The conditional branch support selects one out of four
gram counter values based on the flags from the FPs. This is used to s
the correct program flow when the incoming packets protocol type
been checked. The C&C executes a set of programmed finite s
machines. The FSM top level packet reception control is illustrated by
tion 5.9. The C&C produces start and stops flags for the FPs and sim
instructions for the CMAA. To trigger the firing of the flags it uses the tw
counters. The C&C operates at a higher clock frequency compared to
rest of the PPP. The research on C&C is going on and its HW will
implemented after the licentiate defense.
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5.5.2 Hardware timer

Managing and updating the timers can become a large part of the pro
ing of the TCP and IP protocols. The number of timers is proportiona
the number of network connections, so the problem is not as severe
network terminal as it is in routers. Despite this, it is a task that mus

Wait for synchronization

New Ethernet frame

ARP or RARP
Store IP packet in
control memory

Y

New IP packet

discard

Version IP v6IP v4

else

discard

write
ULP

UDPTCP UDPTCP
v4v4

v4

write
ULP
v6

v6 v6

Checksum results

discard discard

Figure 5.9: The control FSM controlling the PPP during packet receptio
will be implemented in the C&C in a programmable way.

Layer 4 protocol? Layer 4 protocol?
ICMP

IGMP

ICMP

IGMP

discard
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considered to offload from the micro controller since the hardware co
limited and the hardware is very efficient. A hardware timer consist o
counter, a memory including all the timer events in order and some s
control logic.

5.6 Configuration
The proposed architecture supports three levels of configuration.

• Design time selection

First of all it is possible to select and configure a number of FPs du
the design phase, before manufacturing.

• Data path configuration

Secondly the micro controller can configure the FPs using a relativ
small number of clock cycles. This means that the data path of the PP
configured. The program flow of the C&C can also be fully configured d
ing this phase by rewriting the contents of the program memory.

• Programmable data path selection

The data path can be controlled and selected in a programmable
using the C&C.

All together the three levels of configuration possibilities gives the arc
tectures a very high flexibility.

5.7 Performance
Using the performance parameters introduced in chapter 3 we can

cussed the performance of the proposed architecture.

• Flexibility

The architecture is programmable with a configurable data path.
capable of processing up to layer 4 packets and handles fragmented
ets. The FP are selected to be as general as possible. That way they
be reused for other protocols. The micro controller provides all the flexi
ity needed.

• Throughput

Using dedicated hardware blocks enables a very high performance
simulations indicates that the PPP functional pages and CMAA man
more than 4 Gb/s throughput, using a mature, not to say old standard
process. The throughput of the processing in the micro controller and
interface remains to be investigated.

• Inter-operability
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The general purpose micro controller can be programmed to interact
the host operating system, but that is not a part of this research pro
However, it is clear that the flexibility, provided by the PPP and micro c
troller programmability, makes it possible to optimize the user interfa
Further investigations on host operating systems optimization must be
formed.

• Cost

CMAA cost depends on the number of entries that will be used. T
power must be considered low since there is so little processing overh
Further the dedicated datapath is only performing tasks they are dedi
for which increase the power efficiency. The SoC approach means red
number of pins. The PPP will not use much area as long as the CMAA d
not include to many entries. This means that the packaging cost is s
The flexibility of the design will also help to keep the cost low since it bo
increase the time on market and the application coverage.
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Configuration-Based Architecture for
High Speed and General-Purpose Proto-

col Processing
Dake Liu, Ulf Nordqvist, and Christer Svensson

In the Proceedings of SIPS 1999
Abstract

A novel configuration based general-purpose protocol processor is
posed. It can perform much faster protocol processing compared to
eral-purpose processors. As it is configuration based, different proto
can be configured for different protocols and different applications. T
configurability makes compatibility possible, it also processes protoc
very fast on the fly. The proposed architecture can be used as a platfo
an accelerator for network-based applications.

6.1 Background
Networking has been developing very fast and more and more proto

are emerging for different applications. Higher processing performan
are requested by applications. Requirements could be recognized as:

• Multiple ports and multiple Gigabits per second real-time framing a
de-framing.
57
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• To pre-process as much protocol jobs as possible before a memory
access.

• A general, simple, fast, and flexible architecture for different kinds o
protocols.

• A built in protocol recognition and automatic configuration capabilit
• Low power, high speed, and memory (size and access) efficient arc

tecture.

Two kinds of protocol processors are available on the market nowad
one is the specific single protocol-limited ASIC (we call it SPASIC in th
paper), the other is the processor-based general-purpose CPU (we
GPCPU in this paper). None of them can fit the requirements for fu
computer communications. The first one, SPASIC, is only used for
protocol or a few specific protocols included in the design. Obviously
does not support future protocols. The second one, GPCPU, cannot wo
very high speed because of the general architecture. As a redundan
speed-limited architecture, it is not the satisfactory solution for a relativ
stable and control-extensive flow. From another point of view, the proto
processor must be compacted because it is often used as a pre-pro
and as a small part in a certain kind of application. Therefore, the red
dant architecture is not suitable for embedded or integrated solutions.

Most solutions available now use a specific circuit to process the prot
flow, and use a GPCPU for switching, routing, and other applicatio
Because of the limited SPASIC architecture, future flexibility is limite
For multiple applications, more SPASIC cores are integrated to cover m
protocols and this makes the system redundant.

We need to recognize the protocol of the incoming package and then
figure the processor to fit the protocol because the system might be us
a variable environment. Therefore, a new architecture is strongly reque
which is as fast as a SPASIC, as flexible as a GPCPU, and as simple a
sible.

6.2 Functional coverage of DPSP
The system proposed is a new architecture for control-extensive

cesses, e.g. protocol processing. One example is to take the data pa
from AUI (Attachment Unit Interface of 10Mb Ethernet), or MII (Medium
Independent Interface of 100Mb Ethernet), or GMII (for G-bits Ethern
Fast pre-process for different level of protocols is performed, for exam
from Ethernet to IP and even up to TCP on the fly.
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We can solve all problems mentioned above by introducing theDeep
pipeline serial processor DPSP. It executes the protocol processing bas
on a booted and predefined configuration. Since the control is based o
configuration instead of software programs, DPSP can process protoc
real speed, e.g. Gbit Ethernet. After booting, the configuration HW can
shut down, which gives possibilities of low power. Following this way, t
application, e.g. IP telephone or IP switching can be separated from
protocol framing and de-framing. The advantages are:

• Framing and de-framing are performed in a separate core; it acts a
platform or an accelerator and makes more application integration 
sible.

• Separated the DPSP as a stand-alone machine working at high spe
with a standard implementation.

• All functional blocks inside the DPSP are self-contained and config
ured, therefore the adaptation to a long-term unpredictable future pr
cols is possible.

• The protocol can be recognized by this solution and a correct config
tion can be booted to the DPSP after the recognition process. We de
this feature as the self-learning and self-adaptation for any product u
for different environments, e.g. home RF.

The architecture performs protocol processing based on both pre-co
ured setting and a real time control program. The pre-configured se
processes the protocol in every cycle inside each field of a data frame
real-time control program only works on the higher level such as bra
decisions, macro selections, and job hand over. Thus, the processing
can be much higher because there is no program (which is slow in pr
ple) involved in sub level processing. By planning the configuration,
architecture can supply as good flexibility as that supplied by a GPCP

6.3 Application overview
The goal is to make a platform for all possible network applications. P

of the possible applications and features supported by the platform ca
listed:

• Fast framing, de-framing for the Internet switching: G-bits Ethernet
source, and destination address extraction, fast IP DA and SA extrac
etc.

• Predict the memory allocation: relax memory traffic, payload reorde
ing, etc.

• Fast queue and priority check for the real time network applications
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• For certain applications the products recognize the protocol of the c
ing data, and boot the protocol configuration after learning.

• The user can boot different protocols for different applications.
• For fast prototyping or SoC integration.

6.4 Architecture
We introduce a new architecture that can work towards the physical li

of CMOS [3]. It can be implemented using conventional ASIC design flo
and can be configured by a program to suit different kinds of protocols
applications. The proposed architecture is divided into two parts. The
which is the key part, namely Deep Pipeline Serial Processor (DP
Serial does not mean bit serial, it is a byte or a word based serial arch
ture. The second part is a normal micro-controller, the C. The C supp
the DPSP configuration, the interface between DPSP and the applica
and the real-time high-level job control. The DPSP can work much fa
than the micro controller can.

The proposed architecture executes the protocol process based on
programs and pre-set configurations. The program only controls m
jobs, which are based on the frame rate instead of the byte rate. The p
configuration controls real time protocol processing at high speed wi
relatively fixed control and working mode. Therefore, the program con
induced speed limit is completely eliminated.

The proposed architecture is configured for a specific protocol before
protocol process. The configuration is performed by writing coefficie
and control codes into control registers in a Functional Page, FP. All F
tional Pages are scheduled in the order in which the protocol is proce
in sequence.

For implementation convenience, data coming into every functional p
is pipelined. Functional pages are connected one by one following the
schedule. Each FP manages its process in its own sub field. For exa
the FP for CRC manages only the CRC check on the fly. Another exam
the FP for header matching only matches the protocol header for its
chronization.

The System block diagram is given in figure 6.1. The left part is DP
and the right part is the C for configuration, applications, and for supp
ing applications. Different protocols can be executed according to the
figuration given by C. The C performs the service support. Which
divided into three parts. The first part is booting, including the boot of c
figurations for all FP and programs in the counter and controller. The
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ond part is the DPSP monitoring, including checking the DPSP execu
status, receiving and transmitting payload data, and sending intera
control. The third part is to coordinate DPSP with the application ha
ware. The configuration is performed during the power-on boot. When
protocol of the incoming data is unknown, the booting is performed for
protocol recognition first, and secondly, the normal protocol specific c
figuration according to the result of the recognition is booted. The DP
top level architecture is given in Fig. 2. Following functions will be all
cated as FP’s in the DPSP given in the above figure:

Matching: It sets up the synchronization by recognizing the preamble

Error checking: Check errors according to the coding of the protocol.

The field extraction: It extracts fields and accelerates processes furth

Level hierarchy transparent process: The HW can make levels of net
work hierarchies transparent. The upper level payload can be extracte

Payload management: To measure the length of the payload and to va
date the correctness of the data. Then allocate the data into a suitable
tion.

Other QoS options: According to the applications, QoS can be su
ported.

Application interfacing : Before data allocation, check the applicatio
find the possibility to send data to the application on the fly.

Fig. 1. The System block diagram
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Figure 6.1: The system block diagram.
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Fast acknowledgement: The acknowledgement can be compiled in
easy and fast way according to extracted fields.

Fast ACK as an important function is performed on the fly in DPSP. N
essary messages such as DA and SA are kept for building the fast A
The FP for ACK is allocated between the shift-in and shift-out. The f
ACK packet can get TCP ACK, IP address and LAN address, e.g. Ethe
address from the buffer.

The data flow is given in figure 6.2. The data coming from the phys
level has been converted to byte level format and data rate is one eigh
the bit rate. Control signals (single pins) are handover start-finish stro
from the counter and controller. Control signals coming to the counter
controller gives timing status. Shift in and out are 8 bits input-output d
of DPSP. Other width of data busses can be configured.

6.4.1 Functional Pages

Simple FP implementation can be done by custom design. Complic
FP will be implemented using synthesis. The flags are outputs from
sythesised logic using the configuration, the incoming data, and the co
conditions as inputs. As an example, the matching unit uses configur
registers to save the header pattern. When the shifted input data ma

….

Fig. 2. Data flow of the DPSP
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Figure 6.2: Dataflow of the DPSP.
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the pattern at a certain point, a matching flag is given as Y_match
(data, configuration_register).

The active period of a FP is decided by its function. Most FP’s are o
active part of the time. Some FP’s are active all the time during a fra
process, e.g. the CRC check.

