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Abstract
This paper introduces a novel architecture for acceler-

ation of control memory access in a protocol processor
dedicated for packet reception in network terminals. The
architecture enables the protocol processor to perform
high performance reassembly and also offloads other parts
of the control flow processing. The architecture includes
packet classification engines and concepts used in modern
high-speed routers. The protocol processor combined with
a general purpose micro controller, fully offload up to
layer 4 processing. The protocol processor operate at multi
gigabit network speeds when implemented in mature stan-
dard cell processes.

1. Introduction
Both computer and human communication networks

use protocols with ever increasing demands on speed, cost,
and flexibility. There is also a strong development towards
an increased use of network protocols for applications that
traditionally used other implementation techniques, e.g.
voice and video. One reason is that packet based network
protocols can normally handle a mixture of any kind of
traffic. For network node components such as routers,
switches and bridges, the performance needs have been
fulfilled using Application Specific Integrated Circuits
(ASIC) or Application Specific Standard Products (ASSP)
since these applications traditionally have had quite mod-
erate demands on programmability. These traditional
approaches will probably continue to co-exist with more
programmable solutions such as network processors (NP)
in the future, due to their relatively cost-insensitive and
performance demanding consumers. Having said this, it is
clear that the networking industry is requesting moore pro-
grammable devices in tomorrows network.

In order to let the end-users take advantage of the band-
width enhancement in todays networks, tomorrows Net-
work Terminal (NT) hardware must support transmission
speeds of Gbit/s. Hardware for such NT components is on
the other hand sold on a cost-sensitive market share with
high demands on flexibility and usability. Traditionally NT
has been implemented using ASIC:s situated on the net-
work interface card processing the lower layers in the OSI-

Reference Model [4] and a CPU-RISC based SW impl
mentation of the upper layers. Usage of standard, gene
purpose CPU:s, is expensive in terms of cost, space a
power due to their lack of dedicated hardware. There
also an upper capacity limit, set by the I/O capacity and t
instruction rate of the CPU. Today it is easy to find Ne
work Interface Card (NIC) supporting multi-gigabit net
works but such bandwidth can not be utilized by the ho
since it requires the host to be fully loaded processi
layer 3 and 4 protocols, leaving nothing for the applicatio
and system processing. The research focus has ma
been on router and switching applications so far, but in t
future the terminals will also require offloading using pro
grammable high-speed solutions.

To meet these new requirement a new area of comm
nication handling hardware platforms has emerged. The
are commonly denoted as TCP Offload Engines (TOE
One of these TOE solutions is called programmable pro
col processor (PPP) and it was introduced by this pap
authors in [1] and [2] 1999. As most of the TOE it consis
of programmable parts that can accelerate and offload
terminal host processor by handling the communicati
protocol processing. The protocol processor platform is
domain specific processor solution with superior perfo
mance over a general purpose CPU, that still provides fle
ibility through programmability within the limited
application domain. The protocol processor hardware pl
form is further discussed in chapter 2. In chapter 3 a nov
methodology and architecture for handling and distribu
ing, control flow information to and from our protocol pro
cessor is introduced. The proposed architecture enables
protocol processor to be used in networks with fragment
packets. In chapter 4 a discussion on system performa
based on behavioral models is included.

2. Programmable protocol processor
The main task of the protocol processor is to proce

the packets transferred between the application on the h
processor and the network, so that a secure and relia
connection is provided between the sender and transm
ting function. The protocol processing architecture (an
the research project behind) discussed in this paper, o
deals with the reception of packets. Since the transmitti
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of packets is limited by the applications construction of
packets and have lower demands on low latency, we have
chosen to concentrate our research on the packet reception
problem before discussing packet creation acceleration.
The goal of this research project is to process as much of
the protocol stack as possible before storing the data pay-
load to the systems main memory. By reducing the mem-
ory access and buffering, illustrated by figure 2 , both
memory bottlekneck problems and power consumption
can be reduced. In order to achieve this, the protocols must
be processed at network speed and multiple layers are
being processed simultaneously as proposed in [10].

