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Abstract
The bandwidth and number of users in computer networks are rapidly growing

today. The need for added functionality in the network nodes is also increasing.
The requirements on the processing devices get harder and harder to meet using
traditional hardware architectures. Hence, a lot of effort is currently focused on
finding new improved hardware architectures dedicated for processing of packets
and network protocols.

In the emerging research area of protocol processing, there exist many hardware
platform proposals. Most of them aim for router applications, not so many for ter-
minals. As a starting point for terminal research this thesis explores a number of
different router design alternatives and some common computer architecture con-
cepts. These concepts and architectures have been examined and evaluated to see
if some ideas apply also to protocol processing in network terminals.

• Requirements on protocol processors for terminals can be summarized as:
• Low silicon area
• Low power consumption
• Low processing latency
• High processing throughput
• Flexible implementation

Fulfilling these requirements while supporting offloading of as much protocol
processing as possible to the network interface is the key issue of this thesis. Off-
loading means that the protocol processing can be executed in a special unit that
does not need to execute the host applications as well. The protocol processor unit
basically acts as a smart network interface card.

A novel terminal platform solution is proposed in this thesis. The dual processor
platform is accelerated using a programmable protocol processor. The processor
uses a number of different dedicated hardware blocks, which operate in parallel, to
accelerate the platform in a configurable way. These hardware blocks have been
selected and specified to fulfill requirements set by a number of common network
protocols. To find these requirements, the protocol processing procedure has been



ii Abstract

investigated and divided into processing tasks. These different tasks have been
explored to see which are suitable for hardware acceleration and which should be
processed in the other part of the platform which is a general purpose micro con-
troller.

The dedicated datapath, simplified control, and minimal usage of data buffers
make the proposed processor attractive from a power perspective. Further it accel-
erates the platform so that high speed operation is enabled. Different implementa-
tion alternatives are provided in this thesis. Which one to select depends on what
kind of terminal the platform is going to be used for. Further this thesis includes a
discussion around how the ability to reassembly fragmented packets demands
architectural modifications.

I hope You will enjoy reading this dissertation!

Linköping in December 2003

Ulf Nordqvist
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This thesis is intended for a Doctoral degree in Technical Sciences. The thesis
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Part I

Background

“There is nothing permanent except change.”
--Heraclitus





1

1
1Introduction

Few research artifacts have made as big an impact on society as the Internet.
Both the number of connected hosts and daily users now number in the millions.
As more users get connected, more people are developing novel methods of using
this global resource. A basic component of any advanced computing system today
is a computer network. The computer network is used to exchange information of
different types, for example data files, live audio, and video. A computer network
consists of two types of entities: routers and terminals. The routers and the termi-
nals are connected with links. A router is used to forward information on a link,
which leads to the destination terminal. The terminals are the sources and sinks of
information. The links today operate at very high data rates, thanks to the
advances in optical transmission. The bottleneck in computer networks is since a
few years the protocol processing entities in the networks. Network processors are
becoming a predominant feature in the field of network hardware. As new network
protocols emerge and data speeds increase, contemporary general-purpose net-
work processors are entering their second generation and academic research is
being actively conducted into new techniques for the design and implementation
of these systems.

Much research has been focused on the routers and this has left the terminals
lagging behind. This is one reason why this thesis focuses the efforts on terminals.



2 Introduction

1.1 Motivation
This thesis addresses a number of problems that recently have become obvious

to the network processing community. The need for new hardware platforms, i.e.
network processors, is motivated by current network processing trends. These
trends are described in more detail in “Protocol processing trends” on page 35.
However, as an introduction and motivation for this work, the following subsec-
tions introduce the emerging need for increased intelligence and performance in
network processing entities.

1.1.1 The bandwidth-processing power gap

The data rates of computer networks keep increasing beyond the Gbit/s limit.
This presents a problem for the terminals, since the processing power does not
increase as fast. This is sometimes referred to as the Bandwidth- Processing Power
Gap. The data rate (bandwidth) of computer networks is typically increased by a
factor of 4 (SONET/SDH) or 10 (Ethernet) for every new generation of standards.
During the last year new standards have appeared almost every year. The process-
ing power on the other hand grows almost with Moores law, which predicts a dou-
bling every 18 months. The increase in processing power because of Moores law
is not enough to keep up with the increase in bandwidth. It can be realized that the
processing of computer network protocols must be more efficiently implemented.

Example:

Consider a general purpose RISC machine in a 10 Gbps network terminal.
Assume min-sized packets (64 bytes), no gap between the packets arriving (worst
case), and suppose that data arrives 32 bits in parallel. The data arrival then only
takes 51 ns. A traditional 500 MHz RISC machine would then have to manage all
the packet processing using 25 instructions per packet. The alternative is to buffer
the data and fill the memory. Neither alternative is realistic if one consider the fact
that the processor is supposed to process the application in parallel.

1.1.2 Need for increased network intelligence

The current growth rate of the Internet leads to congestion of major parts of the
network since the infrastructure cannot be updated at the same speed. As a result,
degraded connectivity and even starvation of transmissions are appearing. More-
over, certain flows may occupy more networking resources than others because
nodes usually handle packets without considering any flow-specific information.
Consequently, a flow may greedily use bandwidth by, for instance, transferring
only relatively large packets. Therefore, the access to networks must be regulated
according to reservations and the network must be protected against greedy flows.
A network node has to apply more sophisticated methods than best effort to main-
tain the Quality of Service (QoS) for customers. Special QoS algorithms are
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required for the packet processing of especially the upper protocol layers, starting
at the network layer from which end-to-end transmissions are distinguishable.
Enabling this increased functionality in network processing devices requires the
hardware platforms to support a much larger flexibility, i.e. programmability and/or
configurability.

1.2 Scope
While much focus, both from industry and academic research groups, has

recently been on improving the network processing equipment in routers and
switches, this thesis focuses on network terminals. A network terminal do not have
the same requirements on throughput as a network core component. However, the
problem will soon arise also for NTs. Wire speeds in local area networks (LANs)
increase as fast as they do in backbone networks and common use of Gbit/s net-
works connected directly to network terminals is not very far away. In order to meet
these requirements as well as the very high requirements on flexibility the protocols
put on the terminal, it is essential to find a new protocol processing strategy and
hardware platform dedicated for packet reception in terminals. This thesis provides
both. The platform can be implemented in two different ways to meet the require-
ments of a few common protocols for two different application domains (i.e. type
of terminals). This shows that the platform and strategy is generic enough to sup-
port protocol processing for a wide number of applications, networks, and terminal
types.

The scope of this thesis does not include packet creation and transmission. Nor-
mally this task is much less complex for terminals. The requirements on processing
latency is also lower during transmission of packets. Further, packet transmission is
not as suitable for offloading as packet reception tasks. The proposed architecture
was optimized for packet reception but it still support transmission by providing
low latency protocol processing, which can be used to trigger low latency acknowl-
edgments.

1.3 Contributions
As its main contributions this thesis:

• Proposes a dual processor architecture intended for offloading of protocol pro-
cessing tasks from a network terminal host.

• Proposes a processing task allocation based on processing type instead of proto-
col and/or layer type.

• Provides an implementation methodology for this architecture dependent on the
application domain.
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• Provides an investigation of architectural implications of the data-flow based
processing including memory and buffering design.

• Includes specification and implementation of several configurable hardware
accelerators denoted Functional Pages.

1.4 Dissertation outline
This thesis consists of four parts. The first part includes this introductory chapter

and a chapter on Computer Networks. The goal of chapter 2 is to provide an intro-
duction to computer networks for readers unfamiliar with the area. It also defines
and explains a number of concepts and acronyms that will be used throughout this
thesis. Further, the two main types of network components, terminals and routers,
are examined.

The second part including chapter 3-5 gives an overview of available technolo-
gies and methodology from earlier research on computer architecture and espe-
cially network processor design. Chapter 3 provides different parallelization
schemes and implementation alternatives for processors. The chapter also lists
common optimization methods and discusses usability for protocol processing. In
chapter 4, protocol processing trends, tasks, and requirements are examined with
focus on network terminals. The next chapter gives an overview of commercial
and academic research in the area of network processing. Finally, chapter 5
includes a discussion on how this evaluation of different network processor
projects aiming for router applications, can be used in our research which focus on
terminal processing. I.e. what lessons can be learned from industry.

The third part deals with the proposed architecture in six chapters. In chapter 6,
which is based on publication 1, an overview of the proposed dual processor plat-
form is provided. It also lists tasks and explains their allocation to different parts
of the processing platform. Based on publications 1 and 5, chapter 8 deals with
memory and buffering issues. In chapter 9, a number of hardware accelerators are
specified and implemented. Publication 2 and 3, deal with CRC acceleration
which is a part of chapter 9. In chapter 10 control path implementations are pre-
sented based on publication 6. This chapter also defines the application domain
the implementations are suitable for. In chapter 11, more general purpose network
terminal applications are assumed. This chapter provides a discussion on how the
architecture must be changed and discusses a suitable implementation method for
terminals handling fragmented packets and more complex classification schemes.
Chapter 11 is based on publication 1, 4, and 7.

Finally some conclusions are drawn in chapter 12 and chapter 13 discusses how
the proposed architecture and other research result can be used when applied to
gateway applications.
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2
1Computer Networks -
Devices and Protocols

This chapter includes a brief introduction to the concept of packet based net-
works focusing on computer networks. Moreover, some ambiguous network terms
used in this thesis are clarified. Readers seeking deeper understanding in this area,
are recommend to use some of all available books on computer networks. A good
first encounter of the area and an excellent starting point for further reading is pro-
vided in ([2.1] and [2.3]). Readers with a background knowledge in the area of
computer networking including familiarity with the protocols and devices, may go
directly to the next chapter for further reading.

2.1 History
While inventing and building the Internet the main goal was to set up a decen-

trally organized interconnection of computers with redundancy so that a break-
down of one part of the network would not affect the connectivity and efficiency
of the overall Internet. Consequently, a node of the network only knows its neigh-
bors, which are identified by unique addresses. Since routes through the network
are not determined statically but dynamically depending on the current state of the
network, every single data entity must be processed by every intermediate network
node from the source to the destination of a transmission, including the terminal.

Further, the network communication was considered as the primary bottleneck
while terminal hosts where seen as a source of infinite processing power. Today
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this picture is totally the opposite but since the protocol standards used today are
so well established we have to deal with this inherited problem instead of re-
designing the protocol and entire network structure. This motivates why the
research focus should also be on terminals, not only routers.

2.2 Protocol layers
The tasks involved with the end-to-end communication of two network nodes

can be divided into a set of abstract functionalities, called layers, that form a hier-
archy. Each layer can only pass information to the next higher or lower layer
through defined interfaces (services). At each layer, protocols define the opera-
tions and responses necessary to exchange information between peer layers at dif-
ferent network nodes. This information is held by layer-specific header fields that
are added to traffic entities. Lower layers only consider the transmission of traffic
between neighboring network nodes whereas the higher layers affect the end-to-
end transmission through several intermediate nodes.

2.2.1 ISO/OSI reference model

The Open Systems Interconnection (OSI) reference model by ISO is composed
of seven abstract layers illustrated by figure 2.1.

• Layer 1 - Physical

The Physical layer defines the cable or physical medium itself, e.g. unshielded
twisted pairs. All media are functionally equivalent. The main difference is in
bandwidth, convenience, and cost of installation and maintenance. Converters
from one media to another operate at this level.

Figure 2.1: The 7 layer ISO/OSI reference model

Layer 2: Data Link Layer

Layer 3: Network Layer

Layer 4: Transport Layer

Layer 5: Session Layer

Layer 6: Presentation Layer

Layer 7: Application Layer

Stack on computer 1

Layer 2: Data Link Layer

Layer 3: Network Layer

Layer 4: Transport Layer

Layer 5: Session Layer

Layer 6: Presentation Layer

Layer 7: Application Layer

Stack on computer 2

Layer 1: Physical layer (network hardware)

Logical links

Data
Transport

Data
Transport



Protocol layers 7

• Layer 2 - Data Link

The Data Link layer defines the format of data on the network. A network data
frame, a.k.a. packet, includes a checksum, source and destination address, and data.
The largest packet that can be sent through a data link layer defines the Maximum
Transmission Unit (MTU). The data link layer handles the physical and logical
connections to the packet’s destination, using a network interface. For example, a
host connected to an Ethernet would have an Ethernet interface to handle connec-
tions to the outside world, and a loopback interface to send packets to itself.

Ethernet addresses a host using a unique, 48-bit address called its Ethernet
address or Media Access Control (MAC) address. MAC addresses are usually rep-
resented as six colon-separated pairs of hex digits, e.g. 8:0:20:11:ac:85. This num-
ber is unique and is associated with a particular Ethernet device. The protocol-
specific header specifies the MAC address of the packets source and destination.
When a packet is sent to all hosts (broadcast), a special MAC address
(ff:ff:ff:ff:ff:ff) is used.

• Layer 3 - Network

Almost all computer networking applications use Internetwork Protocol (IP) as its
network layer interface. IP is responsible for routing, i.e. directing datagrams from
one network to another. The network layer may have to break large datagrams,
larger than the MTU, into smaller packets and the host receiving the packets will
have to reassemble the fragmented datagram. The Internetwork Protocol identifies
each host with a 32-bit IP address. IP addresses are written as four dot-separated
decimal numbers between 0 and 255, e.g. 129.79.16.40. The leading 1-3 bytes of
the IP identify the network and the remaining bytes identifies the host on that net-
work. For large sites, the first two bytes represent the network portion of the IP, and
the third and fourth bytes identify the subnet and host respectively.

Even though IP packets are addressed using IP addresses, hardware addresses
must be used to actually transport data from one host to another. The Address Res-
olution Protocol (ARP) is used to map the IP address to a hardware address.

• Layer 4 - Transport

The transport layer subdivides user-buffer into network-buffer sized datagrams
and enforces desired transmission control. Two transport protocols, Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP), sits at the transport
layer. Reliability and speed are the primary differences between these two proto-
cols. TCP establishes connections between two hosts on the network through sock-
ets, which are determined by the IP address and port number. TCP keeps track of
the packet delivery order and the packets that must be resent. Maintaining this
information for each connection makes TCP a connection oriented protocol. UDP
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on the other hand provides a low overhead transmission service, but with less error
checking.

• Layer 5 - Session

The session protocol defines the format of the data sent over the connections.

• Layer 6 - Presentation

External Data Representation (XDR) sits at the presentation level. It converts
local representation of data to its canonical form and vice versa. The canonical
uses a standard byte ordering and structure packing convention, independent of
the host

• Layer 7 - Application

Provides network services to the end-users. Mail, file transfer protocol (ftp), tel-
net, and Domain Name System (DNS) are examples of network applications.

2.2.2 TCP/IP reference model

Although the OSI model is widely used and often cited as the standard, TCP/IP
protocol has become the totally dominant protocol stack description. TCP/IP ref-
erence model is designed around a simple four-layer scheme. It does omit some
features found under the OSI model. Also it combines the features of some adja-
cent OSI layers and splits other layers apart. The TCP/IP protocol stack distin-
guishes the following layers.

• Layer 1 - Link

This layer defines the network hardware and device drivers.

• Layer 2 - Network

This layer is used for basic communication, addressing, and routing. TCP/IP
uses IP and ICMP protocols at the network layer.

• Layer 3 - Transport

Handles communication among programs on a network. TCP and UDP falls
within this layer.

• Layer 4 - Application

End-user applications reside at this layer. Commonly used applications include
DNS, rlogin, talk, and ftp.