6.4.2 Counter and Controller

The counter and controller is a counter based state machine (F
adapted by configurations. A complete configuration set will be writ
into a register file. Each one or few lines in the register file are configu
for the control of a FP.

There are two levels of controls performed in the ”counter and cont
ler”. The upper level control is specified as the handover process.
lower level control supports only the counting status. The upper level c
trol is a kind of interactive control. The lower level control is not intera
tive because the FP uses the status as a control reference without g
feedback. The deep pipeline is scheduled inside each FP. The control o
deep pipeline is given by the lower level control from the ”counter and c
troller”. Status of the state machine is configured according to the rec
nized protocol. A group of control vectors for a specific FP is select
(addressed) by the counter. Therefore, the control procedure is sche
following the configuration. The deep pipeline data path performs the p
tocol jobs in N+ cycles. Here N is the number of bytes (or words, accord
to which protocol is used) and is the number of cycles used for hand
one job from one FP to another FP.

configurationregisters

Logic can be configured

Y_flag = f (data, configuration, control, logic, counter)

control

Fig. 3. FP structure

data

Figure 6.3: FP structure
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The control is scheduled in the following way:

• Start a FP
• Let the FP run itself
• Monitoring flags coming from all active FP’s.
• Make new control decision according to flags.
• Monitor the control interface between the micro controller and the

DPSP.
• Change the control procedure if the micro controller gives a new

request.
• Inform the micro controller to that the data is available.
• Responde to the micro controller to accept data.
• Send the accepted data to a FP responsible for the acknowlegeme

6.5 Conclusion
We have described a configuration based DPSP architecture as a pla

for network applications. The architecture implements the infrastructur
an accelarator which gives the necessary framing and de-framing, a
fast acknowledgement. Most protocol processes can be supported by D
architecture because of the flexible configuration. The configuration-b
architecture can also support protocol recognition based on predefined
tocol preambles. As the DPSP is a specific architecture for protocol
cesses, it can accelarate protocol processing on the fly for high s
applications.

…...

configuration in

address control of the configuration

control logic

flags

handover control
configuration handover

Fig. 4. Counter and controller

counter states

FP handover control

configuration out

Figure 6.4: Counter and Controller
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CRC Generation for Protocol
Processing

Ulf Nordqvist, Tomas Henrikson and Dake Liu

In the Proceedings of NORCHIP 2000

Abstract
In order to provide error detection in communication networks a met

called Cyclic Redundancy Check has been used for almost 40 years.
algorithm is widely used in computer networks of today and will contin
to be so in the future. The implementation methods has on the other
been constantly changing.

A comparative study of different implementation strategies for compu
tion of Cyclic Redundancy Checks has been done in this paper. 10 diffe
implementation strategies was examined. A novel architecture suitabl
use as an IP in an protocol processor is presented. As conclusion, diff
implementation techniques have been divided into application a
according to their speed, flexibility and power-consumption.

7.1 Introduction
Both computer and human communication networks, uses protocols

ever increasing demands on speed, cost and flexibility. In the market
67
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ment of hardware for network nodes such as routers, switches and bri
the performance needs can be fulfilled by using Application Specific I
grated Circuits (ASIC) or Application Specific Standard Products (ASS
This will probably be the case also in the future due to there relatively c
insensitive costumers. In order to let the end-user take advantage o
bandwidth enhancement in today networks, tomorrows Network Term
(NT) hardware must support transmission speeds of Gbit/s [7.10. Hard
for such NT components is on the other hand sold on a cost-sensitive
ket share with high demands on flexibility and usability.

Traditionally NT has been implemented as ASIC:s for the lower layer
the OSI-Reference Model [7.17 with an CPU-RISC based SW implem
tation of the upper layers [7.8, or completely implemented in software [
[7.3, [7.17. In [7.6, [7.7 we presented a new architecture for configura
protocol processing that supports programmability on the upper layers
gives both configurability and high performance on the lower layers. T
kind of solution is also supported by [7.18, [7.19 and [7.14. This archit
ture specifies that, the without any doubt most computational exten
task, Cyclic Redundancy Check (CRC) [7.3, [7.20, should be impleme
as configurable hardware, supporting buffering free processing.

The speed requirement is very important since a protocol processor
buffer incoming data if jobs are not completed at wire-speed. This lead
high costs in terms of power consumption, area and manufacturing c
due to the usage of buffers.

The aim of this paper is to compare different implementations of C
computational units in order to specify a suitable one for protocol proc
sors.

7.1.1 The CRC algorithm

Cyclic Redundancy Check is a way of providing error control coding
order to protect data by introducing some redundancy in the data in an
trolled fashion. It is a commonly used and very effective way of detect
transmission errors during transmissions in various networks. Com
CRC polynomials can detect following types of errors:

• All single bit error
• All double bit errors
• All odd number of errors
• Any burst error for which the burst length is less than the polynomia

length
• Most large burst errors
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The CRC encoding procedure can be described by equation 1.

(EQ 1)

V(x) is the n bit long data word transmitted and it consists of the origi
data and U(x) followed by a codeword S(x) called the CRC-sum. S(x
computed according to equation 2.

(EQ 2)

S(x) is by other words the reminder resulting from a division of the d
stream and a generator polynomial g(x).

The actual coding-procedure is the same on both the receiving and t
mitting end of the line. The CRC encoding/decoding principle is illustra
by figure 1.

As can be seen in figure 1 the receiving NT perform a CRC-check on
incoming message and if the result is zero, the transmission was error
One more practical way of solving this is to compute the CRC only for
first part of the message U(x), and then do a bitwise 2-complements a
tion with the computed checksum S(x) on the transmission side. If
result is non-zero the receiver will order a retransmission from the sen

7.2 Implementation theory
This section introduces the commonly used and presents one new a

tecture for implementation of the CRC algorithm.

• Software(SW) Solution[7.3, [7.1: The CRC algorithm can always be
implemented as an software algorithm on a standard CPU, with all 
flexibility reprogramming then offers. Since there in most communic
tion network terminals exists a CPU, the SW-solution will be cheap
free in terms of hardware cost. The drawback is obviously the comp
tional speed since no general purpose CPU can achieve the same
troughput as dedicated hardware.

V x( ) S x( ) x+
n k–

U x( )=

X
n k–

U x( ) a x( )g x( ) S x( )+=

CRC CRC
U(x)
data

Transmission
line (Network)

V(x)

S(x) U(x)

= 0?

U(x) + errors

Figure 7.1: Principle of error detection using the CRC algorithm.
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• Traditional Hardware Solution : Linear Shift Register (LSR) with
serial data feed [7.20 has been used since the sixties to implement
CRC algorithm, see figure 2. As all hardware implementations, this
method simply perform a division and then the reminder which is th
resulting CRC checksum, is stored in the registers (delay-elements
after each clock cycle. The registers can then be read by use of ena
signals. Simplicity and low power dissipation are the main advantag
This method gives much higher throughput than the SW solution bu
still this implementation can not fulfill all the speed requirements of
today network nodes. Since fixed logic is used there is no possibility
reconfigure the architecture and change the generator polynomial u
this implementation.

• Parallel Solution: In order to improve the computational speed in C
generating hardware, parallelism has been introduced [7.2, [7.4, [7
[7.9, [7.11, [7.12. The speed-up factor is between 4 and 6 when usin
parallelism of 8. By using fixed logic, implemented as parallelized ha
ware, this method can supply for CRC generation at wire speed an
therefore it is the pre-dominant method used in computer networks.
parallel hardware implementation is illustrated by figure 3. If the CR
polynomial is changed or a new protocol is added, new changed ha
ware must be installed in the network terminal. The lack of flexibility
makes this architecture non suitable for use in a protocol processo

+ +D D D D + U(x)
D

Figure 7.2: Linear Shift Serial Data Feed

Combinational
logic

U(x)

S(x)

State registers

Figure 7.3: Parallel Fixed Logic Implementation
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Configurable Hardware: One way of implementing configurable hard
ware is by using Look-Up-Tables (LUT) as proposed by [7.3, [7.12 a
[7.2. The architecture is illustrated by figure 4.

This implementation can be modified by using a larger or smaller LUT
the size of the LUT is reduced the hardware-cost in terms of power c
sumption and area will be reduced but in the same time the Combinati
Network will be increased so the effect will be cancelled. The optimal so
tion has not been derived.

Another, novel implementation method is theRadix-16 Configurable
CRC Unit, which is presented for the first time in this paper. By notici
that any polynomial of a fixed length can be represented by implemen
the CRC using a LSR with switches on the reconnecting wires as il
trated by figure 5, a configurable hardware can be implemented u
NAND-gates to represent the switches.

In order to improve the speed of the Radix-16 Configurable CRC, a 4
wide input data stream is used as can be seen in figure 6. The resultin
in each positionk in the CRC register then depends on the value of thek-4
CRC bit, the last four CRC bits, the polynomial bit description and

LU
T

CRC regs 32 b Data in 8 b

Combinational
Logic

Polynomial

LUT
configuration
unit

Figure 7.4: Look Up Table based configurable hardware.

+ +D D D

Figure 7.5: Configuration by use of switches in the circuit reconnectin
wire.

“0” “0”
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input bits. The logic, which consists mainly of XOR and NAND-function
provides the necessarily configurability.

The polynomial input makes it possible to implement any given C
algorithm of a given size. Using shut-down logic on parts of the circ
enables N to be configured for 16, 24 or 32 bit polynomials. This me
that for example CRC polynomials for protocols such as HIPERLAN a
Ethernet is manageable.

7.3 Experimental results
10 different implementations of the CRC algorithm, including one C

RISC based SW-implementation, have been examined. They have
described using Mentor Graphics Renoir and VHDL, synthesized and o
mized using Build Gates from Cadence and the Place & Route was
using Ensemble P&R from Cadence. The technology used is AMS 0
µm.

Since most network protocols are bytebased, there is no meanin
investigating a parallelism of more than 8 even if the other parts of a pr
col processor might run on other clock frequencies using for example
bit wide input stream.

As seen in table 1 the fixed logic and parallel input implementation is
fastest. That is in the order of what have been reported in earlier work
can also see that the LUT based method gives about twice the speed
Configurable Radix 16 implementation at the cost of a 4.5 times hig
area. A big part of the area in the LUT based architecture is the LUT re
ters, but the power consumption will anyway be considerably higher t
the power consumption in the Radix-16 implementation. In many upc
ing applications such as HIPERLAN [7.15, [7.16, the power consump
will be crucial. The speed supported by the Radix-16 implementa
exceeds 0.6 Gbit/s, which is sufficient since today NT applications do
demand higher troughput. Since the logic in that specific implementa
dominates and the connection delay is quite small, there will be a cons

Dk-4

Dk-3

Dk-2

Dk-1

Dk

Dk+1

Dk+2

Dk+3

+ DN-3

DN-2

DN-1

DN

Logic
Input
Data

+

+

+
CRC Polynomial

Figure 7.6: Radix-16 Configurable CRC engine
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able increase of the speed powered by downscaling in future technolo

The speed-up factor due to scalingswill be up tos2 which means that even
protocols as 10-GEthernet which will come in the future can be suppo
by the Radix-16 implementation [7.13 thanks to scaling.

Conflict with other processes makes interlayer processing difficult, no
say impossible when using the SW algorithm run on a CPU. This me
that even if the SW-algorithm alternative can be implemented on a h
performance CPU that provides the speed that is needed, it is not sui
for protocol processors such as those described by [7.6 and [7.7.

7.4 Conclusions
Because of the superior performance of a parallel ASIC implementat

it will be used for implementation of network-node-components. The c
cept of using several ASIC implementation as Functional Units in a pro
col processor and just letting the processor turn on the CRC tha
currently used, as in VLIW architectures, might also be of interest altho
you then have no configurability for supporting new protocols.