In order to deal with the fact that the nature of the dif-
ferent processing task in a protocol processor is very versa-
tile the hardware platform has been divided into two parts.
This is illustrated by figure 2 . The first part is the Pro-
grammable Protocol Processor (PPP) which is dedicated

for data intensive protocol processing task mainly origina
ing from the lower level protocols in the OSI-protoco
stack standard. Examples on such tasks are checksum
culations, address checks, length counters etc. Norma
they are intra-packet processing tasks that have to be p
formed even if the protocols covered are very simple. T
other part off the platform is a general purpose micro co
troller (µC) that deals with control intensive protocol pro
cessing tasks such as connection state handling and o
inter-packet processing tasks. The micro controller is al
used for the configuration of the PPP for different type
protocols as well as updates. Further the micro control
handles the control communication with the host process
and the DMA, e.g. setting up and closing sockets e
Using DMA communication between the PPP and the ho
reduces the interrupts compared to bus-communicat
[9]. In the NP research community there is today a cle
trend towards a separation of the processing in a slow a
fast-path similar to our approach. In figure 3 there is a
illustration showing how different layers in the protoco
stack are distributed to different processing resources.

The micro controller is very suitable for implementa
tion of the various finite state machines (FSM) which co
tributes to a big part of the control processing. Never th
less, there are other tasks within the inter-packet proce
ing domain, which the micro controller efficiently can b
offloaded from. One of the main operations is a search a
access of control data based on header information in
receiving packet. This operation is comparable to the bi
and in_pcblookup C-functions used in software impleme
tations. In a receiving situation the PPP will process th
packet and then discard it or hand it over to the micro co
troller.

SoC

PPP

Input buffer

C&C µCFP

Host processor

DMA

Main
Memory

Application

Network

Ctrl memory

G
M

II

Figure 1: The PPP together with a general purpose micro controller handles the communication of one
network port. In a system on chip (SoC) many PPP can be used as port-processors in order to provide

high bandwidth between the application and the network. A control memory is used for storage of
inter packet control variables.

Data BufferData Buffer

Layer N protocol

Layer N-1 protocol

Figure 2: Using inter-layer processing the power
consumption and required memory usage in the
protocol processor can be reduced since all buff-

ering of data between different protocol layers
can be eliminated
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The proposed platform, including a PPP together with
theµC, is essentially a TCP offloading engine (TOE) dedi-
cated for network terminals. A TOE for NT does not make
any routing decisions. It only discards packets or accept
them before they are passed on to the correct host memory
buffers. Further the number of connections is much less
than in a layer 4 router. Hence the architectural design of
such an offloading device have other goals and require-
ments. Consequently the research on such devices must
divert from the network processor research area.

As illustrated by figure 4 the PPP hardware architectu
for protocol processing consists of four main parts. One
the input buffer chain that provides the data to the accel
ating functional pages (FP). By using a 32 bit wide cha
of flip-flops, the fan-out from the flip-flops can be kept o
a tolerable level even if the number of FP increases w
new protocols and an increased protocol coverage. Usin
RAM based FIFO buffer instead of flip-flops would
decrease the activity but the fan-out would be a huge pro
lem. As long as the fan-out is kept low it is still possible t
replace the last flip-flops in the chain with a minima
RAM-based FIFO. The total buffer size is dependent o
the decision latency of the PPP. The decision answer
normally discard or send packet to memory for further pr
cessing. Some payloads should be sent to the host mem
and some to the control memory.

The control of the various accelerators (FP) in the PP
mainly consists of start and stop flags. These flags are p
vided from the Counter and Controller (C&C). The flag
are generated based on an internal program in the C&
result flags from the FPs and counter values generated
the C&C. The C&C is responsible for sceduling the start
the processing in the FPs at the correct clock-cycle, as
data streams through the register chain. Based on the re
from the FPs, the C&C can either discard the packet
continue the processing by configuring and starting ne
FPs. If a packet is discarded, e.g. because the destina
address was errornous, all the FPs are immediately s
down in order to save power.

Since the processor operates on streaming data, inst

Intra packet/
data intensive
protocol

Inter packet/
control intensive
protocol Layer 4

PHY

MAC

Layer 3

ULPHOST CPU

µC

PPP

PHY
ASIC

FIGURE 3. Offloading the host using various types
of accelerators for different types of processing

tasks and protocols. Typically higher layer
protocols require more flexibility through

programmability.

processing

processing

C&C

Flag decoder

FP FP FP FP FP FP FP

PPP

Interconnect Network

ControlCMAA

dbus0
dbus1

MEM

FIGURE 4. The programmable packet processor consists of 4 parts: The Counter and Controller (C&C), the
input buffer chain, accelerating functional pages and a Control Memory Access Accelerator (CMAA).

