
Power Optimized Packet Buffering in a Protocol Processor

Ulf Nordqvist and Dake Liu
Department of Electrical Engineering

Linköping University, SE-581 83 Linköping, Sweden
Phone: +46-13-28-{2903, 1256}, Email: {ulfnor, dake}@isy.liu.se
ABSTRACT

In the emerging research area of protocol processors
(PP) there exist many hardware platform proposals. One
example of such a platform solution has been proposed
by the author in a series of papers, mainly focusing on
datapath organization and optimization. The proposed
platform is unique since the fast path process incoming
packets before storage in the input buffer. This paper pro-
poses that a FIFO buffer should be added to the input
buffer to lower the power consumption. The optimization
process and the optimal input buffer architecture are
dependent on a large number of parameters, e.g. network
type and traffic, host system and physical implementation
process. Simulating energy consumption characteristics,
a number of architectural conclusions have been made.
Especially an input packet buffer configuration is pro-
posed which can be used in a wide variety of network
applications and host systems.

1. INTRODUCTION

Both computer and human communication networks

use protocols with ever increasing demands on speed,

cost, and flexibility. In order to let the end-users take

advantage of the bandwidth enhancement in today net-

works, tomorrows Network Terminal (NT) hardware

must support transmission speeds of Gbit/s. Hardware

for such NT components is on the other hand sold on a

cost-sensitive market share with high demands on flexi-

bility and usability. Traditionally NT has been imple-

mented using ASIC:s situated on the network interface

card processing the lower layers in the OSI-Reference

Model and a CPU-RISC based SW implementation of

the upper layers. Usage of standard, general purpose

CPU:s, is expensive in terms of cost, area and power due

to their lack of dedicated hardware. Today it is easy to

find Network Interface Card (NIC) supporting multi-

gigabit networks but such bandwidth can not be utilized

by the host since it requires the host to be fully loaded

processing layer 3 and 4 protocols, leaving nothing for

the application and system processing. The research

focus has mainly been on router and switching applica-

tions so far, but in the future the terminals will also

require offloading using programmable high-speed solu-

tions.

A PP architecture intended to be used as a offloading

device in a network terminal was proposed by the authors

in [1] and [12]. As most PP, it consist of more or less pro-

grammable devices that can accelerate and offload a host

processor, by handling the communication protocol pro-

cessing. The protocol processor is a domain specific pro-

cessor that have superior performance over general

purpose CPUs but still provides flexibility through pro-

grammability within the application domain. The pro-

posed architecture has a unique strategy for storage and

wirespeed processing of incoming packet data. Instead of

storing the data in a input buffer before it is processed as

traditional network processing hardware, the proposed

architecture manage some of the fast path processing

before the packet is either discarded or stored for further

processing. The protocol processor is further discussed

in chapter 2. The remaining part of this paper will focus

on considerations and optimization of the memory archi-

tecture in the proposed PP platform. Especially the buff-

ering of incoming packets using registers, SRAM FIFO

and on- or off-chip SRAM memories will be discussed in

chapter 3 and 4.

2. PROTOCOL PROCESSOR

An overview of the PP architecture is illustrated by fig-

ure 1. The PP consist of three major components. The

first one is a general purpose micro controller responsible

for the control intensive processing of the slow path. This

type of processing tasks is common in the higher proto-

col layers. The second component is the programmable

protocol processor (PPP) which is responsible for the

high-performance acceleration of the data-intensive pro-

cessing tasks. This fast path process the data on wire-

speed as it streams through a chain of flip-flop based

registers. The last type of components are memories.

There are three types of memories, a program memory

for the control unit in the PPP, a control (=parameter)

memory where inter-packet control information such as

connection variables is stored. There is also a SRAM

based packet buffer (PB), situated between the offloading

PP-device and the host. The packet buffer is used for

storage of incoming packets until they have finally been

accepted (by the slow path) as correct packets which

should be provided to the host. If a packet buffer can not

be accommodated off- or on-chip, the received packet

data has to be stored in the hosts main memory.