Table 4: Comparison between different CRC implementations. The Pads are not
included in the area computation.

CRC implementation
Polyn.
Length

Area

[mm2]

Max
Clk
freq.

[MHz]

Max
Speed
[Mbit/

s]

Serial Input - fixed Ethernet Polynomial 32 0.014 413 413

Serial Input - any polynomial 32 0.017 369 369

Serial Input - any polynomial 16 0.011 355 355

Parallel(8) Input - any polynomial 32 0.061 109 875

Parallel(8) Input - any polynomial 16 0.038 130 1039

Parallel(8) Input - fixed Ethernet
Polynomial 32 0.035 208 1663

Parallel(8) Input LUT Based 32 0.225 169 1358

Configurable Radix-16 CRC - any poly-
nomial

32 0.050 166 663

Configurable Radix-16 CRC - any poly-
nomial

16,24,3
2

0.052 153 612

SW Pure RISC (43893 clk cycles / 1500
Bytes)

any 600 164
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Software solutions for low speed protocols will also be used for lo
speed applications, but a increasing area of applications demands
speed configurable protocol processing, including CRC generation.
hardware architecture that can fulfill this specifications is the Look-
table -based structure proposed in [7.1 and implemented in this paper

A novel architecture for this application area has also been prese
which has a superior power-delay product. The architecture impleme
can be configured for CRC encoding/decoding using any 16, 24 or 32
polynomial. Power consumption will be kept low using shut-down log
The architecture support the speed requirements of today protocol pro
ing in NT:s. For upcoming protocols used in NT network processing, s
ing will provide necessarily speed-enhancements.
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Packet Classification and Termination in
a Protocol Processor

Ulf Nordqvist and Dake Liu
Submitted to the HPCA Network Processor Workshop

Abstract

This paper introduces a novel architecture for acceleration of con
memory access in a protocol processor dedicated for packet recepti
network terminals. The architecture enables the protocol processor to
form high performance reassembly and also offloads other parts of the
trol flow processing. The architecture includes packet classification eng
and concepts used in modern high-speed routers. The protocol proc
combined with a general purpose micro controller, fully offload up to la
4 processing in multi gigabit networks when implemented in mature s
dard cell processes.

8.1  Introduction
Both computer and human communication networks use protocols

ever increasing demands on speed, cost, and flexibility. There is al
strong development towards an increased use of network protocols
applications that traditionally used other implementation techniques,
voice and video. One reason is that packet based network protocols
77
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normally handle a mixture of any kind of traffic. For network node comp
nents such as routers, switches and bridges, the performance need
been fulfilled using Application Specific Integrated Circuits (ASIC)
Application Specific Standard Products (ASSP) since these applica
traditionally have had quite moderate demands on programmability. T
traditional approaches will probably continue to co-exist with more p
grammable solutions such as network processors (NP) in the future, d
their relatively cost-insensitive and performance demanding consum
Having said this, it is clear that the networking industry is request
moore programmable devices in tomorrows network.

In order to let the end-users take advantage of the bandwidth enha
ment in todays networks, tomorrows Network Terminal (NT) hardw
must support transmission speeds of Gbit/s. Hardware for such NT com
nents is on the other hand sold on a cost-sensitive market share with
demands on flexibility and usability. Traditionally NT has been imp
mented using ASIC:s situated on the network interface card processin
lower layers in the OSI-Reference Model [12] and a CPU-RISC based
implementation of the upper layers. Usage of standard, general pur
CPU:s, is expensive in terms of cost, space and power due to their la
dedicated hardware. There is also an upper capacity limit, set by the
capacity and the instruction rate of the CPU. Today it is easy to find N
work Interface Card (NIC) supporting multi-gigabit networks but su
bandwidth can not be utilized by the host since it requires the host to
fully loaded processing layer 3 and 4 protocols, leaving nothing for
application and system processing. The research focus has mainly be
router and switching applications so far, but in the future the terminals
also require offloading using programmable high-speed solutions.

To meet these new requirement a new area of communication han
hardware platforms has emerged. These are commonly denoted as
Offload Engines (TOE). One of these TOE solutions is called program
ble protocol processor (PPP) and it was introduced by this papers au
in [9] and [10] 1999. As most of the TOE it consist of programmable pa
that can accelerate and offload a terminal host processor by handlin
communication protocol processing. The protocol processor platform
domain specific processor solution with superior performance over a
eral purpose CPU, that still provides flexibility through programmabil
within the limited application domain. The PPP architecture is intended
integration on a ASIC chip, it is not a board-level integrated programma
NIC. The protocol processor hardware platform is further discusse
chapter 2. In chapter 3 a novel methodology and architecture for hand



Programmable protocol processor 79

s-

rans-
k, so
r and
the
cep-

ica-
, we
blem
arch
stor-
ory

eck
this,
s are

ing
has
art
data
ols
ksum

r
p
igh
is
and distributing, control flow information to and from our protocol proce
sor is introduced.

8.2  Programmable protocol processor
The main task of the protocol processor is to process the packets t

ferred between the application on the host processor and the networ
that a secure and reliable connection is provided between the sende
transmitting function. The protocol processing architecture (and
research project behind) discussed in this paper, only deals with the re
tion of packets. Since the transmitting of packets is limited by the appl
tions construction of packets and have lower demands on low latency
have chosen to concentrate our research on the packet reception pro
before discussing packet creation acceleration. The goal of this rese
project is to process as much of the protocol stack as possible before
ing the data payload to the systems main memory. By reducing the mem
access and buffering, illustrated by figure 8.1 , both memory bottlekn
problems and power consumption can be reduced. In order to achieve
the protocols must be processed at network speed and multiple layer
being processed simultaneously as proposed in [18].

In order to deal with the fact that the nature of the different process
task in a protocol processor is very versatile the hardware platform
been divided into two parts. This is illustrated by figure 8.2 . The first p
is the Programmable Protocol Processor (PPP) which is dedicated for
intensive processing task mainly originating from the lower level protoc
in the OSI-protocol stack standard. Examples on such tasks are chec

SoC

PPP

Input buffer

C&C µCFP

Host processor

DMA

Main
Memory

Application

Network

Ctrl memory

G
M

II

Figure 8.2: The PPP together with a general purpose micro controlle
handles the communication of one network port. In a system on chi

(SoC) many PPP can be used as port-processors in order to provide h
bandwidth between the application and the network. A control memory

used for storage of inter packet control variables.
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calculations, address checks, length counters etc. Normally they are
packet processing tasks that have to be performed even if the prot
covered are very simple. The other part off the platform is a general
pose micro controller (µC) that deals with control intensive protocol pro
cessing tasks such as connection state handling and other inter-p
processing tasks. The micro controller is also used for the configuratio
the PPP for different type of protocols as well as firewall updates. Fur
the micro controller handles the control communication with the host p
cessor and the DMA, e.g. setting up and closing sockets etc. Using D
communication between the PPP and the host reduces the interrupts
pared to bus-communication [17]. In the NP research community the
today a clear trend towards a separation of the processing in a slow
fast-path similar to our approach. In figure 8.3 there is an illustration sh
ing how different layers in the protocol stack are distributed to differ
processing resources.

The micro controller is very suitable for implementation of the vario
finite state machines (FSM) which contributes to a big part of the con
processing. Never the less, there are other tasks within the inter-packe
cessing domain, which the micro controller efficiently can be offload
from. One of the main operations is a search and access of control
based on header information in a receiving packet. This operation is c
parable to the bind and in_pcblookup C-functions used in software im
mentations. In a receiving situation the PPP will process the packet
then discard it or hand it over to the micro controller.

Data BufferData Buffer

Layer N protocol

Layer N-1 protocol

Figure 8.1: Using inter-layer processing the power consumption and
required memory usage in the protocol processor can be reduced sinc

buffering of data between different protocol layers can be eliminated
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The proposed platform, including a PPP together with theµC, is essen-
tially a TCP offloading engine (TOE) dedicated for network terminals.
TOE for NT does not make any routing decisions. It only discards pac
or accept them before they are passed on to the correct host memory
ers. Further the number of connections is much less than in a layer 4 ro
Hence the architectural design of such an offloading device have o
goals and requirements. Consequently the research on such devices
divert from the network processor research area.

As illustrated by figure 8.4 the PPP hardware architecture for proto
processing consists of four main parts. One is the input buffer chain
provides the data to the accelerating functional pages (FP). By using
bit wide chain of flip-flops, the fan-out from the flip-flops can be kept on
tolerable level even if the number of FP increases with new protocols
an increased protocol coverage. Using a RAM based FIFO buffer ins
of flip-flops would decrease the activity but the fan-out would be a hu
problem. As long as the fan-out is kept low it is still possible to replace
last flip-flops in the chain with a minimal RAM-based FIFO. The tot
buffer size is dependent on the decision latency of the PPP. The dec
answer is normally discard or send packet to memory for further proc
ing. Some payloads should be sent to the host memory and some t
control memory.

The control of the various accelerators (FP) in the PPP, mainly consis
start and stop flags. These flags are provided from the Counter and Co
ler (C&C). The flags are generated based on an internal program in
C&C, result flags from the FPs and counter values generated in the C

Intra packet/
data intensive
processing

Inter packet/
control intensive
processing Layer 4

PHY

MAC

Layer 3

ULPHOST CPU

µC

PPP

(X)GMII - interfacePHY
ASIC

Figure 8.3: Offloading the host using various types of accelerators for
ferent types of processing tasks and protocols. Typically higher layer 

tocols require more flexibility through programmability.
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The C&C is responsible for sceduling the start of the processing in the
at the correct clock-cycle, as the data streams through the register c
Based on the result from the FPs, the C&C can either discard the pack
continue the processing by configuring and starting new FPs. If a pack
discarded, e.g. because the destination address was errornous, all th
are immediately shut down in order to save power.

Since the processor operates on streaming data, instead of stored d
memory, decisions on which program flow to execute requires mini
latency. Different protocol configurations uses different program flo
Hence program flow selection is dependent on the type and content o
receiving packet. The C&C includes a special instruction buffer for ac
eration of multi-choice conditional jump instructions in order to provi
maximum system performance. The payload of received packets of TC
UDP type will be sent to the host while the payload of control oriented p
tocols such as ARP, RARP, ICMP, IGMP will be stored in the cont
memory. The control memory acceleration part is further discusse
chapter 3.

C&C

Flag decoder

FP FP FP FP FP FP FP

PPP

Interconnect Network

Control
CMAA

dbus0
dbus1

MEM

Figure 8.4: The programmable packet processor consists of 4 parts: 
Counter and Controller (C&C), the input buffer chain, accelerating fun

tional pages and a Control Memory Access Accelerator (CMAA).



Control Memory Access Accelerator 83

icro
col.
er,
bil-
pro-
v4,

pro-
:

s
they

rious
sed

fter
tu-
top

ni-
s a
ss-
r-

d the
t at
Fur-
sor.
ter-
been
d in
las-
tent
ed
8.2.1 Functional pages

The FPs must operate at wire speed. FPs are configured from the m
controller during set up for a specific set of protocols or a single proto
Each of the FP are dedicated ASIC with a limited configurability. Togeth
the micro controller and the C&C supports a high degree of programma
ity. To better understand the nature of the FP a common set of network
tocols has been used. The protocols are TCP, UDP, ICMP, IGMP, IP
IPv6, ARP, RARP and Ethernet (Fast E and GigE). In order to support
cessing of these protocols, the following FPs, have been implemented

• 1 CRC FP described in [15]
• 2 eXtract And Compare (XAC) FP responsible for checking addres

numbers and port numbers against the actual host address. Further
are used to extract and compare checksums.