PHY
Interface
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of stored data in memory, decisions on which program
flow to execute requires minimal latency. Different proto-
col configurations uses different program flows. Hence
program flow selection is dependent on the type and con-
tent of the receiving packet. The C&C includes a special
assist for acceleration of multi-choice conditional jump
instructions in order to provide maximum system perfor-
mance. The payload of received packets of TCP or UDP
type will be sent to the host while the payload of control
oriented protocols such as ARP, RARP, ICMP, IGMP will
be stored in the control memory. The control memory
acceleration part is further discussed in chapter 3.

2.1. Functional pages
The FPs must operate at wire speed. FPs are configured

from the micro controller during set up for a specific set of
protocols or a single protocol. Each of the FP are dedicated
ASIC with a limited configurability. Together, the micro
controller and the C&C supports a high degree of program-
mability. To better understand the nature of the FP a com-
mon set of network protocols has been used. The protocols
are TCP, UDP, ICMP, IGMP, IPv4, IPv6, ARP, RARP and
Ethernet (Fast E and GigE). In order to support processing
of these protocols, the following FPs, have been imple-
mented:

• 1 CRC FP described in [7]

• 2 eXtract And Compare (XAC) FP responsible for
checking address numbers and port numbers
against the actual host address. Further they are
used to extract and compare checksums.

• 2 length counting adders.

• 2 checksum calculation adders

• 1 generic adder
Other possible processing tasks suitable for accelera-

tion in a FP is various types of decoding and decryption
algorithms. They are however not used since such algo-
rithms are not included in the selected protocol suite.

As mentioned earlier, the FPs are self-contained dedi-
cated ASICs. After configuration the control needed for
their operation is very limited. Actually, most of the con-
trol signaling can be reduced to only start and stop flags
since most control is distributed to the individual FPs.

3. Control Memory Access Accelerator
As mentioned earlier the micro controller is responsi-

ble for the communication control (signaling) handling.
Using a general micro controller is a straightforward
method similar to the traditional way of slow path process-
ing in a GP CPU. The problem with this solution is that the
control information must be transferred between the micro
controller, the PPP and the control memory with low

latency in order for the PPP to process its part at wir
speed and make the decision if the packet should be d
carded. This is needed because of the use of fragmentat
Further, acceleration of slow path processing off-loads t
micro processor. Hence, a platform including accelerati
hardware assist and control interface dedicated for pac
recognition and control memory access have been dev
oped. The Control Memory Access Accelerator (CMAA
presented in this article uses 2 Look Up Engines (LUE)
order to recognize and classify the incoming packet. The
LUE essentially consists of Content Addressable Mem
ries (CAM) which are well known and commonly used i
routing and switching applications. One of the early wor
in this area is [8].

3.1. Header data
The purpose of storing control information is to ensu

that connection oriented protocols (e.g. TCP) can perfo
protocol processing on the payload which can be divid
or segmented into many lower layer packets. These pa
ets can arrive out-of-order and in case of connection o
ented protocols the routing information is not included
all packets. Hence it is obvious that some information o
the current status of a connection must be stored in orde
be able to continue the processing when the next pac
arrives. In the case of the protocol set discussed earlie
this chapter the following information is normally needed

• Protocol type

• Length (received so far)

• Total length (included in the last fragment)
The length field(s) is provided to the length counte

adder in the PPP which updates the number and fina
sends the updated value to one of the XAC FP. There it
compared to the total length value which is stored in th
control memory. If they are equal, the micro controller
notified that all packet fragments have been received a
this entry will be removed from the search list. If unequa
the new length value is written back to the control memor

• Accumulated checksum results
The checksum results is provided to one of the chec

sum calculating adders which adds it to the recent pack
checksum using a 1-complement addition which produc
a new checksum. If the length is equal to the total leng
which means that the hole payload message has arrived
updated checksum it is sent to one of the XAC FP for com
parison with the received checksum.

• IP Source and Destination Address.
The source address is extracted from the data-stre

by the PPP. The adress value is then used to constru
pseudo header. The pseudo header is used in the check
calculation. Normally, only one destination address is us
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for unicast packets in a terminal. This means that it is not
needed to be stored in the control memory.

• TCP Source and Destination Ports
The type, ports and addresses identifies a specific con-

nection. To see if a incoming packet should be discarded or
accepted these fields must be checked. They are also used
to identify which application the payload should be
directed to.

• Identification number
The IP identification number is used to find the correct

memory buffer in the control memory.