2.1. Streaming data

The PPP operates on streaming data. This means that

the operations have to be exactly synchronized with the



incoming 32 bit wide data stream. The main task of the

protocol processor during packet reception is to decide if

a packet should be discarded or accepted for further pro-

cessing. The fast path requires a few clock cycles in

order to decide if the data should be stored or discarded,

i.e. the decision latency.

3. PACKET BUFFERING

According to figure 1 received packets will stream

through the fast path (i.e. PPP) and if the packet is

accepted, the payload data will be stored in the hosts

(main) memory, where the application running on the

host CPU can access the data for further processing. The

memory where the packets are stored must be at least 1

MB in order for a TCP datagram to be accommodated.

There exist many different ways of organizing the

memory architecture in the terminal. The main memory

organization alternatives are illustrated by figure 2.

• Case a): Off chip packet buffer memory on a NIC.

• Case b): On chip packet buffer memory on a NIC.

• Case c): Large shared off-chip memory on mother-

board.

• Case d): On-chip packet buffer on the motherboard

CPU chip.

The optimal solution depends mainly on the available

chip area, i.e. on-chip memories will always be desirable

if they are possible to accommodate. Minimal area will

be used if the protocol processor and the host can use

shared memories. The problem with shared memories is

that the host processing (i.e. the application) will be

interrupted leading to performance degradation. Remem-

ber that the purpose of the protocol processor is to off-

load and accelerate the application processing running on

the host. In order to reduce this host OS disturbance, a

special on-chip packet buffer should be used for interme-

diate storage of the incoming packets. The packet buffer

memory (PBMEM) should be able to store at least 100 ns

of traffic, i.e. 1 MB in a 10 Gb/s network. The host mem-

ory organization is not a part of this research project but

as illustrated in figure 2 the proposed PP platform can be

integrated with a wide variety of host architectures.

3.1. Optimization strategy

As depicted in figure 3, the received packets streaming

through the input buffer into the PB SRAM will be dis-

carded if the protocol processor detects any errors in the

packet. Packets will be discarded if the address, port

numbers, checksums, CRC, etc. is errornous. This is the

reason why it make sense to add an extra FIFO buffer in

the fast path input buffer (and use three different packet

buffering components in the architecture) in order to

lower the power consumption.

Example: According to figure 3 b), α packets are
received and streams through the registers in the input
buffer. Then β packets will be discarded leaving α−β
packets to be buffered in the SRAM FIFO. While stream-
ing through the FIFO another χ packets will be dis-
carded. According to this finally ε=α−β−χ−δpackets will
be accepted. This means that only ε packets will be
stored in the large memory. Hence, to add the FIFO
buffer actually lowers the energy cost.

3.2. Optimization parameters

Since the energy cost for the memory access will be

dependent on which memory organization is chosen it is

natural to think that the optimal input buffer architecture

Figure 1. System and memory organization overview.

NT Host

CPU

L1
Cache

L2
Cache

DMA

H
os

t m
em

or
y

Input buf

Accelerat

C&C

PMEM CMEM

µC

PΒΜΕΜSoC

PPP

NIC

PPP

G
M

II

SRAM
   PB

Terminal
   Host

Motherboard

a)

NIC

PPP

G
M

II SRAM
   PB

Terminal
   Host

Motherboard

b)

PP chip

PPP

SoC
Host CPU

Cache

Main memory

G
M

II

c)

PPP

SoC
Host CPU

Cache

Main memory

G
M

II

d)

Figure 2. Packet buffering memory organization alter-
natives. The memory access energy cost is dependent on

the selected memory organization.



is dependent on the selected memory organization. Other

parameters determining the sizes of the three input buffer

stages for a certain memory system environment are:

• Network traffic. The length, protocol type, and

transmission error rate.

• Discard decision latency. Depends on type of

packet, type of error, and the fast path implementa-

tion.

• Buffer (dynamic) energy cost. Depends on size,

clock frequency, activity, implementation method

and process.

4. SIMULATIONS

In order to optimize the average energy consumption in

the three input buffer stages, all the parameters listed in

section 3.2 must be measured as accurately as possible.

The first parameter to investigate is the network traffic.

We have used a network analyzing tool [11] to do this.