2.2.3 Traditional layered processing

A traditional way of describing a protocol layer is illustrated by figure 2.2. The
figure is a very general description of protocol layers but it shows the layered
structure that causes many of the problems emerging today. The layers are today
very well specified and it provides us with an interface between the different ser-
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vice entities, e.g. devices or pieces of software. The problem is the wasted process-
ing this architecture gives when providing services on all layers while it is only the
top layer services that is going to be used by the host while it performs the actual
application processing. The layered processing scheme is depicted by figure 2.2.

Figure 2.2: Traditionally layered protocol processing concept. During reception
each protocol layer receives data and other services from the layer below. The
data is processed in order to provide the peer services to the transmitting com-
puter. In the same way all protocol layers provide services to the layer above.

Each layer’s service provider is called an entity. The entities can be implemented
in software or hardware or in a combination of both.

Transmitting

FSM

Receiving

FSM

Data Data

Service con-
trolling FSM

Receiving

FSM

Transmitting

FSM

Data Data

Protocol Layer i
Receiving
Computer

From layer i+1 To layer i+1

From layer i-1To layer i-1

Service Services

ServicesService

Peer services



10 Computer Networks - Devices and Protocols

2.3 Classification of networks
Computer networks can be categorized according to different criterias:

2.3.1 Classification according to geographic coverage
• LAN

A Local Area Network (LAN) interconnects end-devices within a relatively
small area, e.g. bounded by a room, a building, or some buildings belonging to the
same institution. In the latter case, LANs are also called campus area or enterprise
networks. LAN protocols function at the lowest two layers of the OSI reference
model, between the physical layer and the data link layer. A LAN is a high-speed
data network. It typically connects workstations, personal computers, printers,
servers, and other devices. Devices commonly used in LANs include repeaters,
hubs, bridges, LAN switches, and routers.

• Wireless LAN

Today there exist a number of different protocols for wireless LAN applications.
They differ a lot in terms of performance, cost-figures, coding schemes and con-
nection orientation. The main alternatives are IEEE standard 802.11 and Hiper-
LAN ([2.5] and [2.6]).

• WAN

A Wide Area Network (WAN) interconnects LANs that are possibly based on
different technologies and may belong to different organizational units spread
over a large geographic area. Explicit routing is needed to find a path between
LANs. A WAN network with intermediate extension limited to a town or a city is
also called a Metropolitan Area Network (MAN).

• SAN/NAS

Storage Area Networks (SAN) are normally used for connections to and from
file servers. They provide a very high bandwidth and the dominating protocol is
Internet SCSI (iSCSI). The usage of SAN is currently growing very fast. Normally
the SAN protocols are used on top of TCP/IP. Network Attached Storage (NAS) is
a storage device that is connected directly to the network. Some examples on host
bus adaptors (HBA) and SAN accelerators will be discussed in chapter 5. More
information regarding SAN protocols, devices and applications can be found at
[2.7].

2.3.2 Classification according to connectivity

Especially when talking about the Internet, a hierarchy of networks is intro-
duced. Routers under a single technical administration and a single routing policy
are interconnected to an Autonomous System (AS) which aggregates a group of
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address prefixes. The interconnection of autonomous systems forms the Internet.
An autonomous system will belong to the highest (outermost) level of a network,
the so-called access network, if customer links enter the Internet via this autono-
mous system. The first router seen by the customers traffic is the edge router of an
Internet Service Provider (ISP) running the autonomous system. The remaining
interconnection of autonomous systems without the network edge constitutes the
lowest network level, the core or backbone network.

2.3.3 Classification according to data rates

Some common (PHY/MAC-layer) network standards and their performance fig-
ures are listed below.

The networks listed in table 1 are and will continue to be some of the most com-
mon for a number of years. They all have such high throughput that host processors
benefit from efficient offloading.

2.4 Network services
When the Internet was relatively small and primarily used by researchers in an

open setting, the primary service was a point-to-point connection between two spe-
cific hosts allowing users to transfer files and interactively connect to remote hosts.
Packets were treated equally and independently forwarded without modification
from one specific host to another. While this is still the default behavior for IP
packets, the shift in focus from an open research network to a vehicle for com-
merce, banking, telecommuting, and personal communication along with a tremen-
dous increase in size has led to the development and deployment of new services
that require routers to forward and process packets in a variety of ways.

Table 1: Common networks and their performance figures.

Network Speed

Fast Ethernet 100 Mb/s

GEthernet - GMII interface 1 Gb/s

10 GEthernet - XGMII interface 10 Gb/s

OC-1 52 Mb/s

OC-48 2.5 Gb/s

OC-192 10 Gb/s
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2.4.1 Quality of Service

To classify traffic as real-time, non-real-time, or best effort, the idea of Quality
of Service (QoS) was invented. Fundamentally, QoS enables the possibility to pro-
vide better service (e.g. bandwidth or latency) to certain customers (flows). It is
easy to imagine instances where some packets are more important than others and
require priority processing. A common way of generating additional revenue from
a service is through service differentiation. This is done either by raising the prior-
ity of a flow or by limiting the priority of another flow. Using congestion-manage-
ment, it is possible to raise the priority of a flow by servicing queues in different
ways. The queue management used for congestion avoidance raises priority by
dropping lower-priority flows before higher-priority flows. Policing and shaping
provide priority to a flow by limiting the throughput of other flows.

By varying the quality of service, Internet service providers (ISPs) can charge
customers more to have their packets be given priority potentially increasing the
ISPs revenue. This is the reason why the QoS concept has been a huge research
area for several years now. However QoS has not been used in many networks so
far. The reason for this is the complex administration required for billing which
makes it costly.

Regardless, future routers which can

• perform more complex decisions than simply forwarding packets based
only on their destination address

• perform more complex packet processing than IPmin, and
• perform service differentiation rather than use best-effort packet delivery

will be able to distinguish themselves in the marketplace.

QoS may be viewed as a reason to give terminals multiple ports and have them
perform more router-like operations, e.g. flow-based classification.

2.4.2 Firewalls

These devices are used to block the flow of packets between networks. For
example, when placed at the boundary between a company and the rest of the
Internet, its job might be to block external access to internal services and to block
packets containing sensitive information from reaching destinations outside the
company. This may be as simple as rejecting packets originating from a particular
host to as complex as rejecting all the packets comprising an electronic mail mes-
sage containing executable code matching the characteristics of a known computer
virus. One of the benefits of quickly filtering out undesired packets is that it helps
to reduce the effects of a denial-of-service (DoS) attack where devices under
attack waste so much time handling spurious packets that legitimate packets are
not handled in a timely manner. Since routers must examine each packet to deter-
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mine its disposition and are already required to discard malformed packets, they
can be easily extended to support a firewall service by including patterns in the
route table for packets that should be explicitly blocked. This however requires a
huge processing load. Most terminals support some sort of firewalling.

2.4.3 Network address translation (NAT)

Because there is a limited number of IP addresses available, NAT was developed
to allow multiple devices on an internal, hidden network to appear as a single host
(i.e. using a single IP address) on the Internet. Routers supporting NAT actively
modify the source address of outbound packets and the destination address of
inbound packet to maintain the illusion that the hidden hosts are directly connected
to the Internet.

2.4.4 Tunneling

Prior to widely available Internet connections, larger companies wishing to con-
nect multiple locations were forced to create their own private networks using, for
example, leased telephone lines. With the advent of low-cost, wide-spread Internet
service, companies are now able to create Virtual Private Networks (VPNs) that tie
a subset of Internet hosts (those belonging to the company) together using
encrypted tunnels. Routers implementing an overlay network tunnel packets
through the Internet by treating the entire packet (including its header) as data,
encrypting the data, and encapsulating the encrypted data into a new, larger packet.
This outer packet is sent over the Internet in the regular way to another host in the
VPN. Upon arrival, the packet is unwrapped, decrypted, and delivered to its desti-
nation. Note that the destination may be the host itself or a locally connected
machine. In some cases, the packet is forwarded to another node in the VPN by re-
encrypting and re-encapsulating the packet. A VPN is an example of an overlay
network. While end-hosts often perform the tunneling, routers are well-placed to
make optimizations based on their innate knowledge of the underlying network
topology.

2.4.5 Mixed traffic

Today it becomes more and more common to use the same network for booth data
transfer and voice or video. One reason is that network standards and quality have
reached the level where it is economically beneficial to share the network
resources. The main applications, except normal data traffic, for mixed traffic are:

• Voice over ATM
• Voice over Frame Relay
• Voice over IP
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2.4.6 Application switching

Today organizations introduce multimedia and mission critical applications that
require low latency with guaranteed network bandwidth to support response time
and end-to-end transport constraints. Further, demands for increased QoS requires
awareness of the content of the IP packets that are being switched in a router.
Exploiting the information already contained within the IP packets traversing the
network provides the necessary tools to differentiate the service for different
users. This is commonly denoted as application switching.

Layer 4-7 information is crucial when balancing traffic loads across servers pro-
viding similar applications. Switches capable of supporting application switching
keep track of each established session to individual servers. With a load balancing
service, a collection of physical servers with different IP addresses, supporting the
same application service (e.g. a web server farm) can be defined as a single virtual
server. This virtual server is a “logical server” with a single IP address. Instead of
communicating directly with the real IP addresses of the physical servers, users
direct traffic to the virtual server address.

Application switching can be used to route packets to special servers. E.g. ftp-
packets should go to the file server while jpg packets should go to the image
server. Further, routers supporting encryption standards, e.g. IPSec etc., can inves-
tigate a packet to see if the application should be encrypted or not (e.g. https or
http type of packets).

2.4.7 Fragmentation and reassembly

In TCP/IP, fragmentation refers to the process of breaking an arbitrary size
packet into the smallest maximum size Packet Data Unit (PDU) supported by any
of the underlying networks. This may be necessary because of restrictions in the
communication channel or to reduce latency. The pieces are joined back together
in the right order at the receiver terminal (reassembly). Reassembly can not take
place in intermediate routers since different fragments (packets) may use different
paths (sets of routers) while traversing the network. Fragmentation may also be
performed by a router when routing a packet to a network with a smaller maxi-
mum packet size.

The term segmentation is used in ATM. In TCP/IP it is called fragmentation and
is performed at the IP layer before the fragments are passed to the transport layer.

For a receiving terminal the reassembly task demands large memory bandwidth
and size. Hence, a number of Network Processors for terminals have employed
special-purpose Segmentation and Reassembly (SAR) engines to manage these
performance critical memory operations.
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2.5 Minimal Packet Processing
All forwarded packets undergo some amount of transformation when they pass

through a router. We refer to the minimum amount of processing (the most com-
mon case) as IPmin.

Referring to the IP header, the minimum amount of processing is to decrement the
Time-To-Live (TTL) field and recompute the header checksum. Most packets only
require IPmin. However, if the packet header has options, is destined for the router
itself (e.g. a routing protocol packet), or is otherwise exceptional, the router per-
forms more processing on that packet than just IPmin. Because an important com-
parison metric for router manufacturers is the raw forwarding rate of packets only
requiring IPmin processing (traditionally, the vast majority of packets), the path
that these packets take through the router is often highly optimized. Such an opti-
mized forwarding path is referred to as the fast path. Non-optimized forwarding
paths are referred to as slow paths.

Note that terminals have to process (terminate) the entire protocol stack. Hence,
there is no, or at least a totally different type of IPmin processing in terminals.
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2.6 Network entities
In the Internet, which consists of a number of heterogeneous networks, there

exist many different types of entities. The main groups are routers and terminals
(i.e. hosts). Routers connecting other routers with high bandwidth in fiber based
backbone networks are normally denoted as core-routers. Core-routers normally
transport large amounts of data between networks in a packet-based fashion.
Inside each network, at the edge of the internet, edge-routers provide an access
point to a network. Edge routers transport data between one or more LANs and the
ATM backbone network e.g. WAN. Edge routers does not gather routing informa-
tion, they use it. Core-routers normally provides hundreds of Gbps in throughput
while edge-routers can manage tens of Gbits/s. The network infrastructure is illus-
trated in figure 2.3.

Network Terminals (NT) can be of many kinds, for example desktop computers,
laptop computers, IP phones, Internet radios, video conference systems, file serv-
ers, backup devices, and network attached printers. There also exist many wireless
applications where the NTs are used, e.g. a mobile phone or a PDA, connected to a
WAN.

The Internet core

WAN access

Campus switch

Gateway

Edge router

ATM router

Frame relay router

Core router

Figure 2.3: The network infrastructure consists of core routers, edge routers, and
terminals. Core routers reside in the backbone network while edge routers pro-

vide access to the Internets pheripheral networks.
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2.6.1 Routers

The Internet is a packet-based, store-and-forward, computer-to-computer commu-
nication network based on the IP protocol. Rather than creating a dedicated channel
from source to destination, transmitted data is transferred from device to device. At
each device, the data is received, stored, and then forwarded to the closest device
along a path toward the destination using a technique known as store-and-forward.
To improve the efficiency of the process, transmitted data is broken into fixed-size
chunks denoted packets which are sent from device to device in a pipelined fash-
ion.

To support packet routing, IP specifies that every network interface have a distinct
32-bit identifier known as its IP address (128 bits for IP version 6). Devices with
more than one network interface have more than one address. To send data across
the Internet, a host divides the data into blocks, which form the data portion of the
packets. For each block, the host attaches routing information in the form of an IP
header to form an IP packet. Each packet is then encapsulated into a link-layer
packet appropriate for the network interface (e.g. an Ethernet frame). Finally, the
link-layer packet is sent to the router on the local network.

The two primary routing functions are:

• Forward Packets: This is the obvious job of a router, moving packets arriving
on one port and sending them out on another port so that the packets eventually
reach their destination. To forward an incoming packet, the router must examine
the header. By using the destination address as an index into its routing table,
the router can then send the packet to the appropriate next-hop device (either
another router or the destination host) on the network connected to the appropri-
ate output port. Forwarding packets is considered part of the data plane of a
router.

• Maintain Routing Table: Because hosts and routers can join or leave the Inter-
net at any time, routers must become aware of changes that effect their local
routing tables. To support this dynamic aspect of the Internet, routers implement
routing protocols to share connectivity information and maintain routing tables.
The two primary routing algorithms currently in use are OSPF (Open Shortest
Path First) and BGP (Border Gateway Protocol). While the details and applica-
tion of these protocols are beyond the scope of this thesis, the important point is
that these protocols are sufficiently complex that reasonable implementations
require the capabilities of the general purpose control processor. Maintaining
the routing table is considered part of the control plane of a router.

One distinction between the data and control planes (a.k.a. the fast path and slow
path respectively) is that the former must process packets at line speed. The
requirement that the data plane runs at line speed is based on the need to receive
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and classify packets as fast as they arrive, so as to avoid being forced to drop pack-
ets.

For hardware-based routers, enabling higher QoS means that more packets are
being processed by the slow path since there are more exceptional packets. The
reason packets move to the slow path is simply that the fast path does not have the
capability (flexibility) to process these exceptional packets due to the lack of pro-
grammability. For both software-based and hardware-based routers, these excep-
tional packets require more cycles per packet as the number and complexity of the
services increases.

Even though router manufacturers of today tend to include more and more intel-
ligence in their devices, they normally do not handle protocols above the network
layer in the protocol stack. The main reason for this is that a transport layer proto-
col such as TCP might have its payloads being segmented into many packets,
which then are transmitted through separate network paths. Hence, it is normally
only in the terminals the protocols in the transport layer and above will be pro-
cessed.

Layer 2 routers are commonly denoted as switches. Switches makes all routing
decisions based on layer 2 type of protocols (Ethernet header information). Layer
3 routers are the most common type. It makes all routing based on the layer 3 pro-
tocol header. The predominating protocol is IP.