• Pointers to the memory position of proceeding
and succeeding packets/segments.
In order to provide all of the services stipulated by the

TCP standard, more connection related information than
listed above needs to be stored. On the other hand the only
information needed for the PPP to perform its processing
is the information high-lighted in bulleted text. The infor-
mation stored in the control memory can also be used to
calculate the host memory adress. An algoritm for this type
of memory address calculation remains to be implemented
for the general case even if it is simple for special applica-
tions, e.g. VoIP. A general algoritm for in-order data-buff-
ering in the host memory would significantly reduce the
host processor interrupts. This type of algoritm would ben-
efit from an accelerated access to the control memory. This
issue will not be further discussed in this paper.

3.2. Accelerator interface
The CMAA interface to the rest of the PPP and the

micro controller is illustrated by figure 5 .The input to the
CMAA consists of flags and an instruction generated in the
C&C. In table 1 the simple instruction set (6 instructions)
is listed.

As output the CMAA generates a number of flags. The

two data buses are being used for data transport.

3.3. Data path
An overview of the CMAA architecture is illustrated in

figure 6 . The CMAA data path includes two LUE, a buffe
pointer generator, and a simple memory access selec
The Primary LUE (PLUE) only includes one CAM which
has 16 bit wide entries, has M entries and the result me
ory is W bits wide. The purpose of this unit is to check
we already have received an fragment of the incomi
packet. This is checked using the IP Identification field (I
ID). If an arriving packet is fragmented, the fragmente
flag will be produced in the C&C and provided to th
CMAA. Then the fragment is checked in the PLUE to se
if a packet buffer exist in the Control memory. If the CAM
in the PLUE does not have a matching identification fie
entry, a new packet buffer will be created and the IP I
will be written to the PLUE CAM. In the packet buffer,
inter-packet variables such as length and checksums w
be stored. If the packet is non-fragmented there is no ne
to store its IP ID so the packet buffer is created directly o
the control memory address provided from the mem buff
gen unit in figure 6 . The SLUE is a classification engin
including 6 CAMs and its purpose is to check for vali
connections. The two data buses is 32 bit wide. The me
buffer gen generates new buffer addresses for both pac
buffers and connection buffers. The adress generation
controlled from theµC.

As the other accelerating devices in our protocol pr
cessor, e.g. FPs, the CMAA remains in idle mode whi
not in operation. Power-up will be performed when a ne
packet arrives. This reduces the power dissipation sign
cantly in a network terminal due to the un-even time distr
bution of the packet reception.

In this paper we leave the final CAM design and imple
mentation to be further investigated and optimized. Th
reason behind this is that they are extremely important
the overall performance and they require different desi
techniques, tools and expertise than the rest of the P
Final implementation of the LUE will of course have a
huge impact on the performance of the CMAA. This issu
is further discussed in section 3.7..

A layout of the CMAA excluding the two LUE and the
buses has been produced. The number of standard c

Instr (8)
Type (8)

dbus0 dbus1

mem access (4)

check buffer (1)

release packet (1)

Ready

Packet ready
Memory locked

discard (1)
Packet discarded
New packet

CMAA

first_fragment (1)

FIGURE 5. Accelerator interface.

Mask (4)

fragmented (1)

ID found

Table 1. Lightweight instruction set

Name Internal configuration

New packet Packet type
Load register Port or Address word
ID CAM operation write, read or remove
PA CAM operation write, read or remove
Release to micro controller
Set memory buffer Packet type
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and the area of the CMAA excluding the input registers,
and the two LUE are 716 and 0.105 mm2 respectively. This
part of the CMAA has been simulated, using static timing
analysis on the layout, to run at almost 300 MHz. This
means that it is not included in the critical path of the PPP.
Since we use registered inputs and outputs in the CAMs, it
is the SLUE that will be the critical path of the CMAA.

3.4. Control procedure
The normal packet reception procedure of operation in

the CMAA, is illustrated by figure 7 . The procedure is

controlled by the control unit finite state machine (FSM) i
the CMAA.