Further we haven chosen to investigate three cases of net-

work traffic flows. These are low traffic (no transmission,

only reception), heavy traffic (file transfer application)

and the average traffic flow (router traffic downscaled).

The protocol type distribution for these three different

traffic situations are illustrated by figure 4.

Further the length is distributed according to table 1 in

the average traffic flow. The decision latency for different

protocols and errors is specified by the program control-

ling the PPP operation. In the simulated architecture the

decision latency is given by table 2.

The energy cost for access of the register chain, the

SRAM based FIFO and the packet buffer SRAM mem-

ory has been modeled using cost functions mainly from

[9]. In order to estimate the energy cost for access of a

memory system (eq. (1)) accurately, it is essential to

carefully model the effective capacitance according to

eq. (2).

(1)

(2)

We have assumed a 0.35 µm standard cell process for

the flip-flops in the register chain and the use of a mem-

ory library optimized for low power. In order to reduce

fan-out in the PPP and thereby enabling high speed oper-

ation, at least five 32-bit wide registers have to be used.

Using MatLab a number of different simulations have

been made. During the simulations the error-rates, packet

buffer energy costs and traffic flows has been used as

input parameters to find the input buffer configuration

that gives minimum average energy consumed per packet

received.

4.1. Simulation results

Using information on energy consumption of different

FIFO, registers and memories [3-10], the resulting opti-

mal solution with minimal energy consumed per packet

is displayed in table 3. Our simulations shows that the

discarded packets will consume more energy if the num-

FIFO
PBMEM or

discarded packets

Figure 3. Packet flow during reception. Some packets
are discarded while streaming through the three pro-
posed packet buffers. These are the register chain and

the FIFO in the fast path and the memory buffer.
Accepted packets streams through all buffers and into

the host main memory.

Fast path input buffer

α β χ δ ε

Host MEM

Figure 4. Packet type distribution in various traffic flows.
At low traffic ARP/RARP dominates while TCP domi-

nates during heavy traffic flows. Note that no traffic from
real time applications has been modeled.

Table 1: Packet size distribution in the average traffic
flow.

1-10 B 11-490 B 491-510 B
511-

1500B

40% 30% 20% 10%

Table 2: Discard decision latency for different
protocol processing tasks.

Protocol

type

Decision latency

Address Check

# Clock cycles

Decision latency

Checksum

# Clock cycles

Ethernet 4 packet length in B/4

ARP 5 packet length in B/4

RARP 5 packet length in B/4

TCP 10 packet length in B/4

UDP 10 packet length in B/4

IPv4 6 8

ICMP 6 10

IGMMP 6 10

EMEM
1
2
---Vdd

2
Ceff⋅=

Ceff ConchipSRAM CoffchipSRAM Cinterconnect+ +=



ber of register and FIFO stages are low. The reason is

that most packets can be discarded before the data has

streamed into the big packet buffer memory (1 MB

SRAM). Meanwhile the accepted packets will consume

less energy per packet if the number of register and FIFO

stages are reduced. The reason is that all accepted pack-

ets (except the control oriented e.g. IGMP, ICMP, ARP,

RARP, which are transferred to the control memory after

the FIFO buffer) will be stored in the packet buffer mem-

ory anyway. The simulations states that in order to opti-

mize the packet buffer power consumption, we have to

choose a small register based buffer, a medium sized

FIFO buffer and a large PB SRAM. The average per

packet energy consumed in the three buffer stages is in

the magnitude of a few µJ (minimal 1.3). Further the

table shows that the memory organization which decides

the energy cost for a memory access has little effect on

the result. Instead it is mainly the packet size and discard

latency that determines the optimal buffer configuration.

Table 3 also shows that the average energy consumption

in the 3 buffer stages is significantly reduced compared

to if no FIFO buffer would have been used. In a tradi-

tional type of input buffer the energy cost would increase

instead. Simulations also indicates that the network

error-rate has a low impact on the resulting buffer organi-

zation although it has a large impact on the energy sav-

ings.