• 2 length counting adders.
• 2 checksum calculation adders
• 1 generic adder

Other possible processing tasks suitable for acceleration in a FP is va
types of decoding and decryption algorithms. They are however not u
since such algorithms is not included in the selected protocol suite.

As mentioned earlier, the FPs are self-contained dedicated ASICs. A
configuration the control needed for their operation is very limited. Ac
ally, most of the control signaling can be reduced to only start and s
flags since most control is distributed to the individual FPs.

8.3  Control Memory Access Accelerator
As mentioned earlier the micro controller is responsible for the commu

cation control or signaling handling. Using a general micro controller i
straightforward method similar to the traditional way of slow path proce
ing in a GP CPU. The problem with this solution is that the control info
mation must be transferred between the micro controller, the PPP an
control memory with low latency in order for the PPP to process its par
wire-speed and make the decision if the packet should be discarded.
ther, acceleration of slow path processing off-loads the micro proces
Hence, a platform including accelerating hardware assist and control in
face dedicated for packet recognition and control memory access have
developed. The Control Memory Access Accelerator (CMAA) presente
this article uses 2 Look Up Engines (LUE) in order to recognize and c
sify the incoming packet. These LUE essentially consists of Con
Addressable Memories (CAM) which are well known and commonly us
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in routing and switching applications. One of the early work in this are
[16].

8.3.1 Header data

The purpose of storing control information is to ensure that connec
oriented protocols (e.g. TCP) can perform protocol processing on the
load which can be divided or segmented into many lower layer pack
These packets can arrive out-of-order and in case of connection orie
protocols the routing information is not included in all packets. Hence
obvious that some information on the current status of a connection m
be stored in order to be able to continue the processing when the
packet arrives. In the case of the protocol set discussed earlier in this c
ter the following information is normally needed.

• Protocol type
• Length (received so far)
• Total length (transmitted in the last IP packet)

The length field(s) is provided to the length counter adder in the P
which updates the number and finally sends the updated value to one o
XAC FP. There it is compared to the total length value which is stored
the control memory. If they are equal, the micro controller is notified t
all packet fragments have been received and this entry will be remo
from the search list. If unequal, the new length value is written back to
control memory.

• Accumulated checksum results

The checksum results is provided to one of the checksum calcula
adders which adds it to the recent packets checksum using a 1-comple
addition which produces a new checksum. If the length is equal to the
length which means that the hole payload message has arrived the up
checksum it is sent to one of the XAC FP for comparison with the recei
checksum.

• IP Source and Destination Address.

The source address is extracted from the data-stream by the PPP
adress value is then used to construct a pseudo header. The pseudo
is used in the checksum calculation. Normally, only one destina
address is used for unicast packets in a terminal. This means that it i
needed to be stored in the control memory.

• TCP Source and Destination Ports
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The type, ports and addresses identifies a specific connection. To se
incoming packet should be discarded or accepted these fields mu
checked. They are also used to identify which application the payl
should be directed to.

• Identification number

The IP identification number is used to find the correct memory buffe
the control memory.

• Pointers to the memory position of proceeding and succeeding pac
segments.

In order to provide all of the services stipulated by the TCP stand
more connection related information than listed above needs to be st
On the other hand the only information needed for the PPP to perform
processing is the information high-lighted in bulleted text. The informat
stored in the control memory can also be used to calculate the host me
adress. An algoritm for this type of memory address calculation remain
be implemented for the general case even if it is simple for special app
tions, e.g. VoIP. A general algoritm for in-order data-buffering in the h
memory would significantly reduce the host processor interrupts. This
of algoritm would benefit from an accelerated access to the control m
ory. This issue will not be further discussed in this paper.

8.3.2 Accelerator interface

The CMAA interface to the rest of the PPP and the micro controlle
illustrated by figure 8.5 .

Instr (8)
Type (8)

dbus0 dbus1

mem access (4)

check buffer (1)

release packet (1)

Ready

Packet ready
Memory locked

discard (1)
Packet discarded
New packet

CMAA

first_fragment (1)

Figure 8.5: Accelerator interface.

Mask (4)

fragmented (1)

ID found
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Basically the input to the CMAA consists of flags and an instruction g
erated in the C&C. In table 5 the simple instruction set (6 instructions
listed.

As output the CMAA generates a number of flags. The two data buse
being used for data transport.

8.3.3 Data path

An overview of the CMAA architecture is illustrated in figure 8.6 . Th
CMAA data path includes two LUE, a buffer pointer generator, and a s
ple memory access selector. The Primary LUE (PLUE) only includes

Table 5: Lightweight instruction set

Name Source Internal configuration

New packet dbus0= IP ID field Packet type

Load register dbus0 Port or Address word

ID CAM operation dbus0 write, read or remove

PA CAM operation dbus0 write, read or remove

Release to micro con-
troller

Set memory buffer dbus1 Packet type

Control

MEMORYSecondary LUE

Primary
LUE

data bus 0

W

mem buffer gen

r/w

data bus 1

Ctrl unitIP_ID
FSM

Type

Figure 8.6: CMAA architecture. An accelerating hardware architecture f
control memory access in the protocol processor. Based on tradition
packet classification techniques it support low latency access to sto

connection variables in the control memory

no_match write adress
generator
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CAM which has 16 bit wide entries, has M entries and the result memor
W bits wide. The purpose of this unit is to check if we already ha
received an fragment of the incoming packet. This is checked using th
Identification field (IP ID). If an arriving packet is fragmented, the fra
mented flag will be produced in the C&C and provided to the CMA
Then the fragment is checked in the PLUE to see if a packet buffer exi
the Control memory. If the CAM in the PLUE does not have a match
identification field entry, a new packet buffer will be created and the IP
will be written to the PLUE CAM. In the packet buffer, inter-packet va
ables such as length and checksums will be stored. If the packet is
fragmented there is no need to store its IP ID so the packet buffer is cre
directly on the control memory address provided from the mem buffer
unit in figure 8.6 . The SLUE is a classification engine including 6 CAM
and its purpose is to check for valid connections. The two data buses
bit wide. The mem buffer gen generates new buffer addresses for
packet buffers and connection buffers. The adress generation is contr
from theµC.

As the other accelerating devices in our protocol processor, e.g. FPs
CMAA remains in idle mode while not in operation. Power-up will be pe
formed when a new packet arrives. This reduces the power dissipation
nificantly in a network terminal due to the un-even time distribution of t
packet reception.

In this paper we leave the final CAM design and implementation to
further investigated and optimized. The reason behind this is that they
extremely important for the overall performance and they require differ
design techniques, tools and expertise than the rest of the PPP. Final im
mentation of the LUE will of course have an huge impact on the per
mance of the CMAA. This issue is further discussed in section 8.3.7.

A layout of the CMAA excluding the two LUE and the buses has be
produced. The number of standard cells and the area of the CMAA exc

ing the input registers, and the two LUE are 716 and 0.105 mm2 respec-
tively. This part of the CMAA has been simulated, using static timi
analysis on the layout, to run at almost 300 MHz. This means that it is
included in the critical path of the PPP. Since we use registered inputs
outputs in the CAMs, it is the SLUE that will be the critical path of th
CMAA.
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8.3.4 Control procedure

The normal packet reception procedure of operation in the CMAA
illustrated by figure 8.7 . The procedure is controlled by the control u
finite state machine (FSM) in the CMAA.

If a new packet arriving is fragmented, the PPP provides CMAA with
IP Identification number and gives a new-packet instruction to the CMA
The IP ID is then stored in the input registers to the PLUE. Next 2 clo
cycles, the CMAA continues to load ports and IP addresses while
PLUE checks if a fragment of this payload has already been receive
there is a match in the PLUE search, the corresponding address poin
the buffer in the control memory, which is stored in the PLUE result me
ory, is stored in the input register to the control memory. While the P
continues the packet processing, it can then access the control me
directly. If the new fragment contains the layer 4 header, the port, so
and type fields are loaded from the PPP and then checked in the SLU
this loading is completed after the PLUE search, e.i. it is a IPv4 packet
SLUE can immediately check the connection information. Otherwise
control unit remains in the check connection state while the loading con
ues. Based on the SLUE result, the packet is either discarded or the m
ing connections adress pointer is provided to the data bus 1. Next c

wait for new packet

load ports, addresses and search for IP ID

send mem adr

wait for C&C

update

check connection

release toµC

PLUE
result

discard

Store connection

 to C&C

N

No_connection

match

Figure 8.7: Control handling procedure within the CMAA.

Y

Connection
checked

in packet buffer



Control Memory Access Accelerator 89

hich
ans
AA

cess

to the
-

new
er-
eric

ating
r-

ted
ter-
ted
ince
the

and
n the
cycle, the data bus 1 value will be stored at the packet buffer adress w
is already stored in the input register to the control memory. This me
that theµC easily can access the connection information. Then the CM
hands over to the PPP using the packet-ready flag.

After the PPP has received the packet-ready flag, it continues to pro
the packet and updates the control memory.

After successful packet processing, the PPP releases the packet
CMAA. Next clock cycle, the CMAA releases the lock of the control mem
ory, starts buffer pointer updating and sends the new-packet flag to theµC.
During the update state, the CMAA also updates the write adress for
entries to the two LUE. This is only done if a write operation has been p
formed. During the write adress search, the CMAA uses one of the gen
adders in the PPP to search for empty entries. When the pointer upd
and the CAM write search is finished the CMAA returns to the wait-fo
new-packet state.

8.3.5  Control memory organization

The control memory is organized according to figure 8.8 . As illustra
the control memory consists of a number of different buffers storing in
packet information. Further the memory include all the control orien
packets that is going to be processed in the micro controller software. S
these protocols is completely processed by the micro controller, also
payload of these packets is stored in the control memory. For TCP
UDP type of packets only preprocessed header information is stored. I

Control memory
Packet buffer

TCP buffer

Other buffers, e.g. UDP

Connection pointer

Checksum

total length length

...

... ...

Entire control packets
e.g. IGMP, ICMP, ARP, RARP

IP adress Port numbers

Packet list and memory location

Other connection variables

Figure 8.8: Memory organization in the control memory.
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packet buffers, layer 3 information needed for reassembly is stored. E
packet buffer is deleted when the entire layer 3 packet has arrived.

8.3.6 Look-up Engine architectures

The SLUE consists of 6 CAMs as illustrated by figure 8.9 . The outp
generated by the CAMs are vectors containing zeros or ones descr
table matches. These are used to select the address pointer in the
memory, e.i. the control memory address for the received packet.

128

328

328

Type

Write
flag

Adr RAM

N X W

New_buffer
pointer

dbus0

dbus1

Port&Type
STCAM

Address
STCAM

Delete
flag

write adr
generator

Conv.
logic

N

N

nor

no_connection

Figure 8.9: Secondary Look-Up Engine (SLUE) architecture. Note th
the conversion logic that converts the matching vector to a result mem
adress can be eliminated if the matching vector is used directly as w
lines in the memory. This however require that the RAM must be im

mented in the same manufacturing process.

Mask
Mask

an
d

1

1

0

1

1

0

match

1 1 1

match

0

TCAM

STCAM

Input key

Content

Mask

Content Group
Mask

Figure 8.10: Simplified TCAM principle.
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The 7 different CAMs we propose to be used in the CMAA architect
will have an huge impact on the performance, size and power figures o
entire design. Therefor they require a thorough investigation and optim
tion procedure, in order to obtain the optimal system performance. Eve
the optimization of these CAMs not is in the scope of this paper, so
characteristics and requirements on the CAMs can be noted. First of a
propose that CAMs should be instead of TCAMs ([19] and [20]). Th
reduces the cell size and power dissipation. The primary LUE is a stan
CAM memory 16 bit content and M entries. The result memory is M tim
the length of the control memory adress W.