If a new packet arriving is fragmented, the PPP pr
vides CMAA with the IP Identification number and gives
new-packet instruction to the CMAA. The IP ID is then
stored in the input registers to the PLUE. Next 2 cloc
cycles, the CMAA continues to load ports and IP address
while the PLUE checks if a fragment of this payload ha
already been received. If there is a match in the PLU
search, the corresponding address pointer to the buffe
the control memory, which is stored in the PLUE resu
memory, is stored in the input register to the control mem
ory. While the PPP continues the packet processing, it c
then access the control memory directly. If the new fra
ment contains the layer 4 header, the port, source and t
fields are loaded from the PPP and then checked in
SLUE. If this loading is completed after the PLUE searc
e.i. it is a IPv4 packet, the SLUE can immediately chec
the connection information. Otherwise the control un
remains in the check connection state while the loadi
continues. Based on the SLUE result, the packet is eith
discarded or the matching connections adress pointe
provided to the data bus 1. Next clock cycle, the data bu
value will be stored at the packet buffer adress which
already stored in the input register to the control memo
This means that theµC easily can access the connectio
information. Then the CMAA hands over to the PPP usin
the packet-ready flag.

After the PPP has received the packet-ready flag,
continues to process the packet and updates the con
memory.

After successful packet processing, the PPP relea

Control

MEMORYSecondary LUE

Primary
LUE

data bus 0

W

mem buffer gen

r/w

data bus 1

Ctrl unitIP_ID
FSM

Type

FIGURE 6. CMAA architecture. An accelerating hardware architecture for control memory access in the
protocol processor. Based on traditional packet classification techniques it support low latency access to stored

connection variables in the control memory

no_match write adress
generator

wait for new packet

load ports, addresses and search for IP ID

send mem adr

wait for C&C

update

check conn

release toµC

PLUE

discard

Store connection

 to C&C

N

No_connection

match

FIGURE 7. Control handling procedure within the
CMAA.

Y

ID found

in packet buffer
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the packet to the CMAA. Next clock cycle, the CMAA
releases the lock of the control memory, starts buffer
pointer updating and sends the new-packet flag to theµC.
During the update state, the CMAA also updates the write
adress for new entries to the two LUE. This is only done if
a write operation has been performed. During the write
adress search, the CMAA uses one of the generic adders in
the PPP to search for empty entries. When the pointer
updating and the CAM write search is finished the CMAA
returns to the wait-for-new-packet state.

3.5.  Control memory organization
The control memory is organized according to figure 8

. As illustrated the control memory consists of a number of
different buffers storing inter-packet information. Further
the memory include all the control oriented packets that is
going to be processed in the micro controller software.
Since these protocols is completely processed by the micro
controller, also the payload of these packets is stored in the
control memory. For TCP and UDP type of packets only
preprocessed header information is stored. In the packet
buffers, layer 3 information needed for reassembly is
stored. Each packet buffer is deleted when all fragments
have arrived.

3.6. Look-up Engine architectures
The SLUE consists of 6 CAMs as illustrated by

figure 9 . The outputs generated by the CAMs are vectors
containing zeros or ones describing table matches. These
are used to select the address pointer in the result memory,
e.i. the control memory address for the received packet.

The 7 different CAMs we propose to be used in the
CMAA architecture will have an huge impact on the per-

formance, size and power figures of the entire desig
Therefor they require a thorough investigation and optim
zation procedure, in order to obtain the optimal syste
performance. Even if the optimization of these CAMs no
is in the scope of this paper, some characteristics a
requirements on the CAMs can be noted. First of all w
propose that CAMs should be instead of TCAMs ([11] an
[12]). This reduces the cell size and power dissipation. T
primary LUE is a standard CAM memory 16 bit conten
and M entries. The result memory is M times the length
the control memory adress W.

In order to provide flexibility for different protocols we
use a concept we call Simplified TCAM (STCAM) illus-
trated by figure 10 in the secondary LUE. Instead of usin
ternary bit comparisons as in TCAMs we only provides a
wildcard function to the entire CAM. In figure 11 there is
an illustration showing how the secondary LUE uses t

Control memory
Packet buffer

TCP buffer

Other buffers, e.g. UDP

Connection pointer

Checksum

total length length

...

... ...

Entire control packets
e.g. IGMP, ICMP, ARP, RARP

IP adress Port numbers

Packet list and memory location

Other connection variables

FIGURE 8. Memory organization in the control memory.

1

1

0

1

1

0

match

1 1 1

match

0

TCAM

STCAM

Input key

Content

Mask

Content Group
Mask

FIGURE 10. Simplified TCAM principle.
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STCAM principle. The mask input enables a wildcard
functionality for different fields when recognizing an
incoming packet according to table 2. The table shows that
the proposed SLUE architecture can be used for various
types of protocols. A careful use of these wild cards is
needed in order to avoid multiple matches. By using the
type field, which is an internal type, it is possible to avoid
multiple matches which means that the priority logic in the
SLUE can be eliminated. Further it enables the connec-
tions to be written in the CAM in an arbitrary order.