There also exist upper layer routers (e.g. web-switches, TCP-routers etc.). Nor-
mally the processing complexity increases rapidly with the number of protocol

• Classify packet
• Send to the correct link
• Check options and update

variables
• Calculate new and check

old IP checksum

• Prioritizing
• Logging statistics
• Monitoring the traffic

Processing tasks

Line
card

Line
card

Line
card

Line
card

Line
card

Line
card

Line
card

Line
card

Interface

Slow path
processor

Typical hardware setup

Figure 2.4: Example of processing tasks and allocation in a traditional type of
router.
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layers that must be processed in order to access the routing information. Hence,
upper layer routers are not so common today but the use is steadily increasing.

Normally a router includes 3 basic components. They are line cards, interfacing
backplane or switch, and a slow path processor. Some examples on processing
tasks and a typical router hardware architecture is illustrated by figure 2.4.

Figure 2.5: Requirements on bandwidth, flexibility and supported number of
simultaneous connections for different network components. Note that there are
large differences within each group. Especially the throughput requirements are

application driven.

Flexibility

Throughput
requirements

  Switches Layer 3-
router

Upper layer
router Terminal

Number of
connections
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2.6.2 Network Terminals

Due to the diversity of the applications the requirements on the network inter-
faces are very different. The only common characteristics of a NT is that it termi-
nates the packets.

The protocol processing that is required in terminals is not the same as in routers.
In terminals, packets are generated and consumed (delivered to an application). In
general it could be said that routers only use layers 1-3, but terminals must process
layer 4 as well. There are two main differences between the protocol processing in
a router and a terminal. First of all the number of connections are fewer and more
stable in a terminal, and secondly terminals have to do more processing tasks
since also the transport layer has to be processed. The second difference compli-
cates the processing in a terminal while the first one relaxes it compared to a
router. These differences indicate that the protocol processing in a terminal should
be performed using a terminal specific hardware/software platform. The differ-
ence between requirements on network core components and a terminals is illus-
trated by figure 2.5.

As an example on the type of processing going on in a desktop PC we can con-
sider the TCP/IP protocol stack processing introduced in section 2.2.2. An exam-

• Check address
• Error control incl length check,

CRC
• Data buffering
• Discard erroneous packets
• Create and trigger reply pack-

ets
• Check IP address
• Checksum calculation
• Reassembly and data buffering
• Timer handling
• Discard erroneous packets
• data stream management
• Create and send Acknowledg-

ment packets
• Update connection state vari-

ables
• Discard erroneous packets

Link layer

Network

 layer

Transport

layer

Figure 2.6: Examples of processing tasks and hardware allocation in a traditional
type of desktop NT. As illustrated above the host processor has to do a lot of the

processing while the NIC only process the link layer.
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ple of some processing tasks in such a NT and the simplified hardware allocation,
is illustrated by figure 2.6. Traditionally NICs consist of Physical layer ASICs and
microprocessors while the processing in the host is performed in software.
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Part 2

Design exploration

“It is not necessary to change. Survival is not mandatory.”
--W. Edwards Denning
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3
1Processor Architecture

There are currently three main implementation alternatives for protocol process-
ing.

• The first is to map the processing algorithms directly to an ASIC (Application
Specific Integrated Circuit). This implementation can support most require-
ments, but suffers from no (or almost no) flexibility. The flexibility is needed
for two purposes. First, one single hardware design can be used for many dif-
ferent product groups if enough flexibility is available. Second, the hardware
does not need to be redesigned when new protocols must be implemented.

• The second implementation alternative is to make use of regular general-pur-
pose processors (of RISC type). These provide unlimited flexibility, but suffer
from high silicon area cost, high power consumption and cannot support low
latency or high throughput implementations.

• The third implementation alternative is specialized processors. The processor
can be specialized by use of a dedicated instruction set (ASIP: Application
Specific Instruction Set processor), or by adding accelerator units for challeng-
ing tasks. The foundation for the specialization of the processors is the analysis
of the processing tasks of a number of protocols. The analysis includes instruc-
tion profiling, computation load distribution among the tasks and memory
access pattern statistics.

Among the three implementation alternatives, only specialized processors can
support both the flexibility and high efficiency needed in today’s network process-
ing equipment. This chapter will explain why.
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3.1 Parallel processing
Normally parallelism is addressed as the key-contributor for increased perfor-

mance in the area of computer architecture. There are several ways of exploiting
parallelism in computers.

3.1.1 Exploiting parallelism using pipelines

By dividing the execution of tasks into smaller parts, each of the parts takes a
smaller amount of time to perform. If parts of different tasks then are executed in
parallel using pipeline scheduling, the performance can be dramatically improved.
I.e. since only a part of the instruction has to be executed each clock cycle, the
clock frequency can be increased compared to that of a non-pipelined processor.
Pipelining is a technique used in almost all modern processors including proces-
sors dedicated for usage in computer networks. The number of pipeline stages is
restricted by complexity and branchpenalty makes it hard, but up to 10-15 is possi-
ble. Examples on pipeline stages (instruction parts) are instruction fetch, decode,
operand access, datapath execution, and write result.

The price to pay is the intermediate storage of data in pipeline registers and pen-
alties for misspredicted branches causing stalls. Branchpenalty lowers the Instruc-
tions Per Clock cycle (IPC).

3.1.2 Instruction Level Parallelism

The main idea behind parallel execution is to extract parallelism from the inher-
ently sequential nature of programs. A program can be thought of as a series of
instructions executed in a logical order over time. Where later instructions do not
depend on earlier ones, there is Instruction Level Parallelism (ILP). The goal in
ILP is to find instructions that neither are data nor control dependent, so that they
can be executed concurrently to achieve higher instruction throughput. The stan-
dard way to do this is to look for independent instructions within a window of
instructions, usually of a fixed size. To find even more parallelism, a natural exten-
sion is to make the instruction window bigger. Examining more instructions
together increases the chance of finding independent instructions, although there
are diminishing returns. However, the logic necessary to check for independence
becomes forbiddingly complex and makes large instruction windows impractical.

One architecture that supports for ILP is the Superscalar processor. In a multi-
scalar model, a program is partitioned into tasks, which are sets of basic program
blocks. A task is a portion of the static instruction sequence whose execution cor-
responds to a contiguous region of the dynamic instruction sequence. Tasks are
not necessarily control independent whereas threads are. A task is executed only if
the dynamic instruction stream through the program includes that task; individual
threads are executed unconditionally. The multiscalar processor executes multiple
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tasks in parallel without checking for inter-task control dependencies. Individual
tasks are assumed to be control independent and executed accordingly, then
checked later and discarded if found to be dependent.

Another architecture that supports for ILP is the Very Long Instruction Word
(VLIW) processor. It basically uses a complex instruction to control many func-
tional units. These functional units then process the data in parallel.

The main difference between a VLIW and a Superscalar approach is that the first
scedules the instructions during compilation while the later handles the bundling of
instructions during runtime using special purpose hardware assist. Hence, the
superscalar processor allows for out-of-order execution.

3.1.3 Data Level Parallelism

A Single Instruction Multiple Data (SIMD) architecture exploits parallelism by
providing data to many execution units, all processing the same task. If the tasks
are regular and data-intensive, this type of processors gives a low overhead due to
the single control-path (i.e. single program counter, program memory, and instruc-
tion decoding hardware).

It is almost always possible to increase the width of the processor datapath to
increase the performance. If, for example, the width of the datapath increases from
32 to 64 bit, the clock frequency can be reduced by a factor of two if it is possible
to use the same number of instructions. This however increases the area and com-
plexity of the data path and if the instructions and operands are not suitable for 64-
bit execution it may not increase the performance. In protocol processing there are
many operations that are not suitable for 64-bit datapaths. Instead bit and byte-
based instructions are suitable.

3.1.4 Exploiting parallelism using datapath acceleration

In many application domains, the need for high throughput has been addressed
using datapath acceleration. E.g. DSP processors make use of multiple Multiply-
and-ACcumulate (MAC) units to manage high-throughput filtering. Another exam-
ple is processors containing one datapath for floating-point instructions and one for
fixed-point instructions. Actually, most modern processors (general purpose or not)
uses datapath acceleration. In a domain-specific system it is possible to analyze the
workload and identify kernel operations. These operations can then be accelerated
using datapath extensions or standalone accelerators. The main difference is the use
of centralized and distributed control respectively. By adjusting the datapath so that
individual bits and/or bytes can be addressed and operated on, a processor can
increase its protocol processing performance significantly.
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3.1.5 Exploiting parallelism using accelerators

By using accelerators, i.e. dedicated hardware, the processing performance can
be substantially increased. The accelerators are normally self-contained and do
not require a lot of control signaling. Hence the overall control overhead can be
reduced which reduces the memory cost and increases the efficiency. The acceler-
ator approach is suitable if there exist processing tasks that are common and non-
suitable for general purpose hardware processing. If the tasks are not very com-
mon the accelerator will just remain in idle mode. In protocol processing, search
engines (i.e. CAM) are often used as accelerating coprocessors. Coprocessors
used in protocol processors today, are either of look-aside type or flow-through
type. Look-aside type of coprocessors are invoked by the main processor when
needed. I.e. they function as procedure calls. Flow-through coprocessors operate
on data-streams in a pipeline fashion. The main advantage with flow-through type
of coprocessors is that they minimize the control information the main (host) pro-
cessor needs to send to control coprocessor operations. The main drawbacks with
flow-through coprocessors are the requirement on wire-speed processing and lack
of flexibility due to the high degree of integration.

3.1.6 Exploiting parallelism using multiprocessor approaches

It is of course possible to exploit parallelism by the use of multiple processors.
The speculative mechanism normally works as follows. Speculation is done on
either the thread level (multithreading) or the loop level. In thread level specula-
tion, a processor starts executing a thread. When a subroutine thread is encoun-
tered, one processor continues executing the subroutine thread while the next
processor speculatively executes the code after the subroutine thread in parallel. In
loop level speculation, subsequent iterations of a loop are executed in parallel by
several processors. If a speculation violation is detected, the erroneous thread will
be killed. Normally a multi-processor approach is not very efficient if the applica-
tion does not imply multi-threading by its nature. The problem is that there will be
too much shared data and inter-processor communication.

3.1.7 Exploiting parallelism using software techniques

Loop unrolling and software pipelining are common techniques used to improve
the processing performance of a computer. Loop unrolling is done at compile time
and it means that branch decisions can be avoided if the number of iterations are
known at compile time. Software pipelining means that instructions from different
instruction streams are interleaved. Since instructions that belong to different
instruction streams normally are not dependent, they can be executed without haz-
ards. Dependent instructions must be separated by a distance (in clock cycles)
equal to the length of the pipeline latency for the source instruction in order to
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avoid pipeline stalls. Software pipelining might be suitable for multi-port process-
ing in a single protocol processor, since the instructions are normally unrelated.

3.2 Managing hazards
There are two types of hazards that may occur: data and control hazards. Data

hazards occur when two data instructions are dependent, and close enough to over-
lap due to pipelineing. This means that program order must be conserved between
data dependent instructions. There are three types of data hazards: write-after-read
(WAR), read-after-write (RAW), and write-after-write (WAW).

The other type of possible hazard is control hazard. They occur because program
flow selecting instructions (conditional branches) are dependent on the outcome of
earlier instructions. This means that the correct instruction cannot be fetched and
issued before the earlier instruction has been executed. This may force the proces-
sor to stall its processing until the result is available to the earlier instruction.

To reduce the number of stalls (branch penalty), branch prediction can be used to
predict which instruction to fetch and issue. If the guess is wrong the instruction
pipeline must be flushed and the correct instruction fetched. This introduces an
uncertainty in processing latency, which is bad for wire-speed processing. Some
computers also use speculative execution, i.e. they not only fetch and issue the pre-
dicted outcome of the branch, they also execute that predicted instruction.

Delayed execution is another approach that tries to reduce pipeline penalty. One
example is to always process the two instructions following a branch instruction.
This requires these two instructions not to be dependent on the outcome of the
branch decision. If the compiler (or assembly programmer) cannot find this type of
instructions to insert, it must insert NOP instructions after each conditional branch
instead.

3.3 Optimization
By simply noting that some intrusions (tasks) are more common than others when

a processor only is used for a specific application area (e.g. protocol processing), it
is possible to improve the performance by optimizing the architecture for this kind
of instructions. There are several ways of doing this.

One way is to optimize the Instruction Set Architecture (ISA). This include opti-
mization of the instruction size, memory addressing schemes and creation of more
complex application-specific instructions. A processor with an application-specific
ISA is normally denoted as an ASIP. ASIPs normally have an improved perfor-
mance and use less program memory than more general architectures. The reason
is that complex (and common) tasks normally requiring several instructions can be
executed using one instruction during only one clock cycle. One example is the
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MAC instruction, which is normally used in filter applications. Normally the ISA
and the hardware architecture have to be co-optimized. While optimizing the ISA
it is also very important to co-optimize the compiler so that the improved ISA can
be efficiently used.

The second stage of optimization is to optimize the micro architecture in order to
be able to raise the number of IPC. This includes optimization of the critical path
to be able to run at a higher clock frequency, acceleration, memory organization,
branch prediction strategy etc. This is normally done after a specific way of
exploiting parallelism has been chosen and the ISA and data width have been
decided.

3.4 Implementation Alternatives

3.4.1 Controllability

Hardware components in a network interface can have different kinds of control.
The three main alternatives are:

• Fixed function. E.g. ASIC with no flexibility.
• Configurable. The function of the data path can be changed but it cannot be

changed every clock cycle. The controlability and flexibility can be high (e.g.
in an FPGA).

• Programmable. The function of the data path can be changed in every clock
cycle.

In a network processor the need for configurability and programmability can be
reduced by the use of many different fixed function blocks, each capable of pro-
cessing a small part of the tasks. Different blocks are then used only for specific
tasks and do not need any configuration. Many protocols at the higher layers in the
protocol stack have very high requirements on flexibility. The amount of flexibility
and the type of control a hardware platform needs is an important design parame-
ter.

3.4.2 Integration

Processors and memories in a network processor ASIC chip are sometimes inte-
grated in the same silicon chip, which means almost all the processing work can
be done internally without having to wait for slower external memory access. On-
chip memory is a major advantage since many protocols require extensive mem-
ory access when being processed.

An ASIC can have multiple processors integrated into the chip to handle heavy
workloads. This means that a single chip may be simultaneously working on many
different processes for many independent protocol sessions. Parallel processors
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within an ASIC (SoC) provide enormous performance advantages beyond those
achievable with single-processor board-level products.

One particularly noteworthy example of parallel processing in a network proces-
sor ASIC is the implementation of timers. TCP processing depends on session tim-
ers to manage flow control and identify transmission errors. At gigabit and higher
transmission rates, the accuracy of flow control and error detection becomes
increasingly important to the health of the network. Board-level solutions have to
implement TCP timers in software or use one or two general purpose hardware tim-
ers provided in a general processor core. This means that the events and timers are
processed sequentially by a single CPU. Obviously, multiple hardware-based tim-
ers running in a custom ASIC add a great deal of efficiency as well as accuracy,
resulting in the most consistent and predictable network operations.

Beyond accessing memory in silicon, ASICs also facilitate the use of advanced
memory technologies that have been developed for high speed networking applica-
tions. Specifically, where TCP processing is concerned, a special memory technol-
ogy for high throughput networking called CAM (Content Addressable Memory)
can be used very effeciently. While CAM can be implemented in both board-level
as well as ASIC solutions, it is less expensive and more efficiently utilized when
implemented in an ASIC. In general, the content-based indexing of CAM virtually
guarantees that each connection table lookup only needs a single memory opera-
tion. With a high volume of lookup operations occurring every second on a Gigabit
Ethernet link, it is easy to see why an ASIC approach with integrated CAM is so
efficient.