In order to provide flexibility for different protocols we use a concept w
call Simplified TCAM (STCAM) illustrated by figure 8.10 in the second
ary LUE. Instead of using ternary bit comparisons as in TCAMs we o
provides an wildcard function to the entire CAM. In figure 8.11 there is
illustration showing how the secondary LUE uses the STCAM principle

The mask input enables a wildcard functionality for different fields wh
recognizing an incoming packet according to table 6. The table shows
the proposed SLUE architecture can be used for various types of proto
A careful use of these wild cards is needed in order to avoid mult
matches. By using the type field, which is an internal type, it is possibl
avoid multiple matches which means that the priority logic in the SLU
can be eliminated. Further it enables the connections to be written in
CAM in an arbitrary order..

Table 6: Configurations using masking for different packet types and applications.

Protocol
examples

Type
Source
Port

Destination
Port

Source
Address

Destination
Adr

IPv6
Unicasting

Optional Optional 16 128 *

Type
CAM

SPort
CAM

SPort
CAM

IP Adr
CAM 0

IP Adr
CAM 1

IP Adr
CAM 2

Match

Result

no_connection

Mask Mask Mask Mask

Figure 8.11: The two different STCAM in the SLUE each consists of thr
ordinary CAMs and some masking functions. Each of the CAMs use

entries.

Mem
ptr

N

Memory
(RAM)
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It can always be discussed how much the IP version 6 (IP v6) prot
that will be used in the future but we have chosen to include it since
penalty is not as severe in network terminals as it is in routers. The re
for this is that in network terminals we only have one destination addres
check for unicasting. This can be done in other parts of the PPP. Hence
bits can be excluded from the CAMs entries. For broad and multicas
packets a different type field is generated and only the destinatio
checked (instead of the source address). This reduces the penalty we
to pay in forms of larger CAMs when including IP v6. There exist howev
routers where only 64 bits out of the 128 in the IP v6 address is used
packet classification. The reason is that in such networks the other 64
is just a copy of the MAC address. If such method would be applied
CAMs can reduce the wordlength of the content with additionally 64 b
by eliminating the IP Adr 2 in figure 8.11 Since this architecture will
used in a network terminal the activity will not be as high in the CAMs a
would be in a router. The reason is that we only do a load and search o
ation when a new packet arrives, not every clock cycle. The low acti
significantly reduces the power consumption in the CAMs.

8.3.7 CAM implementation issues

The total size of the 7 CAMs and there result memories will be a ma
part of the system chip area. It is very hard to make predictions on the s
of these CAMs since that is a matter of optimization effort and implem
tation strategy. Further the complex placement and routing requires a
custom approach even for standard cell based designs. Even without a
layout, a lower bound on the chip-area can be estimated. Using stan
cells from our design process (AMS 0.35µm 3.3 V 3-M) an optimized bit-

slice cell in a CAM is approximately 350µm2 which results in a lower

IPv6
Broad or
multi casting

Optional Optional 16 * 128

IPv6 alt Optional Optional 16 64 64

IPv4 Optional Optional 16 32 32

IPv4 Optional Optional 16 32 *

UDP Optional 16 16 32

Table 6: Configurations using masking for different packet types and applications.

Protocol
examples

Type
Source
Port

Destination
Port

Source
Address

Destination
Adr



Control Memory Access Accelerator 93

ries

area

t
ome-
iza-
tion
the
and

ow
. We
.35
ence
ide
pro-
pipe-
red.
eline
ula-
les
Then

UE
of

ing
l be
ev-
big
) I
ple-
ire-
&R

tegy
M is
ipu-

ard-
bound on the combined CAM area according to EQ 1. The result memo

must store M + N times W bits using approximately 180 mm2 each.

(EQ 3)

As an example M=16, N=64 and W=20 can be considered. The chip-

for the two LUE would then be at least 4 mm2. This figure is acceptable bu
if more entries are to be considered a process migration to smaller ge
tries is natural. The number of entries to implement is a matter of optim
tion. This optimization procedure requires a careful analyze of applica
requirement and network traffic. Never the less it is clear that in NT,
required number of network links is not as high as in routers. Hence M
N does not need to be very large for most applications and networks.

In order to examine our architectural performance, it is crucial to kn
how many clock cycles each search operation in the two LUE requires
expect the system clock to have a period of maximally 7.5 ns in a 0
micron process, based on timing analysis on other parts of the PPP. H
the maximum network speed is 4.3 Gbit/s using the specified 32 bit w
input buffers. Since we are sure that there is only one packet being
cessed at any given time, we do not necessarily need the LUE:s to be
lined, e.i. we do not need any internal intermediate results to be sto
Instead a multi-cycle-path design technique can be used. To use pip
stages or not is an implementation issue for the CAM designers. Sim
tions shows that the small PLUE will not require more than 2 clock cyc
to complete one search, e.i. it has a critical path shorter than 15 ns.
we assume M is maximally 64.

The number of clock cycles required for a search operation in the SL
is equal to the critical path divided by 7.5 ns. The critical path consists
circuit delays and wire delays. If the SLUE are being implemented us
standard cells the logic delay is simple to calculate. For N=64 there wil
approximately 15 logic cells in the critical path which leads us into beli
ing that 2 clock cycles is enough. The problem is that in larger CAMs a
part of the critical path, is wire delay. In my research design (N=256
have used synthesis and P&R tools from Cadence. The resulting im
mentation result is very far from optimal and does not meet my requ
ment 3 clock cycles. The design is simply to large and hence the P
problem to complex. Therefor the conclusion is that the design stra
must be changed to something more custom oriented even if the CA
rather small compared to the one used in routers. Clearly a bitslice man
lating placement strategy has to be used for efficient CAM design reg

ACAM 16 M× 128 40+( ) N×+( ) 350 M N+( ) W 180××+×= µm
2
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less of the size. Anyway the conclusion after studies of other compar
CAM designs and discussion with industry CAM designers is that, fo
less than or equal to 256, a search operation will require maximally 4 c
cycles (or pipeline stages). For N=64, 3 clock cycles is definitely enou
These figures apply to standard cell based designs.

Even with a pessimistic feature size projection (Moores law), there is
reason to believe that scaling not can support the CMAA to run at cl
periods around 3 ns using 3 clock cycles for one search operation. H
the CMAA could be used in a 10 Gbit/s network such as 10 Gigabit Eth
net, using already available processes, e.i. 0.13 micron. The resu
latency for CMAA operations is further discussed in section 8.3.8.

The latency, critical path, power consumption in the LUE is of cou
depending on M, N and W. To optimize these variables simulation on
world network traffic is required. Until this optimization phase is com
pleted the numbers M=16, N=64 and W=20 will be considered for furt
architectural development.

8.3.8 Latency

The proposed architecture for access of the control memory, reduc
control memory access latency to a few clock-cycles. The fast path lat
determines how big the input buffer chain has to be. The latency of
CMAA must be added to the latency of the PPP in order to calculate
total fast path latency. We propose that the SLUE should use 3 clock cy
to perform a search. A 3-clock-cycle type of SLUE would give a maxim
memory access latency of 11 according to table 7 when a new packe
been received. Further the table shows that a four cycle type of CAM ar
tecture, will give a maximum memory access latency of 12 clock cyc
This of course have an impact on the pipeline register chain in the PPP
the total latency for a packet reception and delivery to the micro contro

The PPP can start the processing of an incoming packet before the co
data has been accessed from the control memory. Therefore this la
only sets a lower limit on the latency of the total packet reception. The t
latency is however mainly dependent on the processing activities, inclu
interrupts and stalls, in the micro controller.
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8.3.9 Enabling flow based QoS

Using the fast control memory access, it is possible to enable qualit
service (QoS) to the reception. Any kind of priority parameters or fl
parameters can be stored in the different buffers in the control mem
These can then be used for multiplexing of the incoming data stream,
flow based operation is demanded.

8.3.10 Shared control memory

The motivation for separating the protocol processing into one PPP-
and oneµC-part is of course to use the programmability of theµC when
processing control intensive tasks, and still have high-performance
low-power implementation of the data intensive processing. This dist
uted architecture however requires an interface, and that interface is
control memory unit together with control flags to and from the C&C.
mentioned before, the PPP only need to access the memory when a
packet is received and then only a limited part of the control informatio
used. Since the latency of this access directly effects the length of the i
buffer chain, the PPP must have priority over theµC when it comes to
memory access. In fact theµC only have access to the control memo
when the CMAA resides in the update or wait-for-new-packet state acc
ing to figure 8.7 .

8.4  Conclusions
A novel architecture for acceleration of control memory access in a pr

col processor for network terminals was presented. The architecture
classification engines and concepts which has traditionally been use
network infrastructure components. The proposed architecture enable

Table 7: Examples on memory access latency for various packets received.
(PLUE requires 2 clock cycles to perform a search)

Layer 3 protocol

# clock cycles
latency for CMAA

operation
3 stage SLUE

# clock cycles
latency for CMAA

operation
4 stage SLUE

IPv4 - new packet 9 10

IPv4 - old packet, new fragment 4 4

IPv6 - new packet 11 12

IPv6 - old packet, new fragment 4 4
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latency access to connection state variables, partial checksum result
any other control information stored in the shared control memory. He
inter-packet processing such as reassembly has been accelerated us
flexible protocol processor architecture for network terminals. Furthe
offloads the micro controller so that a wide variety of protocols can be p
cessed in a programmable way, using the proposed protocol processo
form in high-speed networks. The proposed architecture can proces
fast path in a multi gigabit network, implemented in a mature standard
process such as AMS 0.35µm.

8.5  Further work
In order to complete the specification of the protocol processor three m

research areas remains. The first one is to specify the interface betwee
µC and the host system and its DMA. Secondly the counter and contr
unit is not finally implemented and programmed. The third issue rega
the configuration method of the protocol processor. What does the
gramming and re-configuration interface look like from theµC?
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	1
	Introduction
	1.1 Background and motivation
	In the semiconductor industry it is a well known fact that the device production scales according...
	Table 1: Projections of the ITRS Semiconductor Roadmap

	Networking technologies, however, have historically increased data rates in 10 times increments a...
	Figure 1.1: The I/O processing gap has started to become a problem using traditional CPU architec...
	Example:
	Consider a general purpose RISC machine in a 10 Gbps network. Assume min-sized packets (64 bytes)...

	1.1.1 Research project
	This thesis as well as the research project behind tries to attack the problem described in the p...
	The contribution of my work described in this thesis, is to explore the further architectural for...


	1.2 Outline
	This thesis consists of two main parts, organized as follows. The first part including this and t...
	In chapter 3, a number of different hardware design considerations important for the design of pr...
	Chapter 4 consists of a survey of available PNI solutions. The survey covers many different appli...
	The second part of the thesis contains my research proposals, results and the three included pape...
	Finally the last three chapters consist of the three papers included in the thesis.
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	2
	Network basics
	2.1 Packet based networks
	This chapter includes a brief introduction to the concept of packet based networks including comp...
	2.1.1 ISO/OSI Protocol layers
	Figure 2.1: The 7 layer ISO/OSI reference model
	The standard model for networking protocols and distributed applications is the International Sta...
	• Layer 1 - Physical

	Physical layer defines the cable or physical medium itself, e.g. unshielded twisted pairs. All me...
	• Layer 2 - Data Link

	Data Link layer defines the format of data on the network. A network data frame, a.k.a. packet, i...
	Ethernet addresses a host using a unique, 48-bit address called its Ethernet address or Media Acc...
	• Layer 3 - Network

	Almost all computer networking applications uses Internetwork Protocol (IP) as its network layer ...
	Even though IP packets are addressed using IP addresses, hardware addresses must be used to actua...
	• Layer 4 - Transport

	The transport layer subdivides user-buffer into network-buffer sized datagrams and enforces desir...
	• Layer 5 - Session

	The session protocol defines the format of the data sent over the connections.
	• Layer 6 - Presentation

	External Data Representation (XDR) sits at the presentation level. It converts local representati...
	• Layer 7 - Application

	Provides network services to the end-users. Mail, file transfer protocol (ftp), telnet, and Domai...