It can always be discussed how much the IP version
(IP v6) protocol will be used in the future. We have chose
to include it since the penalty is not as severe in netwo
terminals as it is in routers. The reason for this is that
network terminals we only have one destination address
check for unicasting. This can be done in other parts of t
PPP. Hence 128 bits can be excluded from the CAM
entries. For broad and multicasting packets a different ty
field is generated and only the destination is check
(instead of the source address). This reduces the pen
we have to pay in forms of larger CAMs when including IP
v6. There exist however routers where only 64 bits out
the 128 in the IP v6 address is used for packet classifi
tion. The reason is that in such networks the other 64 bits
just a copy of the MAC address. If such method would b
applied the CAMs can reduce the wordlength of the co
tent with additionally 64 bits by eliminating the IP Adr 2 in
figure 11 Since this architecture will be used in a netwo
terminal the activity will not be as high in the CAMs as i

128

328

328

Type

Write
flag

Adr RAM

N X W

New_buffer
pointer

dbus0

dbus1

Port&Type
STCAM

Address
STCAM

Delete
flag

write adr
generator

Conv.
logic

N

N

nor

no_connection

FIGURE 9. Secondary Look-Up Engine (SLUE) architecture. Note that the conversion logic that converts the
matching vector to a result memory adress can be eliminated if the matching vector is used directly as word lines
in the memory. This however require that the RAM must be implemented in the same manufacturing process.

Mask
Mask

an
d

Table 2. Configurations using masking for
different packet types and applications.

Protocol
examples

Type
Source
Port

Destin.
Port

Source
Address

Destin.
Adr

IPv6
Unicasting

Optional Optional 16 128 *

Type
CAM

SPort
CAM

SPort
CAM

IP Adr
CAM 0

IP Adr
CAM 1

IP Adr
CAM 2

Match

Result

no_connection

Mask Mask Mask Mask

FIGURE 11. The two different STCAM in the
SLUE each consists of three ordinary CAMs and

masking functions. Each of the CAMs uses N
entries.

Mem
ptr

N

Memory
(RAM)

IPv6
Broad or
multi cast-
ing

Optional Optional 16 * 128

IPv6 alt Optional Optional 16 64 64
IPv4 Optional Optional 16 32 32
IPv4 Optional Optional 16 32 *
UDP Optional 16 16 32

Table 2. Configurations using masking for
different packet types and applications.

Protocol
examples

Type
Source
Port

Destin.
Port

Source
Address

Destin.
Adr
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would be in a router. The reason is that we only do a load
and search operation when a new packet arrives, not every
clock cycle. The low activity significantly reduces the
power consumption in the CAMs.

3.7. CAM implementation issues
The total size of the 7 CAMs and there result memories

will be a major part of the system chip area. It is very hard
to make predictions on the sizes of these CAMs since that
is a matter of optimization effort and implementation strat-
egy. Further the complex placement and routing requires a
full custom approach even for standard cell based designs.
Even without a final layout, a lower bound on the chip-area
can be estimated. Using standard cells from our design
process (AMS 0.35µm 3.3 V 3-M) an optimized bit-slice
cell in a CAM is approximately 350µm2 which results in a
lower bound on the combined CAM area according to EQ
1. The result memories must storeM + N times W bits
using approximately 180 mm2 each.

(1)
As an example M=16, N=64 and W=20 can be consid-

ered. The chip-area for the two LUE would then be at least
4 mm2. This figure is acceptable but if more entries are to
be considered a process migration to smaller geometries is
natural. The number of entries to implement is a matter of
optimization. This optimization procedure requires a care-
ful analyze of application requirement and network traffic.
Never the less it is clear that in NT, the required number of
network links is not as high as in routers. Hence M and N
does not need to be very large for most applications and
networks.

In order to examine our architectural performance, it is
crucial to know how many clock cycles each search opera-
tion in the two LUE requires. We expect the system clock
to have a period of maximally 7.5 ns in a 0.35 micron pro-
cess, based on timing analysis on other parts of the PPP.
Hence the maximum network speed is 4.3 Gbit/s using the
specified 32 bit wide input buffers. Since we are sure that
there is only one packet being processed at any given time,
we do not necessarily need the LUE:s to be pipelined, e.i.
we do not need any internal intermediate results to be
stored. Instead a multi-cycle-path design technique can be
used. To use pipeline stages or not is an implementation
issue for the CAM designers. Simulations shows that the
small PLUE will not require more than 2 clock cycles to
complete one search, e.i. it has a critical path shorter than
15 ns. Then we assume M is maximally 64.