3.4.3 FPGA implementation

To implement parts or the whole of a network processor in a Field Programmable
Gate Array (FPGA) would give a very high degree of flexibility due to the config-
urability of the FPGA. Since the cost of FPGAs today is acceptable for low volume
products, it would be a cost effective solution even if the number of units sold is
small. There are however four major drawbacks with FPGA implementation.

First of all the throughput of an ASIC implementation is significantly higher than
the FPGA solution can manage. Secondly the power consumption is much higher
in the FPGA. The third drawback with a standard FPGA is the limitations in size
and complexity of the design that can be implemented on one FPGA. The memory
communication and use of distributed embedded memories are also benefiting from
an ASIC chip implementation.

3.4.4 Memories

The memory structure is very important for protocol processing because the pro-
cessing is all about moving data. A specialized processor can have a dedicated
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memory structure with adequate addressing modes, which can improve the effi-
ciency dramatically.

A scalable multi-processor system using a shared memory hierarchy will
encounter coherence problems. I.e. how and when should local caches be updated.
If shared data is stored in multiple caches some sort of cache coherence technique
must be used to avoid conflicts. The alternative is to only store private (processor-
specific) data in local caches. This issue must be considered in multi-processor
router systems using multiple memories for storage of routing tables.

Using on- or off-chip memories can be a very important for the performance of a
protocol processor. Off-chip memories normally have lower bandwidth due to pin
limitations. They always have higher latency than on-chip alternatives. The prob-
lem with on-chip memories is that the chip area is too small to accommodate big
enough memories. Off-chip memories also benefits from use of special manufac-
turing processes dedicated for memories.

Since the demands on low latency are so high in protocol processing equipment
new types of memories have recently emerged to address this problem. These
reduced latency memories are used primarily for classification. In the future new
memory types may emerge to address specific protocol processing problems but
there is no reason to believe that this alone will solve all problems.

3.5 Summary
When designing high speed Programmable Network Interfaces (PNI) for termi-

nals there are a number of challenges that the designer has to overcome. Some of
these challenges are common to all micro-electronic designs, e.g.:

• Data transfer to/from external memories
• Pin limitation
• Packaging
• Verification

Others are specifically important in protocol processor designs, e.g.:

• Line-rate processing (fast path processing performance)
• Link-rate processing (slow path processing performance)
• Device integration (accelerators, memories, ASIC:s)
• Shared resources management (e.g. data and program memories)
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To overcome these challenges three main approaches exist today. Their common
goal is to provide sufficient processing power so that the host is efficiently offloa-
ded. The three main alternatives are:

• Application Specific Logic

Special Instruction Set

On- or Off-chip accelerators

• Advanced Processor Architectures

Data level parallelism

Instruction Level Parallelism

• Multi processor solutions

Task level parallelism and/or pipelined multi-processor systems

Combinations of these design approaches are also possible. Before selecting
design methodology and architecture a number of design considerations and per-
formance requirements have to be examined. Depending on application, cost sensi-
tivity, and other factors, the optimal solution may vary. Using information about
processing requirements it is always possible to improve the architecture using dif-
ferent types of optimization. This optimization process includes making the ISA
and micro architecture dedicated for specific aplication. For further information on
the design challenges and considerations when designing network processors, I rec-
ommend the book referenced as [3.1]. In the Ph.D. thesis [3.2] a deep discussion on
memory architectures can be found. [3.3] may also be useful.

Reference 1

[3.1] Crowley, Patrick, et al, “Network Processor Design”, first edition, Morgan Kaufman Pub-
lishers, ISBN: 1-55860-875-3
[3.2] Mattias Gries, “Algorithm-Architecture Trade-offs in Network Processor Design”, Ph.D.
thesis, Diss. ETH No. 14191, Swiss Federal Institute of Technology Zurich, 2001
[3.3] D. E. Comer, “Network System Design using Network Processors”, Pearson Education
Inc., ISBN: 0-13-141792-4
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4
1Protocol Processing

4.1 Protocol processing trends
In the semiconductor industry it is a well known fact that the device production

scales according to Moores law illustrated by table 4.1. The scaling factor S has
been 0.7 since 1974 which means that the feature size becomes half as big every
second year. Further we can see that the clock frequency scales almost with S and

that the number of transistors / chip will scale as S2. Historically the design com-
munity has been able to take advantage of this development to improve the pro-
cessing bandwidth according to Moore’s law by using improved design
methodologies and architectures. As shown in the roadmap there will however be
difficult to fill the chips with useful content in the future. To deal with this prob-
lem, re-use methodologies are addressed as the key issues for success. Together
with the cost issue this means that future platforms must provide flexibility
enough to survive over several product generations. Making the situation even
worse, today a new problem has emerged when it comes to communication pro-
cessing.

Networking technologies, have historically increased data rates in 10 times
increments according to the Fibre Channel Industry Association [4.2]. Gigabit
Ethernet (GE) today and 10 Gigabit Ethernet (10 GigE) tomorrow, together with
high-speed back-bone networks, provides the network bandwidth overhead to
accommodate the rapid growth in organizations and traffic today [4.3]. Further,
more and more services are requested to be provided to the network. This makes
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the processing more complex and increases flexibility demands. It becomes harder
and harder to improve the devices so that they provide the speed and functionality
specified by the network standards.

Looking at the current growth rate of the performance of networking, comput-
ing, and volatile storage technology, a diverging development can be recognized.

Table 4.1: Projections of the ITRS Semiconductor Roadmap [4.1]

2001 2003 2005 2007 2010 2016

Feature size
nm

90 65 45 35 25 13

On-chip clock
GHz

1.68 3.09 5.17 6.74 11.5 28.75

IO Speed
GHz

1.68 3.09 5.17 6.74 11.5 28.75

# signal pins
(ASIC)

1500 1700 2000 2200 2400 3000

total # pins
micro
processor

480 -
1200

500 -
1452

550 -
1760

600 -
2140

780 -
2782

1318 -
4702

Functions /
chip

276 439 697 1106 2212 8848

Cycle cost
per packet

time

1996 1997 1998 1999 2000 2001

1

10

100

1000

Figure 4.1: Average number of clock cycles available for the processing of a min-
sized packet on a state-of-the-art general-purpose CPU at state-of-the-art link

speed.
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The random access time of dynamic RAMs only halves approximately every ten
years [4.4] and [4.5]. Contrary to that, the computing performance of CPUs dou-
bles every 18 to 24 months [4.6], [4.7], and [4.8]. Moreover, although the maxi-
mum link bandwidth used in the Internet increases at almost the same speed as
computing performance, the volume of Internet traffic currently doubles every six
months [4.3]. Therefore, protocol processing tasks will no longer be performed by
general computing resources but must be accelerated by domain-specific protocol
processors.

The figures in table 4.2 can be compiled in to a figure describing the problem in
terms of number of clock cycles available per min-sized packet (introduced in the
first chapter). This is depicted by figure 4.1.

There are also terminal specific problems. Historically, I/O data rates increased at
approximately the rate of Moore’s law, which allowed servers and other types of
terminals to maintain I/O processing performance overhead from one product gen-
eration to the next. According to table 4.1 this is changing since the network band-
width increases much faster than the I/O processing performance of general
purpose devices. Using traditional design methods, we are already experiencing the
I/O processing gap problem, depicted by figure 4.2, in network terminals. The
obvious solution to this as well as the other problems described in this section, is to
offload the communication processing from the application processing device and
instead use dedicated devices.

4.2 Design space exploration for terminals
Today, there are a number of different hardware platforms available for use as

protocol processors. In order to investigate the need for, and compare different
types of network processing hardware, an exploration and a classification of the
different solutions is useful.

Table 4.2: Processing performance growth

growth per 18 months

DRAM access time 1.1

Moores law 2

CPU Processors performance ~1.75

User traffic ~3

Router capacity 2.2

Line capacity ~6
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4.2.1 Inter- or intra-layer processing

Intralayer processing means that each protocol layer is processed separately
according to figure 4.3. This way of processing and conceptual thinking is a result
of the invention of computer networks and protocol stacks more than 30 years ago.
In the seventies, communication was considered to be a precious resource while
the processor had infinite processing power. Today, the opposite is true.

Intralayer processing gives a processing overhead since a lot of intermediate
results and data transports must be performed. However, the well established pro-
tocol standards support verification when intralayer processing devices are
designed. There is also a need to support all the peer services stipulated by the dif-
ferent layer standards. This is the only reason why intralayer processing should be
considered.

The main advantage with interlayer processing is the reduced amount of data-
transportation and -processing due to the reduced need for intermediate results.
Another advantage that the interlayer processing gives is that the processing can
be divided and then distributed to different computing devices depending on the
type of processing rather than layer type. The coarse separation is normally into
tasks to be performed in hardware or software. Traditionally the physical layer
was implemented in hardware while the rest was processed in software. Today,
architectures where parts of all layers are accelerated in hardware emerge.

Network bandwidth

I/O Processing

Time

Gbit/s

1

    Today

I/O Processing
gap

Figure 4.2: The I/O processing gap has started to become a problem using tradi-
tional CPU architectures. The reason is that while the I/O bandwidth in network

terminals approximately follows Moores law (1.5-2X) the Network bandwidth has
a 10X improvement for each generation.

 Bandwidth
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To distribute the processing according to processing requirements and type in an
interlayered way results in an orthogonal description of the processing tasks, com-
pared to the traditional protocol stack.

4.2.2 Offloading coverage in terminals

Solutions available today from the academic research community and the industry
are extremely diverse. Despite this diversity, terminal network processing platforms
can be divided into four main groups according to their offloading strategy illus-
trated by figure 4.4.

Depending on application, throughput requirements, power awareness, and cus-
tomer cost sensitivity different platforms selects one of the four different offloading
strategies while offloading the host processor. The offloading device then typically
accelerate and offload protocols at layer 2 up to layer 7. It is not certain that all
parts of the protocols are offloaded from the host processor. Hence, the offload effi-
ciency can vary within the four main groups in figure 4.4. Consequently, it is very
important to clearly examine both which protocols and how big part of the proto-
cols should be offloaded in order to optimize the entire offloading platform. Proto-
cols not offloaded must of course be processed by the host.

Protocol layer

Protocol layer

Protocol layer
Multi layer
Processing

Figure 4.3: Interlayer (to the right) processing means that all or parts of several
protocol layers are being processed simultaneously on one device. It does not

mean that all processing is done on one piece of hardware or software. Several
devices can still share the processing. Intralayer processing means that each pro-
tocol is processed sequentially, in order and on one single device. Higher layer

protocols will not be processed until the lower has been finished.
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4.2.3 Application coverage

The ability to run a certain set of network applications on the host using a PNI-
based interface in certain networks is described by the application coverage of the
protocol processor. The application coverage defines the workload of a protocol
processor. Complexity and hardware cost grows as the application coverage
grows. Hence, by modifying (reducing) the application coverage it is possible to
achieve higher throughput. In order to compare two protocol processors, the first
step must therefore be to carefully define their workload. The main problem is that
there are currently no common standardized workload benchmarks available. Nor-
mally it is useless to compare the performance figures of two different protocol
processor architectures that have different application areas.

The basic requirement for a large application coverage is that the bandwidth is
sufficient for processing of the received data. The higher bandwidth the protocol
processor can provide the more applications can be supported.

The second requirement is that the protocol processor has enough flexibility so
that it can process all different applications (protocols) it is intended for. The
application coverage defines what the protocol processor can be used for. There-
fore it is the single most important classification parameter.

4.2.4 Host integration

The main purpose of a dedicated terminal PNI is to offload the host in order to
accelerate and relaxe the application processing. Hence, it is important to find an
efficient interface between the offloading device and the host Operating Systems
(OS). Thereby, interrupts and memory conflicts can be minimized and application

Host Offload Efficiency

Th
ro

ug
hp

ut

No offload

Data path
offload

Dedicated
Logic based
Full offload

Standard
Processor
based
offload

Figure 4.4: Host offloading strategies
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processing bandwidth maximized. It is especially important to find a standardized
interface if one consider the variety of operating systems, e.g. Linux, Windows etc.,
and offloading devices. A common interface also enables common programming
models which simplifies compiler construction and reduces design time and verifi-
cation efforts.

Since the year 2000, a number of different TCP Offloading Engines (TOE) have
emerged. Most of these process all of the TCP protocol stack in a hardwired fash-
ion which means that some tasks may be duplicated in the host, i.e two TCP/IP pro-
tocols are implemented in parallel. The reason for this is the lack of a standard OS
interface for terminal hosts. The only successful market share so far has been spe-
cial purpose servers, e.g. file servers, backup media servers, and complex imaging
system servers, where proprietary OS interfaces are possible. In order for the TOE
market to grow a common standard interface is needed. Such an interface denoted
Chimney architecture has recently (May 2003) been proposed by Microsoft in
[4.9]. The Chimney architecture provides a common interface for manufacturers of
TOEs, HBA, NICs, and other protocol processing ASICs and it is expected to be of
general availability 2005.

The Chimney architecture departure from the prevalent approach of stand-alone
self-contained all-inclusive TOEs. Instead it proposes that some (and specify wich)
processing tasks should be processed by the host mainly because of security rea-
sons.

According to the Chimney architecture, the data path protocol processing should
be offloaded to a TOE while the host is responsible for setting up and tearing down
these accelerated TCP connections. Further, control oriented protocols such as
DHCP, RIP, and IGMP should be implemented within the host OS (Windows
based) TCP/IP stack. Chimney proposes that low-latency retransmission should be
handled by the offloading device while reassembly should handled in the applica-
tion buffer by the host. To perform the reassembly in the host is a significant pro-
cessing load but it does provide protection against security vulnerabilities
according to Microsoft.

The most important benefit with Chimney is that services using underlying TCP/
IP (e.g. iSCSI) will automatically utilize acceleration benefits from Chimney-
enabled TOEs. It also reduces the development and verification cost of ASIC TOEs
which today is roughly 10 times as expensive as Gbit Ethernet ports. The drawback
is that some of the ASIC-driven performance offered is lost since parts of the stack
will be processed on the hosts general-purpose hardware.
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4.3 Terminal specific requirements
Requirements on the protocol processing in a terminal are varying, however low

silicon area and low power consumption are always desired. The latency of the
processing is more important in streaming systems than for file transfer. For file
transfer on the other hand, high throughput is required. Flexibility of the imple-
mentation is also desired since protocols evolve, for example IPv6 may take over
after IP. A terminal does not have any IPmin processing since all protocol layers
must be terminated. A protocol processor that is intended to offload more than
Ethernet and IP must therefore have a very high degree of programmability.

4.3.1 Flexibility

A programmable network interface must provide flexibility and adaptability to
the changing environment it might operate in. This results in some flexibility
requirements that all PNIs have to meet to some extent:

• Reconfigurable media adaptation. In order for a PNI to be used in different
networks and survive over time it must be capable of adaptation for different
medias.

• Programmable connection policy. A PNI must support on-line change and
control of the traffic flow.

• Programmable host interface. The interface between the PNI and the host
system must be operating in real time and be highly flexible in order to avoid
unnecessary interrupts in the host.

• Data controlled datapath selection. The datapath must be configurable or
selectable depending on packet header information.

Providing the flexibility bulleted above gives a large protocol coverage but it
increases the complexity of the hardware. There is always a trade-off between
flexibility and throughput since flexible general purpose hardware never can reach
the same throughput as dedicated hardware blocks. Hence, flexibility is an impor-
tant performance parameter.