From a general system power consumption perspective,

it is natural to reduce the average power consumption

instead of the peak power consumption. The average traf-

fic flow in a network terminal is however hard to estimate

since it is strongly depending on the applications running

on the host CPU. So far we have assumed that the pack-

ets are non-fragmented. If fragmented packets are

allowed we can expect the optimal number of register

stages to grove since the decision latency is much higher

(10-40 clock cycles).

5. CONCLUSIONS

This paper proposes that an extra FIFO is added to the

input buffer in the proposed fast path architecture. This

reduces the power consumption because some packets

can be discarded before they are stored in a large energy

consuming memory. Our simulation results indicates that

the optimal input packet buffer organization is to use a

minimal number of registers (5) together with a relatively

large RAM based FIFO (264 X 32bit).

The very rough assumptions made on different error

rates in a typical network are acceptable since they do

not strongly effect the optimal buffer configuration. The

same thing apply to the estimations of energy costs for

access of the various buffer components.

REFERENCES

[1] D. Liu, U. Nordqvist, and C. Svensson, “Configuration-

Based Architecture for High Speed and General-Pur-

pose Protocol Processing”, IEEE Workshop on Signal
Processing Systems, Taipei, Taiwan, 1999, pp. 540-547.

[2] IPTraf IP Network Monitoring Software, on the www,

http://iptraf.seul.org/

[3] S. Barbagallo, M.Lobetti Bodoni, D.Medina, G.De Bla-

sio, M.Ferloni and D.Sciuto, “A Parametric Design of

Bui-in Self-Test FIFO Embedded Memory,” IEEE
International Symposium on Defect and Fault Toler-
ance in VLSI Systems, pp221-229, 1996.

[4] A.R. Feldman and T Van Duzer, “Hybrid Josephson-

CMOS FIFO,” IEEE Transaction on Applied Supercon-
ductivity, Vol.5, No.2, pp2648-2651, 1995.

[5] G.N.Pham and K.C.Schmitt, “A High Throughput,

Asynchronous, Dual Port FIFO Memory Implemented

in ASIC Technology,” Second Annual IEEE ASIC Sem-
inar and Exhibit, pp, 1989.

[6] M. Hashimoto, etc., “A 20ns 256K*4 FIFO Memory,”

IEEE J. of Solid State Circuits, Vol.23, No.2, pp490-

499, 1988.

[7] Austria Micro Systems, “0.35 m CMOS Libraries

(C35)”, on the www, http://asic.austriamicrosys-

tems.com/data books/index_c35.html

[8] NEC, “Data-sheet µPD431000A”, on the www, http://

www.nec.com

[9] F. Catthoor et. al., “Custom memory management

methodology”, Kluwer Academic Publishers, 1998

[10] A. Berkeman, “ASIC Implementation of a Delayless

Acoustic Echo Canceller”, Ph.D. Thesis, Lund Univer-

sity, Sweden, Dec. 2002

[11] Ethereal Network Analyzer, on the www, http://

www.ethereal.com/

[12] T. Henrikson, U. Nordqvist, and D. Liu, “Specification

of a Configurable General-Purpose Protocol-Proces-

sor”, Proceedings of the CSNDSP, 2000, Bournemouth

Table 3: Optimal packet buffer organization for
different traffic flows and memory organizations.

Optimal number of register chain stages is 5.

Traffic flow

type

Memory

organization

# of FIFO

stages

Energy

savings

Low a) 125 12%

b) 125 13%

c) 125 13%

d) 125 14%

Heavy a) 375 15%

b) 375 15%

c) 375 15%

d) 375 16%

Average a) 256 24%

b) 256 27%

c) 276 24%

d) 264 29%


	ABSTRACT
	1. INTRODUCTION
	2. PROTOCOL PROCESSOR
	2.1. Streaming data

	3. PACKET BUFFERING
	3.1. Optimization strategy
	3.2. Optimization parameters

	4. SIMULATIONS
	4.1. Simulation results

	5. CONCLUSIONS
	REFERENCES

	Power Optimized Packet Buffering in a Protocol Processor
	Ulf Nordqvist and Dake Liu
	Department of Electrical Engineering
	Linköping University, SE-581 83 Linköping, Sweden
	Phone: +46-13-28-{2903, 1256}, Email: {ulfnor, dake}@isy.liu.se