	2.1.2 TCP/IP Protocol layers
	Although the OSI model is widely used and often cited as the standard, TCP/IP protocol has become...
	• Layer 1 - Link

	This layer defines the network hardware and device drivers.
	• Layer 2 - Network

	This layer is used for basic communication, addressing and routing. TCP/ IP uses IP and ICMP prot...
	• Layer 3 - Transport

	Handles communication among programs on a network. TCP and UDP falls within this layer.
	• Layer 4 - Application

	End-user applications reside at this layer. Commonly used applications include DNS, rlogin, talk,...

	2.1.3 Traditional layer processing
	A traditional way of describing a protocol layer is illustrated by figure 2.2. The figure is a ve...
	Figure 2.2: Traditionally layered protocol processing concept. During reception each protocol lay...

	2.1.4 Local Area Networks
	Local Area Networks (LAN) protocols function at the lowest two layers of the OSI reference model,...
	• Wireless LAN

	Today there exist a number of different protocols for wireless LAN applications. They differentia...

	2.1.5 Storage Area Networks (SAN)
	The usage of SAN is currently growing very fast. SAN is normally used for connections to and from...

	2.1.6 Mixed traffic
	Today it becomes more and more common to use the same network for booth data transfer and voice o...
	• Voice over ATM
	• Voice over Frame Relay
	• Voice over IP


	2.1.7 Quality of Service
	Fundamentally, QoS enables the possibility to provide better service to certain flows. This is do...

	2.1.8 Network performance figures
	Some common networks and their performance figures are listed below.
	Table 2: Common networks and their performance figures.

	The networks listed in table 2 are and will continue to be some of the most common for a number o...


	2.2 Protocol services
	Regardless of the protocols used in a computer network, there exist a common set of processing ta...
	2.2.1 Parsing
	In order to perform any processing on a packet, the first step is to recognize the packet and the...

	2.2.2 Control flow selection
	Decisions on how to process the packet can be made based on the parsed information. This decision...
	Figure 2.3: Control flow selection pseudo-code.
	If the protocol processing (or parts of it) is implemented in hardware the control flow selection...
	• Program flow selection
	• Hardware configuration
	• Hardware multiplexing
	• Hardware scheduling



	2.2.3 Transport control
	The purpose of the transport control is to provide a secure and regulated communication between a...
	• Acknowledgement control including timer triggered events
	• Receiver management e.g. policing, filtering, and QoS providing

	The acknowledgment control must produce acknowledgments and send them back to the sender when pac...
	In a network terminal, the receiver management normally only consists of a decision to store or d...

	2.2.4 Data processing
	The purpose of data processing is to support the transmission control so that a secure and error-...
	• CRC calculation
	• Checksum calculation
	• Other Coding/Decoding
	• Encryption/Decryption


	2.2.5 Datastream management
	In network terminals the datastream management consists of different kinds of buffer management. ...


	2.3 Traditional network components
	2.3.1 Network Terminals
	Figure 2.4: Examples of processing tasks and hardware allocation in a traditional type of desktop...
	Network terminals (NT) exist for many different applications. Some examples are desktops, printer...
	As an example on the type of processing going on in a desktop PC we can consider the TCP/IP proto...


	2.3.2 Routers
	Even though router manufacturers of today tend to include more and more intelligence in their dev...
	The main goals of a router are:
	• To pass on incoming packets to the correct network link.
	• To provide error control and security to the communication channels established.
	• To monitor and control the traffic flow so that it is optimal from the Internet Service Provide...

	Figure 2.5: Example of processing tasks and allocation in a traditional type of router.
	Normally a router includes 3 basic components. They are line cards, interfacing backplane and a s...
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	Hardware platforms
	3.1 Architectural challenges
	When designing high speed programmable network interfaces (PNI) there are a number of challenges ...
	• Data transfer to/from external memories
	• Power dissipation
	• Pin limitation
	• Packaging
	• Verification

	Others are specifically important in PNI designs, e.g.
	• Line-rate processing (fast path processing)
	• Link-rate processing (slow path processing)
	• Device integration (accelerators, memories, ASIC:s)
	• Shared resources management (e.g. data and program memories)

	To overcome these challenges three main approaches exist today. Their common goal is to provide s...
	• Application Specific Logic

	Special Instruction Set
	On- or Off-chip accelerators
	• Advanced Processor Architectures

	Data level parallelism
	Instruction Level Parallelism (ILP)
	• Multi processor solutions

	Task level parallel or pipelined architectures
	Combinations of these design approaches are also possible. Before selecting design methodology an...

	3.2 Design alternatives
	Today, there are a number of different hardware platforms available for use as PNI. In order to i...
	3.2.1 Inter- or intra-layer processing
	Intralayer processing means that each protocol layer is processed separately according to figure ...
	Intralayer processing gives a processing overhead since a lot of intermediate results and data tr...
	Figure 3.1: Interlayer (to the right) processing means that all or parts of several protocol laye...
	The main advantage with interlayer processing is the reduced amount of data transportation and pr...
	To distribute the processing according to processing requirements and type in an interlayered way...


	3.2.2 Type of control
	The hardware components in a network interface can have different kinds of control. The three mai...
	• Fixed function. E.g. ASIC with no flexibility.
	• Configurable. The function of the data path can be changed but it can not be changed every cloc...
	• Programmable. The function of the data path can be changed in every clock cycle.

	In a PNI the need for configurability and programmability can be reduced by the use of many diffe...

	3.2.3 Application coverage
	The ability to run a certain set of network applications on the host using the interface in certa...
	The basic requirement for a large application coverage is that the bandwidth is sufficient for pr...
	The second requirement for a PNI to have a large application coverage is that it is flexible enou...

	3.2.4 Offloading coverage
	The solutions available today from the academic research community and the industry are extremely...
	Figure 3.2: Host offloading strategies
	Depending on application, throughput requirements, power awareness and customer cost sensitivity ...


	3.2.5 Chip or board integration
	Processors and memories in a PNI ASIC chip are integrated in the same silicon chip, which means a...
	An ASIC can have multiple processors integrated into the chip to handle heavy workloads. This mea...
	One particularly noteworthy example of parallel processing in a network processor ASIC is the imp...
	Beyond accessing memory in silicon, ASICs also facilitate the use of advanced memory technologies...

	3.2.6 Configurable logic
	To implement parts or the whole of a PNI in a Field Programmable Gate Array (FPGA) would give a v...


	3.3 Performance measures
	A number of different performance figures must be compared in order to evaluate and compare diffe...
	3.3.1 Flexibility
	A PNI must provide flexibility and adaptability to the changing environment it might operate in. ...
	• Reconfigurable media adaptation. In order for a PNI to be used in different networks and surviv...
	• Programmable connection policy. A PNI must support on-line change and control of the traffic flow.
	• Programmable host interface. The interface between the PNI and the host system must be operatin...
	• Data controlled datapath selection. The datapath must be configurable or selectable depending o...

	Providing the flexibility bulleted above gives a large protocol coverage but it increases the com...

	3.3.2 Throughput
	The need for bandwidth is ever increasing and is not going to disappear. Further it is a fact tha...

	3.3.3 Inter operability
	The main purpose of a PNI is to offload and relax the host processor as much as possible. Hence, ...

	3.3.4 Cost
	The cost of the PNI chip or board is very important performance figure. The cost is important for...
	In order to make the package cheap, the area, power dissipation, and number of pins must be minim...
	The number of chips that can be manufactured is strongly connected to the flexibility of the desi...


	3.4 Application Specific Accelerators
	In order to improve the performance of PNIs used either in network nodes or terminals, dedicated ...
	• Two- or one-dimensional classification engines. Could be CAM, TCAM or RAM based.
	• Storage Area Networks (SAN) Engines. Used in file servers.
	• PHY and MAC layer ASICs
	• Segmentation and reassembly (SAR) engines.
	• Crypto engines
	• Hardware timer assisting engines
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	Programmable Network Interfaces - A Survey
	4.1 Naming convention
	Depending on application coverage and marketing reasons, platforms dedicated for processing of pa...
	• Network Processors (NP)
	• TCP Offload Engines (TOE)
	• Protocol Processors (PP)
	• Programmable Network Interfaces (PNI)
	• Network Interface Cards (NIC)
	• Packet processors (PaP)

	The two most general names are NP and PNI. The other ones are normally regarded as subsets of the...

	4.2 Commercial architectures
	4.2.1 Motorola C-Port C-5e Network Processor
	The C-5e NP is a part of Motorolas C-Port family. It supports the use of 16 line interfaces, each...
	Further the C-5e NP includes an eXecutive Processor (XP) for control plane operations. C-5e NP al...
	• A Table lookup unit (TLU) classifies incoming packets based on information in a external SRAM m...
	• Buffer management unit that controls the payload data storage while the header is being processed.
	• Queue management unit that is shared between all the processors to provide QoS.
	• Fabric processor provides a high-speed network interface.

	The SDP in the CP is responsible for the bit- and byte-wise processing and can be considered as t...
	Several CP can be concatenated using the very high bandwidth interface bus (35 Gbps) for pipeline...

	4.2.2 iSNAP
	The IP Storage Network Access Processor from Silverback [4.1] terminates and process IP-based sto...

	4.2.3 IBM PowerNP
	First of all the PowerNP consists of a number of interfaces to memories (control and data) and ne...

	4.2.4 Trebia SNP
	This architecture [4.2] includes MAC block for mixed medias (wired and fibre-based), a security a...
	Figure 4.1: Trebia SNP architecture.

	4.2.5 iReady EthernetMAX
	The Media Access Xccelerator [4.4] from iReady is intended for transport offload [4.3]. It fully ...

	4.2.6 Alacritech Internet PP
	Alacritech [4.5] provides a Session Layer Interface Card (SLIC) [4.7] that includes accelerators ...
	• TCP Connections and breakdowns (SYN segments)
	• Fragmented segments
	• Retransmission timeout
	• Out of order segments
	• Finish segments (FIN)

	Despite this down-sized functional coverage in the accelerators, Alacritech claims that 99.9 perc...

	4.2.7 LayerN UltraLock
	The UltraLock [4.9] illustrated by figure 4.2 uses a patented architecture named SIGNET [4.8]. Th...
	Figure 4.2: The UltraLock provides acceleration for SSL connections. Ordinary http packets are pa...
	In the TCP/IP processor the tasks are distributed among several different dedicated functional bl...


	4.2.8 Seaway Streamwise NCP
	Seaway Networks [4.10] offers a streamwise Network Content Processor (NCP) capable of multi-gigab...

	4.2.9 Emulex LightPulse Fibre HBA
	The host bus adapter (HBA) from Emulex [4.11] includes an ASIC controller, a RISC core and a SAN ...

	4.2.10 Intel IXA/IXC/IXS/IOP processors
	Intel offers a number of chips to solve different tasks when it comes to what they call Network I...
	• CRC unit for 16 and 32 bit computations.
	• Pseudo Random Number generator (used for QoS in congestion algorithms).
	• Hardware timers.
	• Multiplier
	• 16-entry CAM used for cache search and assists software pipelining.

	TCAM can be connected as an external accelerator working in parallel with the IXP2400.
	The IXA type chips is mainly intended for packet processing for switching, protocol conversion, Q...

	4.2.11 LeWiz Content processor
	LeWiz processor [4.12] process layer 3-7 with hardware acceleration with a line rate capability o...
	Figure 4.3: LeWiz content processor. The Packet pre-processor is a TOE. The Protocol parser exami...

	4.2.12 Qlogic SANblade
	The SANblade [4.14] manage 2 Gbit/s line rate using GE or fibre channel medias while performing i...