4.3.2 Throughput

The need for bandwidth is ever increasing and is not going to disappear. Further
it is a fact that an increased bandwidth supports larger application coverage which
is very attractive. The conclusion is that throughput is and will continue to be a
very important performance parameter when a hardware platform is designed.

4.3.3 Inter-operability

In order to reach an optimal way of integrating the PNI device into the system,
the PNI interface and the host operating systems must be co-optimized. To opti-
mize the PNI interface is much easier than the host operating system since it is a
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proprietary architecture. I have chosen to call this integration of the PNI with the
host operating system, inter operability and it is very important for the overall sys-
tem performance.

4.3.4 Cost

The cost of the protocol processor chip or board is a very important performance
figure. The cost is important for any customer but network terminal users are espe-
cially cost sensitive. The cost is always an important part of architectural design
trade-off. The cost of a protocol processor chip mostly depends on the package and
the number off chips manufactured.

In order to make the package cheap, the area, power dissipation, and number of
pins must be minimized. The power dissipation is normally an important optimiza-
tion criteria in all micro-electronic systems but it is especially important for net-
work terminals. Power figures are of course even more important in portable
systems. The number of pins is hard to lower since a protocol processor by nature
includes a lot of communication over the chip edge. But the number of accesses to
off-chip resources can be optimized. The area is possible to minimize by architec-
tural exploration. Minimizing the design can be either used for cheap packaging
and/or to allow for more resources on-chip, e.g. memory.

The number of chips that can be manufactured is strongly connected to the flexi-
bility of the design. A general design can be used for more applications and can
also stay longer on the market. Hence, it is important that the design is reusable and
flexible enough for a long life-time.
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5
1Network Processor Survey

As stated in earlier chapters specialized network processors have emerged both
from industrial and academic initiatives. The processors range from pattern pro-
cessors and Ethernet classifiers ([5.1]-[5.3]) to systems consisting of general pur-
pose RISC cores ([5.4]-[5.7]) or reconfigurable hardware with additional special-
purpose coprocessors designed to assist in common network packet processing
tasks ([[5.8]-[5.10]]). This short example clearly shows the diversity of the net-
work processor research community, both in terms of application and architectural
approaches. This chapter will investigate a number of different architectures to see
if there are any trends and lessons to be learned before focusing on designing pro-
grammable network interfaces (PNI) for terminals. But before we examine the
new type of router implementation we should go back and look at the traditional
implementation strategies of routers.

5.1 Traditional router implementation
Traditionally, there are two ways of mapping the control plane and data plane

functions to the underlying hardware. A software-based router is characterized by
a single processor implementing both the data plane and the control plane. All
packets in a software-based router are handled by the processor under software
control. It contains a microprocessor, a shared bus (implementing the switch), and
multiple line cards (implementing the ports). The actual hardware may be pack-
aged in a desktop PC or as a stand-alone, custom-engineered device. Open-source
operating systems such as Linux include all the necessary software to implement a
software based router on a PC.
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A hardware-based router is characterized by an optimized fast path implement-
ing all or part of the data plane using ASICs. The switch is often implemented as a
high-bandwidth cross-bar switch rather than a bus. The line cards perform the
route lookup and IPmin processing using dedicated hardware. Any portion of the
data plane not implemented in dedicated hardware is handled by the control pro-
cessor. Because the throughput of the custom hardware is significantly higher than
the throughput of the control processor, hardware-based routers often have a large
difference in throughput between the fast path and the slow path. Their overall
performance is sensitive to the number of packets which cannot be handled by the
fast path.

Software-based routers are generally less expensive than hardware-based routers
due to the high-volume general-purpose components used. Hardware-based rout-
ers have higher-performance (IPmin) than software based routers.

5.2 Naming conventions
Depending on application coverage and marketing reasons, platforms dedicated

for processing of packet based communication channels have different names.
Common names on various communication network platforms are:

• Network Processors (NP)
• TCP Offload Engines (TOE)
• Protocol Processors (PP)
• Programmable Network Interfaces (PNI)
• Network Interface Cards (NIC)
• Packet processors (PaP)

The two most general names are NP and PNI. The other ones are normally
regarded as subsets of the NP type, but no naming convention has been agreed
upon. The application coverage may vary a lot between two architectures within
the same group. For example a TOE may process parts or the entire TCP protocol
stack. It may, or may not, support TCP flags and SAR. Regardless which, it will
still be presented to the customers as a TOE.

5.3 Commercial architectures

5.3.1 Intel IXP processors

After acquiring Level One Communications Inc. including the IXP1200 network
processor Intel has been one of the most important actors in this field. Intel today
offers a number of chips to solve different tasks when it comes to what they call
Network Infrastructure Processing [5.23]. First of all they have the Internet
eXchange Architecture (IXA) which includes different NP. The NP family uses
Xscale instruction set (improved Strong-ARM) and the peak capacity is today
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10 Gbit/s using high-end MAC interfacing chips, while the normal IXP 1200 uses
Fast Ethernet. The original IXP 1200 is today offered in 162 or 232 MHz versions.
In later versions (1240 and 1250) Intel has integrated more and more hardware
assist for data intensive protocol processing tasks.

The IXP 1200 datapath includes 6 different micro engines which supports multi-
thread programmability. The second generation NP IXP2400 includes 8
microengines. The microengines in the IXP 2400 are connected in two clusters of
four engines. The microengines uses an application specific instruction set. The
microengines share memory resources and have private connections to its neigh-
boring engines. Each microengine contains a 4096 times 40 bits program memory.
Each microengine can process 8 different contexts, e.i. threads. There are 128 gen-
eral purpose registers and 640 data transfer registers available in each microengine.
Further it includes a local memory capable of storing 640 32-bit data values. This
memory is used for cashing of packet header information. The microengines also
includes the following dedicated hardware blocks:

• CRC unit for 16 and 32 bit computations.
• Pseudo Random Number generator (used for QoS in congestion algo-

rithms).
• Fine granularity hardware timers
• Multiplier
• 16-entry CAM used for cache search and assists software pipelining.

A TCAM can be connected as an external accelerator working in parallel with the
IXP2400.

The IXA chip is mainly intended for packet processing for switching, protocol
conversion, QoS, firewalling and load balancing. Further Intel offers Control Plane
Processors in the IXC family. IXC is mostly efficient when they are being used for
exception handling and connection states processing. They are normally used in
high end systems, e.g. Base Transceiver Stations, Radio Network Controllers, and
MAN servers. They normally operate together with an IXA type of chip handling
the control plane processing. The IXS family contains Media Processors used for
acceleration of voice, fax, and data-communication. In a big server a number of
these IXS could be used together with one IXA chip. Finally Intel offers I/O pro-
cessors (IOP) that is a quite general architecture, which can be used for SAN accel-
eration.

Even though the IXP family is fully programmable it is very hard to program. The
difficulty lies in the fact that the programmer and/or compiler must put an even
computational load on all micro-engines in order to take advantage of the multi-
thread optimized architecture. Further, efficient programming models have been
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identified as a key-issue. This IXP programming problem have been addressed by
several research groups ([[5.30]] and [[5.31]]).

5.3.2 Motorola C-Port C-5e Network Processor

Developed in the late 1990s by C-Port Corporation the C-5 digital communica-
tions processors where similar to the IXP from Intel. The C-5e NP is currently a
part of Motorolas C-Port family. It supports the use of 16 line interfaces, each con-
trolled by a RISC-based Channel Processor (CP). The CP contains a receive and a
transmit processor. They are serial data processors (SDP), which can be used for
various layer-2 implementations. Further the CP contains a dedicated channel pro-
cessor RISC core (CPRC) with a dedicated 32-bit instruction set. Each CPRC uses
a 8 kB instruction memory and a 12 kB data memory. Each channel processor can
manage 156 Mbps line cards but when used in clusters, much higher bandwidth is
supported.

Further the C-5e NP includes an eXecutive Processor (XP) for control plane
operations. C-5e NP also includes a number of dedicated co-processors:

• A table lookup unit (TLU) classifies incoming packets based on informa-
tion in an external SRAM memory.

• A buffer management unit that controls the payload data storage while
the header is being processed.

• A queue management unit that is shared between all the processors to pro-
vide QoS.

• A fabric processor provides a high-speed network (PHY) interface.

The SDP in the CP is responsible for the bit- and byte-wise processing and can
be considered as the fast path. The SPDs are responsible for the layer-2 interfaces,
e.g. GMII. They also handle encoding/decoding, framing, formatting, parsing, and
error checking (e.g. CRC and header checksum calculation). The SPD may also
initiate a classification search in the TLU. The receive SPD include two FIFO
buffers. The first one is a small FIFO storing incoming data before the bit process-
ing. The other FIFO is larger and it stores the data before byte processing. The
SPD are also responsible for framing and synchronization of the incoming pack-
ets. Several CP can be concatenated using the very high bandwidth interface bus
(35 Gbps) for pipelined processing.

During 2002 Motorola released a C-3e version, which manage 3 Gbit/s data rate
[5.6].

5.3.3 iSNAP

The IP Storage Network Access Processor from Silverback [5.11] terminates and
process IP-based storage traffic in a GEth network with full duplex. It separates
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the header and data traffic processing. The header processing generates an event
which is placed in a queue that communicates via DMA to the host. Meanwhile the
packet data is stored in a DRAM until the event is finally created. At the host level
the data can then be stored in separate application buffers depending on the upper
layer protocol (ULP). This is called PDU awareness. ULP covered are iSCSI, NFS,
CIFS and main application areas are servers, storage devices and Network Area
Storage (NAS) appliances.

5.3.4 IBM PowerNP

First of all the PowerNP consists of a number of interfaces to memories (control
and data) and networks (PHY/MAC ASICs). The packet processing is performed in
the programmable Embedded Processor Complex (EPC) assisted by co-processors.
The EPC contains 16 programmable engines known as picoprocessors. The pico-
processors operate in pairs called DPPUs. Each DPPU has a shared set of coproces-
sors that operates in parallel. The picoprocessors are essentially 32-bit scaled-down
RISC machines with a dedicated instruction set. The DPPU also contains a small (4
kB) shared memory. The co-processors handle tree search, data storage, control
access, queues, checksums, string copy, policy, counters, buses and system sema-
phoring.

5.3.5 Trebia SNP

This architecture [5.12] include a MAC block for mixed medias (wired and fibre-
based), a security accelerator, various classification blocks, a TCP offload engine

and a Storage Area Network (SAN)1 protocol processor as illustrated by figure 5.1.
The TOE can operate stand alone, terminating TCP connections without involving

1. Storage Area Networks (SAN) today sees a rapidly increasing use of NP to offload the host. The host is
then typically acting as a file server. SAN was previously discussed in chapter 2.
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Figure 5.1: Trebia SNP architecture.
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the host processor. For IP storage applications Trebia claim that their TCP offload
engine manage up to 10 GigE. The SAN PP is optimized for processing of storage
I/O flows and especially iSCSI termination. According to CommsDesign.com Tre-
bia is now out of business due to an immature iSCSI market.

5.3.6 iReady EthernetMAX

The Media Access Xccelerator [5.14] from iReady is intended for transport off-
load [5.13]. It fully terminates TCP/IP at GE speed. The TCP/IP accelerator uses a
streaming data architecture similar to the one proposed by the author of this thesis.
The data is not stored but instead processed while it is streaming through a 64 bit
wide pipeline. The 64 bit wide datapath then processes the data using multiple
dedicated hardware blocks implementing different state machines. Each state
machine block processes a specific part of the incoming headers. The processor
also uses hardware acceleration of iSCSI and IPSec. Since the complexity of the
IPSec processing is 2 to 3 times higher than TCP/IP this architecture is not suit-
able from a power and cost point-of-view if the use of IPSec packets is not large in
the network. The implementation does not use standard programmable devices.
Instead dedicated logic for optimal performance is used.

5.3.7 Alacritech Internet PP

Alacritech [5.15] provides a Session Layer Interface Card (SLIC) [5.17] that
includes accelerators for GE, network acceleration [5.16], storage acceleration
and dual-purpose server and storage acceleration. Especially their Internet Proto-
col Processor (IPP) which offloads TCP/IP and iSCSI processing is interesting.
The IPP offers acceleration of non-fragmented TCP connections. This means that
data transfers to and from the TCP/IP stack is handled by the IPP while the host
system must take care of the connection state processing. Parts of the TCP that
IPP does not handle are:

• TCP Connections and breakdowns (SYN segments)
• Fragmented segments
• Retransmission timeout
• Out of order segments
• Finish segments (FIN)

Despite this down-sized functional coverage in the accelerators, Alacritech
claims that 99.9 percent of the TCP/IP traffic is handled by the IPP while the other
0.1 percent is processed by the host processor. Alacritech further stresses the low
power and low cost figures of their architecture.
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5.3.8 LayerN UltraLock

The UltraLock [5.19] illustrated by figure 5.2 uses a patented architecture named
SIGNET [5.18]. The UltraLock chip offloads both the Network processing, includ-
ing packet classification, and provides acceleration of Secure Socket Layer (SSL).
The UltraLock also includes GE MAC accelerators.

In the TCP/IP processor the tasks are distributed among several different dedi-
cated functional blocks in order to improve the throughput. These TCP/IP proces-
sors are also pipelined.

5.3.9 Seaway Streamwise NCP

Seaway Networks [5.20] offers a streamwise Network Content Processor (NCP)
capable of multi-gigabit layer 4 (TCP) termination. The NCP also examine, modi-
fies and replicate data streams based on their content (Layer 5-7). The NCP uses a
streamwise switch to send data streams to different content processing devices, e.i.
co-processors or general purpose CPUs.

5.3.10 Emulex LightPulse Fibre HBA

The Host Bus Adapter (HBA) from Emulex [5.21] includes an ASIC controller, a
RISC core and a SAN accelerator. The SAN accelerator uses a context cache hard-
ware so that context (PDU information) not must be transported to and from the
host and thereby offloading the server PCI bus. The systems have 1 Gbit/s perfor-
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Figure 5.2: The UltraLock provides acceleration for SSL connections. Ordinary
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mance and the main feature is the implementation of a strong SAN accelerator for
high end servers.

5.3.11 LeWiz Content processor

LeWiz processor [5.22] processes layer 3-7 with hardware acceleration with a
line rate capability of Gbit/s. Among other things it performs table lookup for con-
nections, controls an external header data memory, supports different types of
connections based on URL/source address, and handles XML and URL switching.
LeWiz sells both hard and soft cores. The content processor architecture is further
described in figure 5.3.

5.3.12 Qlogic SANblade

The SANblade [5.24] manage a 2 Gbit/s line rate using GE or fibre channel
medias while performing iSCSI as a HBA. It completely offloads the TCP/IP pro-
tocol stack from the host. The SANblade also handles all I/O processing. The
SANblade contains internal on-chip memory which they claim to be faster, cooler
and moore scalable than using shared memory architectures.

5.3.13 Agere Systems - PayloadPlus

PayloadPlus provides a complete solution for OC-48c (2.5 Gbps) networks. The
board solution includes 3 chips, capable of up to layer-7 processing. They are the
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PCI

Content Memory

Figure 5.3: LeWiz content processor. The Packet pre-processor is a TOE. The
Protocol parser examines the ULP data (layer 5-7) and based on this it start a

search for a classifier using the classifier engine. The classifier then decides pri-
ority and is used for re-direction of the traffic according to the QoS policy.
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Fast Pattern Processor (FPP), the Routing Switching Processor (RSP), and the
Agere System Interface (ASI).

The FPP is programmed with a dedicated protocol processing language (FPL).
The FPP does not contain any accelerators for classification and reassembly such as
CAM or Segmentation and Reassembly (SAR) devices.