The number of clock cycles required for a search oper-
ation in the SLUE is equal to the critical path divided by
7.5 ns. The critical path consists of circuit delays and wire
delays. If the SLUE are being implemented using standard
cells the logic delay is simple to calculate. For N=64 there

will be approximately 15 logic cells in the critical path
which leads us into believing that 2 clock cycles is enoug
The problem is that in larger CAMs a big part of the criti
cal path, is wire delay. In my research design (N=256)
have used synthesis and P&R tools from Cadence. T
resulting implementation result is very far from optima
and does not meet my requirement 3 clock cycles. T
design is simply to large and hence the P&R problem
complex. Therefor the conclusion is that the design str
egy must be changed to something more custom orien
even if the CAM is rather small compared to the one us
in routers. Clearly a bitslice manipulating placement stra
egy has to be used for efficient CAM design regardless
the size. Anyway the conclusion after studies of oth
comparable CAM designs and discussion with indust
CAM designers is that, for N less than or equal to 256,
search operation will require maximally 4 clock cycles (o
pipeline stages). For N=64, 3 clock cycles is definite
enough. These figures apply to standard cell based desi

Even with a pessimistic feature size projection (Moore
law), there is no reason to believe that scaling not can su
port the CMAA to run at clock periods around 3 ns using
clock cycles for one search operation. Hence the CMA
could be used in a 10 Gbit/s network such as 10 Giga
Ethernet, using already available processes, e.i. 0
micron. The resulting latency for CMAA operations is fur
ther discussed in section 3.8..

The latency, critical path, power consumption in th
LUE is of course depending on M, N and W. To optimiz
these variables simulation on real world network traffic
required. Until this optimization phase is completed th
numbers M=16, N=64 and W=20 will be considered fo
further architectural development.

3.8. Latency
The proposed architecture for access of the cont

memory, reduce the control memory access latency to
few clock-cycles. The fast path latency determines how b
the input buffer chain has to be. The latency of the CMA
must be added to the latency of the PPP in order to cal
late the total fast path latency. We propose that the SLU
should use 3 clock cycles to perform a search. A 3-cloc
cycle type of SLUE would give a maximum memory
access latency of 11 according to table 3 when a n
packet has been received. Further the table shows tha
four cycle type of CAM architecture, will give a maximum
memory access latency of 12 clock cycles. This of cour
have an impact on the pipeline register chain in the P
and the total latency for a packet reception and delivery
the micro controller.

The PPP can start the processing of an incoming pac
before the control data has been accessed from the con
memory. Therefore this latency only sets a lower limit o
the latency of the total packet reception. The total laten

ACAM 16 M× 128 40+( ) N×+( ) 350 M N+( ) W 180××+×=
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is however mainly dependent on the processing activities,
including interrupts and stalls, in the micro controller.

3.9. Enabling flow based QoS
Using the fast control memory access, it is possible to

enable quality of service (QoS) to the reception. Any kind
of priority parameters or flow parameters can be stored in
the different buffers in the control memory. These can then
be used for multiplexing of the incoming data stream, if a
flow based operation is demanded.

3.10. Shared control memory
The motivation for separating the protocol processing

into one PPP-part and oneµC-part is of course to use the
programmability of theµC when processing control inten-
sive tasks, and still have high-performance and low-power
implementation of the data intensive processing. This dis-
tributed architecture however requires an interface, and
that interface is the control memory unit together with con-
trol flags to and from the C&C. As mentioned before, the
PPP only need to access the memory when a new packet is
received and then only a limited part of the control infor-
mation is used. Since the latency of this access directly
effects the length of the input buffer chain, the PPP must
have priority over theµC when it comes to memory access.
In fact the µC only have access to the control memory
when the CMAA resides in the update or wait-for-new-
packet state according to figure 7 .

4.System performance
Each hardware acceleration block in the PP has been

seperatively implemented and simulated using static tim-
ing analasys.The conclusion is that they can operate at net-
work speeds of moore than 170 Mhz. Since all parts of the
fast path operates on streaming data it means that the net-
work can run at this clock frequency. The fast path archi-
tecture processes each packet, delivers data and control
signals to the micro controller and then returns to idle
mode. When the fastpath, e.i. the C&C, has returned to

idle-mode it can start processing the next packets. Hen
the proposed fast path architecture can operate in h
speed networks as long as the gap between the incomm
packets is sufficient for the processor to return to id
mode. This must be supported by the network protocol.