	4.2.13 Agere Systems - PayloadPlus
	PayloadPlus provides a complete solution for OC-48c (2.5 Gbps) networks. The board solution inclu...
	The FPP is programmed with a dedicated protocol processing language (FPL). The FPP does not conta...
	Figure 4.4: FPP architecture.
	The Pattern Processing Engine (PPE) matches fields in the data stream based on the program stored...
	The RSP handles the traffic management and flow modifications in a programmable way.
	The ASI is a PCI like standardbus. The main applications is layer 2-3 routing and switching. The ...
	The ASI, the RSP and the FPP is connected to the same 8 bit configuration bus. The configuration ...


	4.2.14 Cisco - Toaster2
	Toaster2 is a multiprocessor ASIC solution. The chip includes 16 uniform processors each includin...
	Figure 4.5: The Toaster2 architecture. IHB/OHB are uni-directional bus interfaces that are 64 bit...
	The TMC is essentially a SIMD architecture that uses a 64 bit instruction to operate on multiple ...


	4.2.15 PMC-Sierra ClassiPI
	The ClassiPI is not really a network processor. Instead it is a classification device that can as...


	4.3 Academic architectures
	4.3.1 EU Protocol Processor Project PRO3
	The architecture proposed by PRO3 [4.15] consists of 5 parts. Most interesting is the Reconfigura...
	Figure 4.6: The PRO3 architecture.

	4.3.2 UCLA Packet decoder
	This decoder [4.17], decodes packets on layer 2-4. The decoder architecture illustrated in figure...
	Figure 4.7: Simplified view of the UCLA processor architecture proposal showing how to accelerate...

	4.3.3 TACO processor from Turku University
	Based on a Transport Triggered Architecture (TTA). The TTA architecture only uses one instruction...

	4.3.4 PICO project from Berkeley
	The PICO project is a focused on low power terminal processing for wireless networks. Examples on...


	4.4 Conclusions from survey
	A number of different PNI solutions is included in the survey. They all are focused on different ...
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	Proposed Architecture
	5.1 Introduction
	This chapter describes a hardware architecture proposal which is a result of my research during 1...
	My and my colleagues have investigated and implemented different parts of the architecture to fin...
	This chapter will give an overview of the architecture. It also includes a performance discussion...
	5.1.1 Naming convention
	During the progress of the research work, our architecture has changed name several times. The re...
	In the papers included in the following 3 chapters, the PP fast path has been characterized as De...

	5.1.2 System perspective
	Figure 5.1: The PPP together with a general purpose micro controller (mC) handles the communicati...
	As mentioned earlier the proposed PNI architecture is called protocol processor and it consists o...



	5.2 Processing tasks
	5.2.1 Protocol suite overview
	To test our architecture we have used a common set of protocols. The protocols are useful for inv...
	• Fast Ethernet with PHY interface MII
	• Gigabit Ethernet with PHY interface GMII
	• 10 Gigabit Ethernet with PHY interface XGMII
	• IP version 4 and version 6
	• Address Resolution Protocol (ARP)
	• Reversed Address Resolution Protocol (RARP)
	• Internet Control Message Protocol (ICMP)
	• Internet Group Management Protocol (IGMP)
	• TCP
	• UDP

	Figure 5.2: The data demultiplexing of a received Ethernet frame.
	The selected protocols are very commonly used today and there is no reason to believe that they w...

	Figure 5.3: One Ethernet frame encapsulate the IP packets. Each layer includes a header and data.
	Each header includes a number of header fields which have to be extracted and processed according...
	In order to process all the headers and providing the services stipulated by the protocol standar...


	5.2.2 Ethernet
	• Calculate CRC
	Cyclic Redundancy Check is a error detecting code that is used to detect transmission errors. The...
	• Check Ethernet Destination Address (Eth DA)

	To be sure that the received frame is intended for the terminal, it must check that the destinati...
	• Check the type field

	The type field describes what sort of layer 3 packets is encapsulated in the frame. The valid opt...
	• Extract length field

	The length field must be extracted to know how long the packet is. It is especially important to ...
	• Demultiplex data

	When the terminal has identified the layer 3 protocol used (ARP, RARP or IP) it can send the Ethe...

	5.2.3 Address Resolution Protocol (ARP)
	• Extract and check the ARP code
	The ARP protocol is used to query the network for a MAC address when we have a IP address but do ...
	• Update ARP table

	We should update our table describing which MAC addresses belongs to which IP addresses.
	• Send reply

	If needed a reply packet should be triggered.

	5.2.4 Reversed ARP (RARP)
	RARP is typically used during a booting procedure. We know our MAC address from the NIC but do no...

	5.2.5 Internet Protocol (IP)
	• Check the version
	The version field tells if it is IP version 4 or 6 that has been used. The main difference is tha...
	• Calculate header checksum

	The IP checksum is a 16 bit wide 1-complement addition of the header. The data is not included in...
	• Extract and check IP Destination Address (IP DA)

	The IP DA is unique for a terminal, no other terminal share the same address. Each network termin...
	• Extract the IP Source Address (IP SA)

	The IP SA is used for checking if we should accept a packet or not. This procedure will be descri...
	• Reassembly fragments

	An IP packet might be to big for some parts of the network. In that case, the servers will divide...
	• Handle time-outs

	If a fragment gets lost, a request for a retransmission must be sent after a certain time period.
	• Check protocol field and demultiplex data

	The protocol field shows the transport layer protocol used. The valid values in my protocol set-u...
	• Check lengths

	There is two types of lengths involved in IP processing. One describes the header length which is...
	• Process options

	There are a number of different fields remaining that has to be processed. Among them are IP v6 e...

	5.2.6 ICMP and IGMP
	ICMP normally communicates error messages and exceptions, or conditions that require attention. I...
	• Compute header checksum

	Same procedure as for IP checksum calculation.
	• Check ICMP version and type field

	The version field is normally 1. If the type is 1, the packet is a query, and if it is 2 it is a ...
	• Check IGMP type and code field

	This header information describes the type of request or reply. The parameter field should be pro...
	• Send ICMP payload to application

	Some control messages should be passed on to the application for further processing.

	5.2.7 TCP
	• Extract Ports and check connection
	The Source Port (SP) and Destination Port (DP) together with the IP SA, IP DA and transport layer...
	• Check Sequence number and reorder data

	The sequence number describes where in the data buffer the current payload should be placed.
	• Extract acknowledgment field and trigger a reply payload
	• Check and process options and flags

	Including the finish flag.
	• Update connection state variables and timers

	This is the complex traffic flow management, controlling all traffic.

	5.2.8 UDP
	The main difference between UDP and TCP is that UDP is connection less.
	• Extract Ports and check connections

	Similar to the TCP task. I call it a connection although we only check if the port is open.
	• Extract length field

	To know when the hole payload has been received.
	• Calculate header checksum



	5.3 Proposed datapath
	A datapath of the PPP has been developed and optimized based on the processing tasks introduced i...
	Figure 5.4: Overview of the PPP architecture.
	5.3.1 Input buffer
	When data arrives from the network interface (GMII) to the PPP it streams through a chain of 32 b...
	Figure 5.5: The input flip-flop chain. The chain of flip-flops enables access to the data stream ...
	The purpose of using a flip-flop chain instead of a normal RAM based buffer, is that we want to k...


	5.3.2 Functional pages
	The functional pages are all dedicated hardware blocks with a limited configurability. Since they...
	Figure 5.6: Funtional page interface.The FP are controlled by flags produced in the C&C. The prim...
	The output from a functional page normally consists of flags. Some functional pages also produce ...
	• Extract and compare (XAC) FP
	• CRC FP
	• MII parallelization FP
	• Checksum FP
	• Length counter FP

	The CRC FP is very important for the overall performance of the PPP. This FP has been implemented...
	The XAC FPs are used for extraction of header information that will be used by other parts of the...

	Figure 5.7: One out of four byte comparing slices in the XAC FP.
	The MII parallelization FP is only included if the PP is going to be used with the MII as interfa...
	The Checksum FP essentially consists of a pair of 1-complement adders and is a simplified version...
	The Length counter FP is responsible for counting the lengths of a packet to find out when all fr...

	Figure 5.8: Checksum FP.
	All of the FP can perform high throughput processing due to their relatively dedicated architectu...
	In my research group a parallel project have found a different set of FP. The main difference bet...
	Apart from the FPs mentioned above we can also consider other types of FPs if the protocol covera...


	5.3.3 CMAA
	In paper 3 in chapter 8 an acceleration engine included in the PPP is discussed. The Control Memo...

	5.3.4 Processing tasks allocation
	The different processing tasks described in section 5.2, are allocated to different processing un...
	Table 3: Allocation of processing tasks listed in section 5.2.



	5.4 Interfaces
	The PP consists of two parts, the PPP and the mC. The interfaces between them and towards the sur...
	5.4.1 Network interface
	The interface between the network and the protocol processor consists of a PHY ASIC. Normally we ...

	5.4.2 Micro controller interface
	The interface between the PPP and the micro controller consists of 2 data busses, the shared cont...

	5.4.3 Host system interface
	The interface between the host processor, including application, memory, DMA, and others remains ...


	5.5 Control path
	5.5.1 Counter and controller
	The C&C is responsible for starting and stopping FP processing, based on the program and the resu...
	Figure 5.9: The control FSM controlling the PPP during packet reception will be implemented in th...

	5.5.2 Hardware timer
	Managing and updating the timers can become a large part of the processing of the TCP and IP prot...


	5.6 Configuration
	The proposed architecture supports three levels of configuration.
	• Design time selection

	First of all it is possible to select and configure a number of FPs during the design phase, befo...
	• Data path configuration

	Secondly the micro controller can configure the FPs using a relatively small number of clock cycl...
	• Programmable data path selection

	The data path can be controlled and selected in a programmable way using the C&C.
	All together the three levels of configuration possibilities gives the architectures a very high ...

	5.7 Performance
	Using the performance parameters introduced in chapter 3 we can discussed the performance of the ...
	• Flexibility

	The architecture is programmable with a configurable data path. It is capable of processing up to...
	• Throughput

	Using dedicated hardware blocks enables a very high performance. My simulations indicates that th...
	• Inter-operability

	The general purpose micro controller can be programmed to interact with the host operating system...
	• Cost

	CMAA cost depends on the number of entries that will be used. The power must be considered low si...
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	Paper 1:
	A novel configuration based general-purpose protocol processor is proposed. It can perform much f...

	6.1 Background
	Networking has been developing very fast and more and more protocols are emerging for different a...
	• Multiple ports and multiple Gigabits per second real-time framing and de-framing.
	• To pre-process as much protocol jobs as possible before a memory access.
	• A general, simple, fast, and flexible architecture for different kinds of protocols.
	• A built in protocol recognition and automatic configuration capability.
	• Low power, high speed, and memory (size and access) efficient architecture.

	Two kinds of protocol processors are available on the market nowadays, one is the specific single...
	Most solutions available now use a specific circuit to process the protocol flow, and use a GPCPU...
	We need to recognize the protocol of the incoming package and then configure the processor to fit...

	6.2 Functional coverage of DPSP
	The system proposed is a new architecture for control-extensive processes, e.g. protocol processi...
	We can solve all problems mentioned above by introducing the Deep pipeline serial processor DPSP....
	• Framing and de-framing are performed in a separate core; it acts as a platform or an accelerato...
	• Separated the DPSP as a stand-alone machine working at high speed with a standard implementation.
	• All functional blocks inside the DPSP are self-contained and configured, therefore the adaptati...
	• The protocol can be recognized by this solution and a correct configuration can be booted to th...

	The architecture performs protocol processing based on both pre-configured setting and a real tim...