The Pattern Processing Engine (PPE) matches fields in the data stream based on
the program stored in the program memory. The program is written in FPL. The
FPP operates on 64 PDU (i.e. threads) at a time. Each PDU is processed by a sepa-
rate processing thread denoted context. The CS/CRC engine performs 4 different
checksums based on the FPL program, generic checksum (1-complement), IP v4
checksum, CRC-10 and CRC-32. The input framer can be configured for 8, 16, or
32 bit wide datastreams.

The RSP handles the traffic management and flow modifications in a programma-
ble way.

The ASI is a PCI like standard bus. ASI is used for exceptions and management
tasks. The main applications are layer 2-3 routing and switching. The PayloadPlus
architecture also supports voice and data processing (e.g. over IP, AAL5, AAL2),
access control and enables QoS functionality.

The ASI, the RSP, and the FPP is connected to the same 8 bit configuration bus.
The configuration bus is used for updating of routing tables and programs during
runtime. Each of these processor could be described as fixed-function processors
dedicated for a specific task. They need to be combined in order to support all of
the network processing tasks.
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5.3.14 Cisco - Toaster2

Toaster2 is a multiprocessor ASIC solution for layer 3 data path calculations.
The chip includes 16 uniform processors each including a dedicated microcontrol-
ler (TMC). The 16 processors are organized in a 4 by 4 matrix. Each node also
includes a program memory and a memory controller. The Toaster2 is typically
used together with other Toaster2 chips, a packet buffer ASIC, PHY/MAC ASICs,
and a routing processor. The routing processor is typically a general purpose RISC
machine. The packet buffer stores the payload data while the header is being pro-
cessed.

The TMC is essentially a SIMD architecture that uses a 64 bit instruction to
operate on multiple 32 bit data. The architecture schedules ILP in software and
then 4 stages of Toaster microcode is processed in a pipelined and parallel way by
each row of four TMC.

5.3.15 PMC-Sierra

The PMC-Sierra ClassiPI is not really a network processor. Instead it is a DSP
like classification device that can assist many different NPs with the complex task
of packet classification. The ClassiPI architecture consists of two main engines.
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One is the Field Extraction Engine (FEE) and the other one is the Classification
Engine (CE). The FEE can extract IP, UDP, and TCP header data from an incoming
packet. The extracted data is then passed on to the CE for classification search
operations. The CE is a RAM based classification engine that includes four ALUs
and other processing logic. The CE uses an external memory for storage of pro-
grams and control state variables, e.g. counters and time stamps.

The RM9000x2 is their current next-generation processor. It contains dual 1-GHz
MIPS processor cores, a 160 Gbps multi-port memory fabric, and a 500-MHz
transport interface that allows for 16 Gbps data I/O traffic.

5.4 Academic architectures

5.4.1 EU Protocol Processor Project PRO3

The architecture proposed by PRO3 [5.25] consists of 5 parts. Most interesting is
the Reconfigurable Pipelined Module, which processes data intensive tasks, and the
embedded RISC core which takes care of the signaling processing. An illustration

of the PRO3 can be found in figure 5.6.

5.4.2 UCLA Packet decoder

This decoder [5.27], decodes packets on layer 2-4. The decoder architecture illus-
trated in figure 5.7 consists of one datapath for each layer, i.e. three data paths
totally. It only uses one control path for the signaling processing. It operates on
streaming data using an application-specific instruction set and the intended appli-
cation area is routers.

5.4.3 TACO processor from Turku University

Based on a Transport Triggered Architecture (TTA). The TTA architecture only
uses one instruction (move). The architecture uses the move instruction to transport
data between different dedicated functional blocks. The main focus has been on
optimization of the distribution of tasks and data between different dedicated hard-
ware blocks. To do this, a development and simulation framework has been devel-
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RISC

Figure 5.6: The PRO3 architecture.
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oped. The intended application area is primary the ATM protocol. The framework
and the architecture is described in [5.28].

5.4.4 PICO project from Berkeley

The PICO project is focused on low-power terminal processing for wireless net-
works. Examples on protocols covered are Bluetooth and Home RF. Sensor based
networks has also been part of the project. The design consists of a fast path
implemented in FPGAs and a slow path implemented in Programmable Logic
Devices (PLDs). The PICO processor is further described in [5.29].

5.4.5 Washington University Field Programmable Port Extender

The Field Programmable Port Extender (FPX) [5.10] is a switching system
including an FPGA which allows the functionality to be remotely reconfigured
over the network. This off course gives a high degree of flexibility. The FPX mod-
ule also includes a fixed function network interface.

5.5 Conclusions from survey
A number of different NP solutions are included in the survey. They all are

focused on different application areas. Some fully offloads complex protocols,
while others mainly focus on high-speed fast path operation. As one can see from
the survey, a trend against separation of the network processor area into more ded-
icated specialized network processors optimal for a certain application area
emerges. As illustrated by table 1 different architectures targeted for different
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Figure 5.7: Simplified view of the UCLA processor architecture proposal show-
ing how to accelerate case-jump functions.
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applications have different performance, programmability, and architectural
approach.

It is interesting to note that the first generation of NPs (IBM and Intel) where
quite similar, composing one or more processing element and a number of co-pro-
cessors. Now there has emerged diverse solutions such as:

Table 1: Summary of survey. Architecture (1 - MCU with NP feature, 2 - DP acceleration,
3 - ASIP, 4 - ASIC/Coprocessor)

NP name Throughput Flexibility Architecture
Homogenous or
Heterogeneous

SW-based router * *** 1 -

ASIC-based router *** * 4 -

Intel IXA/IXC/IXS/IOP *** ** 2, 4 Homogenous

Motorola C-Port C-5e ** ** 4 Heterogeneous

iSNAP ** *** 3 Homogenous

IBM PowerNP ? *** 3, 4 Homogenous

Trebia SNP *** ** 2, 3, 4 Heterogeneous

iReady EthernetMAX ** * 4 Heterogeneous

Alacritech Internet PP ** * 1, 2, 3 Heterogeneous

LayerN UltraLock * ** 2, 4 Heterogeneous

Seaway Streamwise NCP *** ? 1, 4 Heterogeneous

Emulex LightPulse ** ** 1, 2 Heterogeneous

LeWiz Content processor ** ** 2, 4 Heterogeneous

Qlogic SANblade ** ** ? Pipelined
Multithread

PayloadPlus ** *** 2, 4 Heterogeneous

Toaster2 *** *** 1, 4 Homogenous

ClassiPI *** * 2, 4 Heterogeneous

PRO3 ? ** 1, 2 Heterogeneous

UCLA ** * 3 Heterogeneous

Turku TACO ? ** 3, 4 Heterogeneous

Berkeley PICO * ** 1, 4 Homogenous

Washington FPX ? *** 4 Heterogeneous
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• GP CPU
• Dataflow processing architectures (Cisco)
• DSP processing (PMC-Sierra)

Processing elements are used in two different ways.

• Pipelined: Each processor element is designed for a particular packet process-
ing task and communicates in a pipelined fashion. This dataflow based pro-
cessing is used by Cisco, Motorola etc.

• Parallel: Each processing element is performing similar functionality. Nor-
mally arbitration units and extensive use of co-processors are normally
required. Examples are Intel IXP and PowerNP.

There is a general disagreement on how much functionality to include in a PNI
and how much should be left for the host in TOEs. Instead it is clear that TOE,
MAC, Encryption accelerators, and SAN control accelerators are being designed
and optimized independently. Hopefully this means that we soon can have stan-
dardized interfaces between different communication accelerators. In the future
we will surely see new protocol processing application areas, where area specific
PNIs are worth using. SAN is just the first one becoming commercially interest-
ing. There is no clear trend on the amount of offloading needed in a TOE for NT
so further exploration is needed.

One big question that remains unanswered is where the reordering and reassem-
bly of the incoming application data should be done. The question is if the data
should be delivered to the main memory unordered or if it should be stored in
order in the application buffers. The second alternative demands an embedded
data memory to be used. The data delivery format has off course a big impact on
the host operation. The comparison clearly shows that there exist solutions to the
various new PNI specific implementation problems and considerations discussed
in earlier chapters.
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Part 3

Proposed architecture

“A journey of a thousand miles begins with a single step.”
--Confucius
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6
1Protocol Processor

for Terminals
6.1 Proposed architecture

This chapter describes a hardware architecture proposal which is a result of my
research during 1999-2003. The architecture is a dual-processor network interface
dedicated for packet reception in a network terminal.

This chapter will give an overview of the architecture. In the following chapters
a more detailed discussion on memory issues, data path, and control path will be
included.

6.1.1 Research idea

The main research idea is to use a data-flow architecture that can partly process
packets before they are stored. This means that the size and usage of packet buff-
ers can be reduced. In order to support usage in high-speed networks we must use
hardware acceleration and thereby enable the execution of packets as they stream
through. Even if the bandwidth requirements of a terminal is not as high as for a
core router, the terminal may be connected directly to a high-speed network and
therefore require high speed processing.

Processing tasks have been analyzed and allocated to processing resources
depending on their requirements. By combining different architectures and
exploiting their benefits the proposed architecture can support both high perfor-



64 Protocol Processor for Terminals

mance and flexibility as depicted in figure 6.1. The flexibility needed is supported
by configurability and programmability.

How do we know that our flexibility is sufficient to enable the processing of
future protocols? The answer is: we do not know, we can only guess based on cur-
rent standards and trends. Adaptation for new protocols, products, and standards is
possible but not guarantied by providing flexibility.

6.1.2 Dual-processor solution

As mentioned earlier the proposed terminal network interface architecture con-
sists of two parts, i.e two processors. The first part is the Programmable Protocol
Processor (PPP) and the other is the micro controller (µC). The platform also
includes several memories. They are used as program memory, data memory, and
control memory. The control memory stores inter-packet control variables, e.g.
connection state variables. Received payload data is stored in the hosts main mem-
ory, i.e. outside the PNI.

The architecture is intended to be a part of a SoC where one or several PPPs
together with the µC act as a high speed PNI. An overview of the system is illus-
trated by figure 6.2.
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Figure 6.1: A protocol processor for terminals must have a highly optimized and
dedicated architechture if both the requirements on performance and flexibility

should be met.
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In order to reduce the overhead and support high-performance wire speed pro-
cessing, processing tasks are allocated to the two processors based on their require-
ments on control, memory usage, and processing load. The coarse allocation is that
control intensive tasks are being processed in the microcontroller and data intensive
tasks suitable for hardware acceleration in the PPP.

During the progress of the research work, the dual processor architecture has
changed name several times. The reason for this is that the research field is so
immature that no naming convention has been agreed on. During the whole design
process we have used the name Protocol Processor describing our PNI but this is so
easy to mix with PPP so instead PNI will be used. The PNI consists of two parts.
One is the general purpose micro controller. The micro controller hardware archi-
tecture has not been investigated in the research project. Instead the focus has been
on the PPP implementing what can be considered the fast path of the protocol pro-
cessing.

During my research, the fast path of the protocol processor has been denoted as
Deep Pipelined Serial Processor (DPSP), Configurable Port Protocol Processor
(CPPP) and Programmable Protocol Processor (PPP). The names reflects the ongo-
ing rapid development, both in our research and in the research community by
large. The name that will be used in the following chapters is PPP.
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Figure 6.2: The PPP together with a general purpose micro controller (µC) han-
dles the communication of one network media port. In a system on chip (SoC)
many PPP can be used as port-processors in order to provide high bandwidth

between the application and the network.
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6.1.3 Domain specific PPP

This thesis identifies two approaches available for wire-speed protocol process-
ing. Either a dual clock system with a high-speed pipeline processor responsible
for accelerator control or a synchronized data-flow machine with no pipeline pen-
alty. Which to choose depends on the requirements on the protocol processor sys-
tem, set by the terminal application and the protocol coverage.
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Figure 6.3: The proposed dual processor architecture acts as a programmable net-
work interface. It offloads the host at high-speed still providing enough flexibility.
By intra-layer processing in the two processors the usage of memory can be signif-
icantly reduced. The figure illustrates how the processing in a traditional type of

terminal (to the left) can be mapped to the proposed PNI architecture (right).
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While pipelined processors is the predominant solution in the network processor
community this thesis proposes a synchronized data-flow architecture to be used as
C&C if:

• The supported number of connections is small
• The supported number of protocols is small
• Reassembly is not required from the PPP

If these bulleted constraints are not applicable, the PPP should be implemented as
a pipelined processor. Note, that the proposed dual-processor task partition sup-
ports both cases. This means that the PPP is domain specific while the micro con-
troller is not. E.g. when offloading a file server, a pipelined solution should be used
and when offloading a more simple terminal device, an efficient low-power syn-
chronized data-flow implementation should be used. A deeper discussion on how
the PPP should be implemented to meet different application domain specific
requirements, is provided in chapter 7.

6.2 Dataflow based datapath
A datapath of the PPP has been developed and optimized based on tasks extracted

from some common computer network protocols. These processing tasks are listed
in section 6.6. The datapath of the PPP includes two types of components: the data-
flow input buffers and Functional Pages (FP). An overview of the PPP architecture
is illustrated by figure 6.4, The input buffer is used to access the data (with low fan-
out) while it streams through the PPP. The buffer and other memory issues will be
further discussed in chapter 8. FPs are a number of configurable accelerators dedi-
cated for processing of data-intensive intra-packet tasks. The FPs will be further
discussed in chapter 9.

6.3 Counter and controller
The C&C is the only programmable part of the PPP. It basically acts as the PPP

control path. The C&C is responsible for starting and stopping FP processing,
based on the program and the result flags from the FPs. The C&C is also responsi-
ble for the decision to discard or accept a packet.

The main tasks of the C&C are to control FPs using flags and to select program
counter (PC) values based on the flags from the FPs. The PC value is for example
used to select the correct program flow when the incoming packets protocol type
have been checked.

The FSM top level packet reception control is illustrated by figure 6.5. The C&C
produces start and stop flags for the FPs and simple instructions for the CMAA.
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C&C implementation details and the CMAA is discussed in chapter 10 and chap-
ter 11 respectively.

6.4 Configuration
The proposed dual-processor architecture supports three levels of configuration.

• Design time selection

First of all it is possible to select and configure a number of FPs during the
design phase, before manufacturing. At this phase one can also choose to imple-
ment the C&C as a pipelined processor or as a synchronized data-flow processor
core. The application domain and protocol coverage of the PPP are defined during
this phase.

• Data path configuration

Secondly the micro controller can configure the various FPs by writing configu-
rations to configuration registers within each FP. This only requires a relatively
small number of clock cycles. Hence, the data path of the PPP is configurable. The
program flow of the C&C can also be fully configured during this phase by rewrit-
ing the contents of the program memory and CAMs. This means that the PPP can
be configured for different sets of protocols on-line.

C&C

Flag decoder

FP FP FP FP FP FP FP

PPP

MUX based Interconnect Network

CMAA

dbus0
dbus1

Figure 6.4: Overview of the PPP architecture.

Control memoryProgram memory

GMII
PHY
ASIC
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• Programmable data path selection

The data path can be controlled and selected in a programmable way using the
C&C.

Wait for synchronization

New Ethernet frame

ARP or RARP
Store IP packet in
control memory
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Figure 6.5: The control FSM controlling the PPP during packet reception will be
implemented in the C&C in a programmable way. This figure illustrates such a

FSM covering IPv4, IPv6, TCP, UDP, ARP and RARP protocols.
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All together the three levels of configuration possibilities give the architectures a
very high flexibility.

6.5 Interfaces
The PNI consists of two parts, the PPP and the µC. The interfaces between them

and towards the surroundings can be divided into three parts.