The slow path consists of the micro controller which
enough flexible to fully offload the TCP and protocol
alike. The micro controller is not capable of processing th
packets at wire speed. This may limit the performance
the entire system for extreme traffic situations. The fa
path does however offload some of the tasks traditiona
processed on general purpose hardware. This will rela
the slow path. The amount of off-loading depends on t
traffic flow and requires further simulations.

In order to verify the functionality of the CMAA block
used as proposed in a fast path, a cycle-true and bit-t
behavioral model has been simulated. The simulati
model covers the fast path packet reception. In the mo
the C&C has been modeled as a simple version of t
architecture presented in [13] The principle is short
described in figure 12 . The C&C is modelled as a progra
counter (PC) which selects instructions in the progra
memory. These instructions is then decoded to produce
the control signals in the PP. In order to make condition
jumps without loosing any clockcycles, a programmab
jump decion block calculates the next pc value based
the current PC value and result flags from the rest of t
PP. This architecture supports wire speed processing
non-fragmented packets.

The model includes GMII network interface (32 bi
wide input). Further a behavioral model of the CMAA
including 16-entry, 3-stage pipeline CAMs has been use

So far the only protocols simulated are TCP and IPv
Fast path tasks simulated includes CRC, IP reassem
checksum calculation and data stream demultiplexing. T
C&C is programmed to cover these protocols using a t
program memory in the C&C model. The network traffi
simulated is random.

The simulations verifies that the proposed CMAA
architecture can be used in the protocol processor envir
ment. Further it shows that when programmed for TCP t

Table 3. Memory access latency for various
packets received. (PLUE requires 2 clock cycles

to perform a search)

Layer 3 protocol

# clock cycles
latency for

CMAA
operation

3 stage SLUE

# clock cycles
latency for

CMAA
operation

4 stage SLUE

IPv4 - new packet 9 10
IPv4 -
old packet, new fragment

4 4

IPv6 - new packet 11 12
IPv6 -
old packet, new fragment

4 4

PC

PM
flag
decoder

jump decisions

flags

flagsnext_pc

Figure 12: The C&C architectural model.
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minimal distance allowed between 2 packets is 23 clock
cycles (ideal is none). In addition to this limitation the sim-
ulations also shows that the minimal number of clock
cycles required per received ethernet packet processed is
38. The decision latency in the CMAA contributes to this
figure. These architectural limitations strongly effects the
performance compared to an ideal solution. Especially for
small packets. This is illustrated by figure 13 . The overall
system performance is on the other hand much dependent
on the network traffic. If the traffic does not include many
fragmented packets the CMAA may not be worth using
due to the performance degradation. In that case a PP with-
out CMAA acceleration should be used.

To illustrate how much processing that is offloaded
from the slow path using a CMAA, we can count micro-
code instructions needed for a address check using a gen-
eral purpose RISC machine. Assume that there is N possi-
ble addresses that we have to check against a received
address. The setup requires four instructions for loading
addresses and a loop variable. Then 6N instructions are
needed for a comparison loop. With N=16 entries, 100
instructions are needed in the worst case. 32 of them are
conditional jumps. This processing is performed on every
received packet and it is just a small part of the CMAA
processing.

5. Conclusions
A novel architecture for acceleration of control mem-

ory access in a protocol processor for network terminals
was presented. The architecture uses classification engines
and concepts which has traditionally been used for net-

work infrastructure components. The proposed archite
ture enables low latency access to connection st
variables, partial checksum results and any other cont
information stored in the shared control memory. Hen
inter-packet processing such as reassembly has been a
erated using the proposed architecture in network term
nals. Further the architecture offloads the slow path whi
is very important in high-speed networks. The propos
architecture can process the fast path in a multi gigabit n
work, implemented in a mature standard cell process su
as AMS 0.35µm. Simulations does however show that th
protocol processor requires increased packet gaps in or
to manage fragmented packets.

6. Further work
In order to complete the specification of the protoc

processor three main research areas remains. The first
is to specify the interface between theµC and the host sys-
tem and its DMA. Secondly the counter and controller un
is not finally implemented and programmed. The thir
issue regards the configuration method of the protocol p
cessor. What does the programming and re-configurat
interface look like from theµC?
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