	6.3 Application overview
	The goal is to make a platform for all possible network applications. Part of the possible applic...
	• Fast framing, de-framing for the Internet switching: G-bits Ethernet source, and destination ad...
	• Predict the memory allocation: relax memory traffic, payload reordering, etc.
	• Fast queue and priority check for the real time network applications.
	• For certain applications the products recognize the protocol of the coming data, and boot the p...
	• The user can boot different protocols for different applications.
	• For fast prototyping or SoC integration.


	6.4 Architecture
	We introduce a new architecture that can work towards the physical limits of CMOS [3]. It can be ...
	The proposed architecture executes the protocol process based on both programs and pre-set config...
	The proposed architecture is configured for a specific protocol before the protocol process. The ...
	For implementation convenience, data coming into every functional page is pipelined. Functional p...
	Figure 6.1: The system block diagram.
	The System block diagram is given in figure 6.1. The left part is DPSP and the right part is the ...
	Matching: It sets up the synchronization by recognizing the preamble.
	Error checking: Check errors according to the coding of the protocol.
	The field extraction: It extracts fields and accelerates processes further.
	Level hierarchy transparent process: The HW can make levels of network hierarchies transparent. T...
	Payload management: To measure the length of the payload and to validate the correctness of the d...
	Other QoS options: According to the applications, QoS can be supported.
	Application interfacing: Before data allocation, check the application, find the possibility to s...
	Fast acknowledgement: The acknowledgement can be compiled in an easy and fast way according to ex...
	Fast ACK as an important function is performed on the fly in DPSP. Necessary messages such as DA ...

	Figure 6.2: Dataflow of the DPSP.
	The data flow is given in figure 6.2. The data coming from the physical level has been converted ...

	6.4.1 Functional Pages
	Figure 6.3: FP structure
	Simple FP implementation can be done by custom design. Complicated FP will be implemented using s...
	The active period of a FP is decided by its function. Most FP’s are only active part of the time....


	6.4.2 Counter and Controller
	The counter and controller is a counter based state machine (FSM) adapted by configurations. A co...
	There are two levels of controls performed in the ”counter and controller”. The upper level contr...
	Figure 6.4: Counter and Controller
	The control is scheduled in the following way:
	• Start a FP
	• Let the FP run itself
	• Monitoring flags coming from all active FP’s.
	• Make new control decision according to flags.
	• Monitor the control interface between the micro controller and the DPSP.
	• Change the control procedure if the micro controller gives a new request.
	• Inform the micro controller to that the data is available.
	• Responde to the micro controller to accept data.
	• Send the accepted data to a FP responsible for the acknowlegement.




	6.5 Conclusion
	We have described a configuration based DPSP architecture as a platform for network applications....
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	Paper 2:
	In the Proceedings of NORCHIP 2000
	In order to provide error detection in communication networks a method called Cyclic Redundancy C...
	A comparative study of different implementation strategies for computation of Cyclic Redundancy C...

	7.1 Introduction
	Both computer and human communication networks, uses protocols with ever increasing demands on sp...
	Traditionally NT has been implemented as ASIC:s for the lower layers in the OSI-Reference Model [...
	The speed requirement is very important since a protocol processor must buffer incoming data if j...
	The aim of this paper is to compare different implementations of CRC computational units in order...
	7.1.1 The CRC algorithm
	Cyclic Redundancy Check is a way of providing error control coding in order to protect data by in...
	• All single bit error
	• All double bit errors
	• All odd number of errors
	• Any burst error for which the burst length is less than the polynomial length
	• Most large burst errors

	The CRC encoding procedure can be described by equation 1.
	V(x) is the n bit long data word transmitted and it consists of the original data and U(x) follow...
	S(x) is by other words the reminder resulting from a division of the data stream and a generator ...
	The actual coding-procedure is the same on both the receiving and transmitting end of the line. T...
	Figure 7.1: Principle of error detection using the CRC algorithm.
	As can be seen in figure 1 the receiving NT perform a CRC-check on the incoming message and if th...



	7.2 Implementation theory
	This section introduces the commonly used and presents one new architecture for implementation of...
	• Software(SW) Solution [7.3, [7.1: The CRC algorithm can always be implemented as an software al...
	• Traditional Hardware Solution: Linear Shift Register (LSR) with serial data feed [7.20 has been...

	Figure 7.2: Linear Shift Serial Data Feed
	• Parallel Solution: In order to improve the computational speed in CRC generating hardware, para...

	Figure 7.3: Parallel Fixed Logic Implementation
	Configurable Hardware: One way of implementing configurable hardware is by using Look-Up-Tables (...

	Figure 7.4: Look Up Table based configurable hardware.
	This implementation can be modified by using a larger or smaller LUT. If the size of the LUT is r...
	Another, novel implementation method is the Radix-16 Configurable CRC Unit, which is presented fo...

	Figure 7.5: Configuration by use of switches in the circuit reconnecting wire.
	In order to improve the speed of the Radix-16 Configurable CRC, a 4 - bit wide input data stream ...

	Figure 7.6: Radix-16 Configurable CRC engine
	The polynomial input makes it possible to implement any given CRC algorithm of a given size. Usin...


	7.3 Experimental results
	10 different implementations of the CRC algorithm, including one CPU RISC based SW-implementation...
	Since most network protocols are bytebased, there is no meaning in investigating a parallelism of...
	As seen in table 1 the fixed logic and parallel input implementation is the fastest. That is in t...
	Conflict with other processes makes interlayer processing difficult, not to say impossible when u...
	Table 4: Comparison between different CRC implementations. The Pads are not included in the area ...


	7.4 Conclusions
	Because of the superior performance of a parallel ASIC implementation, it will be used for implem...
	Software solutions for low speed protocols will also be used for low- speed applications, but a i...
	A novel architecture for this application area has also been presented, which has a superior powe...
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	Paper 3:
	Abstract
	This paper introduces a novel architecture for acceleration of control memory access in a protoco...

	8.1 Introduction
	Both computer and human communication networks use protocols with ever increasing demands on spee...
	In order to let the end-users take advantage of the bandwidth enhancement in todays networks, tom...
	To meet these new requirement a new area of communication handling hardware platforms has emerged...

	8.2 Programmable protocol processor
	The main task of the protocol processor is to process the packets transferred between the applica...
	Figure 8.1: Using inter-layer processing the power consumption and required memory usage in the p...
	Figure 8.2: The PPP together with a general purpose micro controller handles the communication of...
	In order to deal with the fact that the nature of the different processing task in a protocol pro...
	The micro controller is very suitable for implementation of the various finite state machines (FS...

	Figure 8.3: Offloading the host using various types of accelerators for different types of proces...
	The proposed platform, including a PPP together with the mC, is essentially a TCP offloading engi...
	As illustrated by figure�8.4 the PPP hardware architecture for protocol processing consists of fo...
	The control of the various accelerators (FP) in the PPP, mainly consists of start and stop flags....

	Figure 8.4: The programmable packet processor consists of 4 parts: The Counter and Controller (C&...
	Since the processor operates on streaming data, instead of stored data in memory, decisions on wh...

	8.2.1 Functional pages
	The FPs must operate at wire speed. FPs are configured from the micro controller during set up fo...
	• 1 CRC FP described in [15]
	• 2 eXtract And Compare (XAC) FP responsible for checking address numbers and port numbers agains...
	• 2 length counting adders.
	• 2 checksum calculation adders
	• 1 generic adder

	Other possible processing tasks suitable for acceleration in a FP is various types of decoding an...
	As mentioned earlier, the FPs are self-contained dedicated ASICs. After configuration the control...


	8.3 Control Memory Access Accelerator
	As mentioned earlier the micro controller is responsible for the communication control or signali...
	8.3.1 Header data
	The purpose of storing control information is to ensure that connection oriented protocols (e.g. ...
	• Protocol type
	• Length (received so far)
	• Total length (transmitted in the last IP packet)

	The length field(s) is provided to the length counter adder in the PPP which updates the number a...
	• Accumulated checksum results

	The checksum results is provided to one of the checksum calculating adders which adds it to the r...
	• IP Source and Destination Address.

	The source address is extracted from the data-stream by the PPP. The adress value is then used to...
	• TCP Source and Destination Ports

	The type, ports and addresses identifies a specific connection. To see if a incoming packet shoul...
	• Identification number

	The IP identification number is used to find the correct memory buffer in the control memory.
	• Pointers to the memory position of proceeding and succeeding packets/ segments.

	In order to provide all of the services stipulated by the TCP standard, more connection related i...

	8.3.2 Accelerator interface
	The CMAA interface to the rest of the PPP and the micro controller is illustrated by figure�8.5 .
	Figure 8.5: Accelerator interface.
	Basically the input to the CMAA consists of flags and an instruction generated in the C&C. In tab...
	Table 5: Lightweight instruction set

	As output the CMAA generates a number of flags. The two data buses are being used for data transp...


	8.3.3 Data path
	Figure 8.6: CMAA architecture. An accelerating hardware architecture for control memory access in...
	An overview of the CMAA architecture is illustrated in figure�8.6 . The CMAA data path includes t...
	As the other accelerating devices in our protocol processor, e.g. FPs, the CMAA remains in idle m...
	In this paper we leave the final CAM design and implementation to be further investigated and opt...
	A layout of the CMAA excluding the two LUE and the buses has been produced. The number of standar...


	8.3.4 Control procedure
	Figure 8.7: Control handling procedure within the CMAA.
	The normal packet reception procedure of operation in the CMAA, is illustrated by figure�8.7 . Th...
	If a new packet arriving is fragmented, the PPP provides CMAA with the IP Identification number a...
	After the PPP has received the packet-ready flag, it continues to process the packet and updates ...
	After successful packet processing, the PPP releases the packet to the CMAA. Next clock cycle, th...


	8.3.5 Control memory organization
	Figure 8.8: Memory organization in the control memory.
	The control memory is organized according to figure�8.8 . As illustrated the control memory consi...


	8.3.6 Look-up Engine architectures
	Figure 8.9: Secondary Look-Up Engine (SLUE) architecture. Note that the conversion logic that con...
	The SLUE consists of 6 CAMs as illustrated by figure�8.9 . The outputs generated by the CAMs are ...

	Figure 8.10: Simplified TCAM principle.
	The 7 different CAMs we propose to be used in the CMAA architecture will have an huge impact on t...
	In order to provide flexibility for different protocols we use a concept we call Simplified TCAM ...

	Figure 8.11: The two different STCAM in the SLUE each consists of three ordinary CAMs and some ma...
	The mask input enables a wildcard functionality for different fields when recognizing an incoming...
	Table 6: Configurations using masking for different packet types and applications.

	It can always be discussed how much the IP version 6 (IP v6) protocol that will be used in the fu...


	8.3.7 CAM implementation issues
	The total size of the 7 CAMs and there result memories will be a major part of the system chip ar...
	As an example M=16, N=64 and W=20 can be considered. The chip-area for the two LUE would then be ...
	In order to examine our architectural performance, it is crucial to know how many clock cycles ea...
	The number of clock cycles required for a search operation in the SLUE is equal to the critical p...
	Even with a pessimistic feature size projection (Moores law), there is no reason to believe that ...
	The latency, critical path, power consumption in the LUE is of course depending on M, N and W. To...

	8.3.8 Latency
	The proposed architecture for access of the control memory, reduce the control memory access late...
	The PPP can start the processing of an incoming packet before the control data has been accessed ...
	Table 7: Examples on memory access latency for various packets received. (PLUE requires 2 clock c...


	8.3.9 Enabling flow based QoS
	Using the fast control memory access, it is possible to enable quality of service (QoS) to the re...

	8.3.10 Shared control memory
	The motivation for separating the protocol processing into one PPP-part and one mC-part is of cou...


	8.4 Conclusions
	A novel architecture for acceleration of control memory access in a protocol processor for networ...

	8.5 Further work
	In order to complete the specification of the protocol processor three main research areas remain...
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