6.5.1 Network interface

The interface between the network and the protocol processor consists of a PHY
ASIC. Normally we consider ASIC interface to be the Gigabit Media Independent
Interface (GMII), but MII, XGMII, or others could also be considered. Since the
PPP is based on 32 bit accelerators, a simple parallelization interface is needed.
The PHY ASIC is a part of the PPP and it produces 32 bit wide data that will be
delivered to the input buffer. The use of such an interface means that the FPs do
not need to handle the processing of the physical layer protocols even if it would
be possible to integrate such FPs.

6.5.2 Micro controller interface

The interface between the PPP and the micro controller consists of two data bus-
ses, the shared control memory, and flags for control signaling. The micro control-
ler also uses the two data buses when it configures the functional pages and the
program memory of the C&C.

6.5.3 Host system interface

The interface between the host processor, including application, memory, DMA,
and the PNI remains to be investigated. It is however clear that it will be the micro
controller that will be responsible for this communication in the PNI. The micro
controller will control the communication both with the DMA and the application
through the hosts operating system. One might also consider using a standard
back-plane bus (e.g. PCI) as interface between the two.

6.6 Protocol suite and processing task
To develop the proposed architecture, a common set of protocols has been used.

The protocols are useful for investigations on architectural requirements and pos-
sibilities. This however does not mean that the architecture is not suitable for other
application areas and protocols. These protocols represent a basic set needed in
most computer networks. Hence, these protocols define the basic requirements on
the processing in the protocol processor. The protocols included are:

• Fast Ethernet with PHY interface MII
• Gigabit Ethernet with PHY interface GMII
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• 10 Gigabit Ethernet with PHY interface XGMII
• IP version 4 and version 6 (IPv4 and IPv6)
• Address Resolution Protocol (ARP)
• Reversed Address Resolution Protocol (RARP)
• Internet Control Message Protocol (ICMP)
• Internet Group Management Protocol (IGMP)
• Transport Control Protocol (TCP)
• User Datagram Protocol (UDP)

The selected protocols are very commonly used today and there is no reason to
believe that they will not continue to be used for a long time ahead. Further, the
protocols are required for many of the existing application protocols used today.
When a data frame from the network PHY interface is received, it will be passed on
to different processing units. Each of these processing units perform a specific pro-
tocol processing algorithm which depends on which protocols have been used.
After identification and demultiplexing of an incoming packet it is possible to
check if it is valid according to the rules set by the specific protocol. The demulti-
plexing of incoming packets is depicted in figure 6.6.

Each header includes a number of header fields which have to be extracted and
processed according to the protocol standard. The header encapsulation format is
illustrated by figure 6.7 and figure 6.8.

Ethernet

ARP RARPIP v4   IP v6

ICMP IGMP TCP UDP

Appl Appl Appl Appl

Figure 6.6: The packet demultiplexing of a received Ethernet frame.
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In order to process all the headers and provide the services stipulated by the pro-
tocol standard, a number of processing tasks are required to be performed by the
receiving terminal. This set of processing tasks is specific to the selected protocol
suite. If new protocols should be included, new types of processing task may, or
may not, be needed. The processing tasks are listed in the subsections following.

6.6.1 Ethernet
• Calculate CRC

Cyclic Redundancy Check is a error detecting code that is used to detect trans-
mission errors. The CRC checksum is computed over the whole frame before it is
compared with the transmitted CRC checksum. The transmitted checksum has
been calculated using the same algorithm by the transmitter, and it is transmitted
in the trail of the frame, after the data. The CRC computation is a very data inten-
sive operation. In a simple RISC machine a 1500 Byte long frame require almost
44000 (non-optimized) instructions to process only the CRC checksum according

to publication 21. Hence, the CRC calculation is normally done using dedicated

Eth header IP header TCP/UDP header DATA CRC

Figure 6.7: One Ethernet frame encapsulate the IP packets. Each layer includes
a header and data.

Figure 6.8: Packet format example. Only packet header fields used for processing
in the PNI is listed, e.g. not the Ethernet preamble.
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hardware assist. Publication 31 describes such a hardware block dedicated for CRC
acceleration.

• Check Ethernet Destination Address (Eth DA)

To be sure that the received frame is intended for the terminal, it must check that
the destination address is correct. If the address is incorrect the packet will be dis-
carded. Any failed test will result in a discard decision.

• Check the type field

The type field describes what sort of layer 3 packet is encapsulated in the frame.
The valid options according to my protocol suite are ARP (0x0806),
RARP(0x0835) and IP(0x0800).

• Extract length field

The length field must be extracted to know how long the packet is. It is especially
important to know since the CRC value stored in the last 32 bits of the frame, must
be extracted and compared to the computed CRC value.

• Demultiplex data

When the terminal has identified the layer 3 protocol used (ARP, RARP or IP) it
can send the Ethernet data (including e.g. IP header) to the correct location for fur-
ther processing.

6.6.2 Address Resolution Protocol (ARP)
• Extract and check the ARP code

The ARP protocol is used to query the network for a MAC address when we have
an IP address but do not know the corresponding MAC address. The ARP code typ-
ically tells if the packet is a query or a reply.

• Update ARP table

We should update our table describing which MAC addresses belongs to which IP
addresses.

• Send reply

If needed a reply packet should be triggered.

6.6.3 Reversed ARP (RARP)

RARP is typically used during a booting procedure. We know our MAC address
from the NIC but do not have any IP address. To get an IP address we send out a
RARP request. The header format and processing tasks are the same as for the ARP
protocol.

1. Publications listed in the Preface.
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6.6.4 Internet Protocol (IP)
• Check the version

The version field tells if it is IP version 4 or 6 that has been used. The main dif-
ference is that IP version 6 allows for a larger number of users since 128 bits are
used for the addresses instead of 32.

• Calculate header checksum

The IP checksum is a 16 bit wide 1-complement addition of the header. The data
is not included in the checksum addition since transport layer protocols (e.i. TCP,
UDP, ICMP, IGMP) have their own checksums. This operation must be performed
for all headers which can be a heavy load for a host processor.

• Extract and check IP Destination Address (IP DA)

The IP DA is unique for a terminal, no other terminal share the same address.
Each network terminal can have several IP DA but normally it only has one. If the
IP DA is erroneous the packet should be discarded.

• Extract the IP Source Address (IP SA)

The IP SA is used for checking if we should accept a packet or not. This proce-
dure will be described in section 6.6.6.

• Reassembly fragments

An IP packet might be to big for some parts of the network. In that case, the serv-
ers will divide it into several smaller IP packets according to the Maximum Trans-
mission Unit (MTU). This is called fragmentation. In order to obtain the original
packet the receiving terminal must reassemble the packets. In order to do this the
fragmentation offset and IP identification (IP ID) fields must be extracted and pro-
cessed. The IP ID is the same for all the fragments and the fragmentation offset
shows the order of the fragments. There are also flags saying if the packets has
been fragmented or not. Another flag shows if the fragment is the last.

• Handle time-outs

If a fragment gets lost, a request for a retransmission must be sent after a certain
time period.

• Check protocol field and demultiplex data

The protocol field shows the transport layer protocol used. The valid values in
my protocol set-up are 1=ICMP, 2=IGMP, 6=TCP, 17=UDP. When the protocol
field has been checked the data can be directed to the correct transport layer data
buffer.
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• Check lengths

There are two types of lengths involved in IP processing. One describes the
header length, which is used to find out where the data starts. The other describes
the total length which is used to see if all fragments have been received. The names
of the length fields differ between the two IP versions, but the length information is
essentially used in the same way.

• Process options

There are a number of different fields remaining that has to be processed. Among
them are IP v6 extension headers, IP v4 options, and IP v6 flow labels.

6.6.5 ICMP and IGMP

ICMP normally communicates error messages, exceptions, and other conditions
that require attention. IGMP is used for setting up and managing multicast groups.

• Compute header checksum

Same procedure as for IP checksum calculation.

• Check ICMP version and type field

The version field is normally 1. The packet is a query if the type is 1, and it is a
reply if the type is 2.

• Check IGMP type and code field

This header information describes the type of request or reply. The parameter
field should be processed if it is included.

• Send ICMP payload to application

Some control messages should be passed on to the application for further process-
ing.

6.6.6 TCP
• Extract Ports and check connection

The Source Port (SP) and Destination Port (DP) together with the IP SA, IP DA
and transport layer type define a connection. A receiving terminal should discard
all packets not belonging to a valid connection. For some connections not all of the
fields must be matched, instead these fields are wild-cards. The procedure is
described in more detail in chapter 11.

• Check Sequence number and reorder data

The sequence number describes where in the data buffer the current payload
should be placed.

•  Extract acknowledgment field and trigger a reply payload
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• Check and process options and flags

Including the finish flag.

• Update connection state variables and timers

This is the complex traffic flow management, controlling all traffic. This is done
in software due to the high demands on flexibility.

6.6.7 UDP

The main difference between UDP and TCP is that UDP is connection-less.

• Extract Ports and check connections

Similar to the TCP task. Called a connection although we only check if the port
is open, not if a connection has been established.

• Extract length field

To know when the whole payload has been received.

• Calculate header checksum

6.7 Processing task classification
Regardless of the protocols used in a computer network, there exists a common

set of processing tasks that each node in the network must perform in order to
make the network function correctly. There are also a number of tasks that are spe-
cific for the protocol. Since each protocol gives a unique set of requirements on
the processing this common set can not be a bit level correct processing descrip-
tion. Instead it describes the nature of different processing tasks for different pro-
tocols on different layers. The main reason for grouping the processing tasks is to
analyze flexibility and throughput requirements for a larger set of protocols,
before deciding on resource needs. This results in a classification of a task based
on its demand on the processing resources, not based on protocol or layer type.
Consequently I have chosen to classify the processing tasks using five task groups.

6.7.1 Parsing

In order to perform any processing on a packet, the first step is to recognize the
packet and the set of rules to apply on it. This identification of a packet and its
rule-set is commonly known as parsing. During transmission, both the payload
and the set of rules can easy be passed between different processes or processors.
Hence, this group of processing tasks, mainly concerns protocol reception. During
protocol reception, the first task is to detect a valid packet and its data alignment.
To identify and detect a packet, software algorithms or hardware devices can be
used. Secondly the information describing which rule-set to apply on the packet
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must be extracted. The rule-set is normally stipulated by the protocol type and
other parameters such as addresses stored in the packet header.

6.7.2 Control flow selection

Decisions on how to process the packet can be made based on the parsed informa-
tion. This decision procedure normally consists of selecting a number of operations
to perform. These operations can then be performed in hard- or software. The con-
trol flow selection is by nature very different from a standard Harvard architecture,
where the program flow defines the operations to apply to the data in the data path.
Here the program flow is selected based on the data extracted from the data path.
The control-flow-selection can be implemented in software as a pseudo-code illus-
trated by figure 6.9.

If the protocol processing (or parts of it) is implemented in hardware the control
flow selection does not (only) select the program flow. Instead the control flow
selection is implemented as a configuration and selection of hardware that meet the
requirements of the current protocol. The common tasks within this group can be
listed as:

• Program flow selection
• Hardware configuration
• Hardware multiplexing
• Hardware scheduling

6.7.3 Transport control

The purpose of the transport control is to provide a secure and regulated commu-
nication between a sender and a receiver. In the telecommunication community this
is commonly known as signaling. The transport control in a network terminal nor-
mally consists of two main types:

• Acknowledgement control including timer triggered events
• Receiver management e.g. policing, filtering, and QoS providing

Figure 6.9: Control flow selection pseudo-code.

case protocol_type is

    when A jump to flow1

    when B jump to flow2

    when C jump to flow3

    when D jump to flow4
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The acknowledgment control must produce acknowledgments and send them
back to the sender when packets have been received. It also includes keeping track
of incoming acknowledgments to see if the transmitted packets have been success-
fully received. In a network terminal, the receiver management normally only con-
sists of a decision to store or discard the received packet. It may also include a
prioritizing of the incoming packets. Discard decisions are then made based on the
parsed information.

6.7.4 Data processing

The purpose of data processing is to support the transmission control so that a
secure and error-free channel is maintained. Since this type of processing tasks is
only controlled by the packet type and is very throughput demanding, it has been
given its own processing task group. These data intensive tasks are normally
included in the lower layers in the ISO/OSI reference model. Some common types
of data processing are:

• CRC calculation
• Checksum calculation
• Coding/Decoding
• Encryption/Decryption

6.7.5 Data stream management

In network terminals the data stream management consists of different kinds of
buffer management. When transmitting a certain amount of data it may have to be
divided into several packets and then sent to the correct address. The data must be
reassembled and then stored in the correct memory location at the receiving termi-
nal. In network infrastructure nodes (e.g. routers) the data stream management
includes deciding where to forward packets.

6.8 Processing task allocation
The different processing tasks described in section 6.6, are allocated to different

processing units within the PNI according to the table below. In general one can
say that the C&C together with the XAC FP and CMAA is responsible for parsing
while program flow selection is handled by the C&C by itself. Data processing is
handled by FPs while the transport control is provided by the C&C. The datastrem
management is handled by the C&C.
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FPs, C&C, and CMAA are described in more detail in the following chapters.

Table 1: Allocation of processing tasks listed in section 6.6.

Protocol Task Processing hardware

Ethernet Calculate CRC CRC FP

Check Ethernet DA XAC FP, C&C

Check type field XAC FP, C&C

Demultiplexing of data C&C together with CMAA

Extract length field XAC FP

Length counting C&C, LC FP

ARP/RARP Update ARP table Micro controller

Trigger ARP reply Micro controller

IP Check version XAC FP, C&C

Calculate header checksum Checksum adder FP

Extract and check IP DA XAC FP, C&C

Extract IP SA XAC FP

Reassembly fragments CMAA, Micro controller

Handling time-out of fragments Micro controller

Check protocol field XAC FP, C&C

Demultiplexing C&C

Check lengths XAC FP, C&C, CMAA

Process options Micro controller

ICMP/IGMP Compute header checksum Checksum adder FP

Check ICMP version and type Micro controller

Check IGMP type and code Micro controller

Demultiplexing CMAA, Micro controller

TCP Extract ports XAC FP

Check connection CMAA (or C&C)

Check sequence number and reorder
data

Micro controller

Extract acknowledgment and trigger
reply

Micro controller

Check and process options and flags Micro controller
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6.8.1 Research methodology

The title of this thesis includes the word Processing, indicating that the main
focus not has been on creation of a demo processor. Instead methods and architec-
tures for protocol processing in general have been investigated with focus on ter-
minals. Protocol processing has been possible to perform for many years by now.
This thesis aims at improving the processing bandwidth of the data intensive tasks
executed in the PPP. Hence, thourough analysis of the timing in performance criti-
cal parts of the PPP has been done. Using static timing analysis on the layout of
such a performance critical part (e.g. FP, CMAA, or C&C) an upper bound on the
performance of the entire PNI can be found. In order to verify the functional
behaviour of each part, behaviour level VHDL code has been used as interfaces.
One of the main problem with my structural models have been the lack of memory
compilers for RAM, ROM, and CAM. Hence, only registers or logic have been
used in the structural blocks. Remaining memories have only been modeled at
behavioural level. Consequently no structural model nor a layout of the complete
PPP have been completed. Neither have the micro controller been included in the
timing simulations of the PPP.

Reference 1

[6.1] N. Person, "Specification and Implementation of a Functional Page for Internet Checksum
Calculation", Master’s thesis, Linköping University, March 2001, No.: LiTH-IFM-EX-959
[6.2] T. Henriksson,, “Hardware Architecture for Protocol Processing”, Licentiate Degree
Thesis, Linköping Studies in Science and Technology, Thesis No. 911, December 2001, ISBN:
91-7373-209-5.
[6.3] T. Henriksson, H. Eriksson, U. Nordqvist, P. Larsson-Edefors, and D. Liu, “VLSI Imple-
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1215-1218
[6.4] D. Liu, U. Nordqvist, and C. Svensson, “Configuration-Based Architecture for High-
Speed and General-Purpose Protocol-Processing”, Proceedings of IEEE Signal Processing
Systems 1999, pp. 540-547, Taipei

Update connection state variables and
timers

Micro controller, hardware
timer

UDP Extract ports XAC FP

Check connection CMAA (or C&C)

Extract and manage length XAC FP, C&C

Calculate header checksum Checksum adder FP

Table 1: Allocation of processing tasks listed in section 6.6.

Protocol Task Processing hardware
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7
1Application Domain

Specific Processing
The proposed Programmable Protocol Processor uses highly dedicated data- and

control-paths. Hence it is very important to carefully examine the application
domain, including protocol set and traffic patterns, in order to find an optimal
architecture. This optimization is done during the design phase. After the design
phase the protocol processor can be used for different protocols and tasks within
the specified application domain using configurable and programmable hardware.
This chapter lists architectural design choices available. Further this chapter spec-
ifies how to make the protocol processor dedicated for a specific application
domain.

7.1 Processor type
As stated earlier, the great challenge with wire-speed protocol processing lies in

the decreasing time and number of clock-cycles available for processing of each
packet. In a 10 Gbps TCP/IP/Ethernet connection with minimal packet sizes there
are almost 15 million packets arriving every second, i.e. each packet has to be pro-
cessed in 67 ns using a 32 bit wide data-path. While no general-purpose processor
can meet this constraint there are two fundamentally different ways of implement-
ing special-purpose processors for high-performance protocol processing.
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Consequently there are two different ways of implementing the PPP. Which
implementation method to choose depends on the application (type of network ter-
minal) that the PNI is going to be used for.

• Pipelined processors. A pipelined processor can run at high clock frequency
and therefore manage many instructions for each network clock cycle. In the
experimental pipelined TIPP-processor [7.4] from Intel the execution core runs
at a clock frequency which is 32 times higher than the network and classifica-
tion memory speed. Hence, theoretically up to 608 clock cycles are available
for each packet. This number is in fact reduced by the use of low-frequency
CAM-memories (classification and reassembly). Further these 608 clock
cycles include the cycles lost as pipeline penalties when conditional branch
instructions are executed. The pipeline penalty is dependent on the depth of the
pipeline. Since conditional branches are common instructions in protocol pro-
cessing this may seriously limit the performance. Hence there is a trade-off
between high-frequency (deep pipeline) and branch cost (few or no pipeline-
stages).

• Synchronized dataflow processors. A synchronized data-flow processor runs
at the same clock-frequency as the incoming data. This requires each instruc-
tion to be more complex compared to pipelined processors. Further pipeline
penalties are not allowed since the data- and instruction-stream must be fully
synchronized at all times. In order to achieve this the processor must move
complex tasks to self-contained accelerators. Further, conditional branches
must be executed in a single clock cycle. If these two conditions are met the
processor can manage high-performance protocol processing operating at a rel-
atively low clock frequency.

7.2 Software/Hardware partitioning
When application specific hardware is used for protocol processing tasks it is

necessary to carefully profile the tasks covered. The primary goal is to find out
which tasks to process in HW and which to leave to the SW. In most NPs, hard-
ware accelerators are used for the most common tasks and protocols. Some tasks
are easily recognized as suitable for hardware acceleration while others are not.

One of the tasks that can be implemented in hardware, software or in a hybrid, is
classification. As illustrated by figure 7.1 classification can be implemented in dif-
ferent ways. From a performance point of view a hardware implementation is ben-
eficial since the classification can be performed in parallel over several packet
header fields or one field with several constant values. The number of comparisons
that must be performed is proportional to the number of protocols covered times
the number of fields included in the classification. Hence, the classification, which
is a part of the program flow selection, should be performed in hardware in order
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to achieve high bandwidth protocol processing. If however the number of protocols
and fields tested in the classification process is too large, a hybrid system must be
considered. The problem with a hybrid system is that the processing latency is data
(i.e. packet) dependent. Packets classified in hardware have a different processing
latency compared to other packets. Since the hybrid system only can be optimized
for the average packet stream, buffering must be used.

7.3 General-purpose protocol processing
For general purpose protocol processing with a significant number of simulta-

neous connections and protocols, this thesis proposes a high-frequency pipelined

Hardware
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Classification
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Accept AcceptDiscard Discard
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Figure 7.1: Packet classification using a) HW, b) SW, c) a hybrid implementation.
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if ((TCP port == 80) && (IP type == 4) && (frame type == 0x0800))

    declare match flow 1

elseif ((TCP port == N) && (IP type == 4) && (frame type == 0x0800))

    declare match flow 2

...

else

   discard packet
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implementation of the counter and controller. A pipelined processor, even with an
efficient speculation methodology, gives larger area, power, and memory con-
sumption compared to a syncronized dataflow implementation. For general pur-
pose protocol processing, there are however no alternatives available.

Due to the large number of simultaneous connections a CAM assisted classifica-
tion accelerator denoted CMAA is proposed in chapter 11. This accelerator can
offload the reassembly handling of received fragmented packets. This accelerator
is also responsible for controlling the PPP access to inter-packet information
stored in the control memory.

7.4 Special purpose processing
In protocol processing a significant part of the tasks is program flow selection,

i.e. determine what to do based on header information. If the number of entries to
the case-statements is limited, the program flow selection can be implemented
using parallel dedicated hardware components. This allow for the program flow
selection to be performed in a single clock cycle. If all conditional branches are
supported by this type of program flow selection hardware, all branch penalties
can be eliminated. This means that the C&C unit can use the same clock fre-
quency as the data-flow pipeline (i.e. the network clock). By using the same clock
frequency the requirements on synchronization with the data flowing through the
PPP becomes very strict. Since the data is only available to each FP during one
clock cycle it is necessary to start and stop the processing in the FPs at the exact

Syncronized

dataflow

# of protocols

Pipelined processor

with coprocessor

Fixed
latency

Fragmented packets
allowed

Figure 7.2: Aplication Domain Specific Protocol Processor implementation meth-
odology.

# of connections
Pipelined C&C
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clock cycle. The concept of synchronized protocol processing was introduced by
my colleague Dr. Henriksson in ([7.1], [7.2], and [7.3]) even if the proposed imple-
mentation in chapter 10 differs.

The use of a single clock domain simplifies the layout and reduces synchroniza-
tion problems between FPs and the control path (C&C) since the need for synchro-
nization registers is eliminated.

Although synchronized dataflow implementation of the C&C normally is the best
in special purpose terminals, chapter 10 shows that for extremely simple terminals
with a minimum amount of program flow selection, the pipeline implementation
outperform the synchronized dataflow alternative. This is depicted in figure 7.2.

7.4.1 Application domain restrictions

The synchronized data flow implementation of the C&C is suitable for certain
network terminals. This type of terminals must be simple in order to use such a
dedicated architecture. This means that synchronized data flow PPP can not sup-
port:

• Reassembly of fragmented packets

Reassembly of packets received out of order requires inter-packet information.
Hence, this task is not suitable for processing in the PPP. Therefore it should be
done either in the µC or in the host (as Microsoft proposes) even if the hardware
architecture and memory access scheme of these two are not dedicated for reassem-
bly.

• A large number of simultaneous connections, i.e. complex address check

The number of simultaneous connections determines the complexity of the pro-
gram flow selection (case-statement). Since this case-statement processing is
implemented in parallel dedicated hardware the number of connections can not be
higher than the number of values that can be compared with packet header field
data in the XAC FP. E.g. only one IP destination address plus multi/broad-cast
addresses are allowed. Note that the addresses of course are configurable.

• A large number of protocols

The restriction on the complexity of program flow selection instructions also
imply that the number of PPP supported protocols are kept low.

If these bulleted restrictions are acceptable for the intended terminal application
the synchronized data-flow implementation gives a very efficient implementation.
Due to the dedicated implementation with reduced control overhead, the C&C is
both area and power efficient. Moreover it can operate at a relatively low frequency
which is beneficial from many points of view.
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These requirements on simplicity of the terminal does not mean that it is hard to
find suitable special purpose terminals where a synchronized data flow processor
can be used. E.g. reception of streaming media in a simple terminal connected
directly to a high-speed network.
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8
1Memory issues

Using a data-flow based architecture puts the memory system in focus. Buffer
design is very important for the overall performance of the PPP. While demulti-
plexing incoming packet streams, data transfers and memory accesses consume a
lot of power. Except for the PPP, also the micro controller and the host access the
memory system. Hence, it is neccisary to view the memory design as a system
issue rather than just a part of the datapath optimization process.

8.1 Host memory
The host memory is the final destination for payloads of accepted packets

received in the terminal. From this memory, payload data can be accessed by the
host application. If the protocol processor cannot be accommodated on the same
chip as the host, accepted packets need to be intermediately stored in a packet
buffer memory on the NIC. This packet buffer then replaces the host memory in
our memory hierarchy model. The size and throughput of this host memory/packet
buffer must be sufficient for storage of all incoming payload data. Further, reas-
sembly requires additional storage capacity for reordering buffers. Design of the
host memory is not within the scope of this thesis.

8.2 Control memory
The control memory stores inter-packet information such as control state vari-

ables. It stores all data used by the micro controller for its control intensive com-
puting. Further, control oriented packets (including headers) such as ARP, RARP,
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ICMP, and IGMP is stored in this memory. They are then accessed and processed
by the µC. The control memory will be further discussed in chapter 11 with focus
on low latency access.

8.3 Program memory
The program memory is rather small due to the dedicated instruction set and

extensive use of accelerators. Instead of storing many instructions which deter-
mine the PPP behavior, the program memory only contains conditions and flags.
These flags are enough to control the FPs since they have internal (distributed)
control.

The program memory is accessed by the C&C. Alternative ways of doing this is
discussed in chapter 10. Due to the small size of the proposed program memory,
low power and low latency access are possible.

8.4 Packet buffering
As described in chapter 7, there are three different ways of providing wirespeed

protocol processing. Either the processing is perfectly synchronized with the net-
work clock which means that no buffering of incoming packets is needed. This
thesis does however suggest that a small number of registers are used in order to
lower the fan-out from this register chain. This dataflow based packet buffering is
further discussed in section 8.5.

8.4.1 Wire speed processing

Protocol processing in NPs is normally optimized the most common type of
packets. While processing of such packets only requires a small amount of
instructions, worst case (exception type of packet) may require a huge amount of
instructions. Hence, all packets must be buffered and then processed when pro-
cessing resources are ready. At average, the NP process the packets at the same
time as they arrive but it can not handle bursts of worst case traffics if the buffers
used is not very large. NPs capable of processing packets at average as fast as they
arrive are known as wire speed NPs. A wire-speed NP must have enough buffering
capacity to store a number of packets when a burst of worst case packets arrive.
The main focus of this thesis is to avoid using large buffers for storage of packets
that is not going to be used.

8.4.2 Packet level synchronization

If the processing is only synchronized with the data at packet level, the data must
be stored so that the protocol processor can access the same data during several
clock cycles. Normally protocol processing involves access of packet headers
much more often than access of payload data. Hence, allowing certain (header)
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fields to be accessed during several clock cycles can improve the performance of
the protocol processor.

There is a hard deadline in the packet level synchronized protocol processing, the
arrival of the next packet. If the processing of one packet is not finished the proces-
sor must discard the next packet. A protocol processor that can finish worst case
processing of one packet before the next arrives uses packet level synchronization.

In order to relax the requirements and give the processor time to finish processing
one packet, still avoiding this unacceptable discarding, the normal approach is to
increase the minimal allowed packet size handled. This however deteriorates the
overall network performance.

Using the proposed architecture it is possible to avoid packet level synchroniza-
tion if fragmentation and complex classification is not supported. This issue will be
discussed in chapter 11.

8.5 Dataflow based packet buffering
When data arrives from the PHY interface (GMII) to the PPP it streams through a

chain of 32 bit wide flip-flop registers illustrated by figure 8.1.

The purpose of using a flip-flop chain instead of a normal RAM based buffer, is
that we want to keep the fan-out from the registers as low as possible. If the number
of functional pages (FP) is large, we have to use a larger number of registers in the
chain, but if the number of FPs is moderate or low the chain can be minimized. The
lower bound on the number of registers is then set by the decision latency of the
header processing. We must know what to do with the data when it streams out of
the register chain. One alternative is of course to store all incoming data until we
receive a discard signal from the C&C. The problem is that we do not want to send
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the payload data to the host memory before we know if it should be discarded or
not. If the packet contains control information, it should be sent to the control
memory for further processing in the µC. To write all packets in the host memory
would introduce unnecessary interrupts and waste power.

8.6 FIFO buffer
To reduce these interrupts and the overall power consumption, a low power

RAM based FIFO is inserted in the end of the input buffer. This FIFO will hold
the packet until the PPP can decide if it should be discarded or accepted. The
length (size) of this FIFO can be optimized to find the most power efficient archi-
tecture. This optimization must consider the number of flip-flops used, the pro-
cessing latency, and traffic patterns. The number of FPs and the architecture
(thereby the decision latency) are set by the protocol coverage at design time.

8.6.1 Memory hierarchy

According to figure 6.2, received packets will stream through the fast path (i.e.
PPP) and if the packet is accepted, the payload data will be stored in the host
(main) memory, where the application running on the host CPU can access the
data for further processing. The memory where the packets are stored must be at
least 1 MB in order for TCP datagrams to be accommodated, even if some frag-
ments are delayed.

There exist many different ways of organizing the memory architecture in the
terminal. The main memory organization alternatives are illustrated by figure 8.2.

• Case a): Off chip packet buffer memory on a NIC.
• Case b): On chip packet buffer memory on a NIC.
• Case c): Large shared off-chip memory on motherboard.
• Case d): On-chip packet buffer on the motherboard CPU chip.

The optimal solution depends mainly on the available chip area. On-chip memo-
ries will always be desirable if they are possible to accommodate. Minimal area
will be used if the protocol processor and the host can use a shared memory. The
problem with shared memories is that the host processing (i.e. the application)
will be interrupted leading to performance degradation. Remember that the pur-
pose of the protocol processor is to offload and accelerate the application process-
ing running on the host. If the PNI can not be accommodated on the same chip as
the host, an on-chip packet buffer should be used for intermediate storage of the
incoming packets. The Packet Buffer Memory (PBMEM) should be able to store
at least 100 ms of traffic, i.e. 1 MB in a 10 Gb/s network. The host memory orga-
nization is not a part of this research project but as illustrated in figure 8.2 the pro-
posed PNI platform can be integrated with a wide variety of host architectures.
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8.6.2 Optimization strategy

As depicted in figure 8.3, the received packets streaming through the input buffer
into the PB SRAM will be discarded if the protocol processor detects any error in
the packet. Packets will be discarded if the address, port numbers, checksums,
CRC, etc. is erroneous. This is the reason why it makes sense to add an extra FIFO
buffer in the fast path input buffer (and use three different packet buffering compo-
nents in the architecture) in order to lower the power consumption.
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Figure 8.2: Packet buffer memory organization alternatives. The memory access
energy cost is dependent on the selected memory organization.
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Example: According to figure 8.3 b), α packets are received and streams through
the registers in the input buffer. Then β packets will be discarded leaving α−β
packets to be buffered in the SRAM FIFO. While streaming through the FIFO
another χ packets will be discarded. According to this finally ε=α−β−χ−δ packets
will be accepted. This means that only ε packets will be stored in the large mem-
ory. Hence, to add the FIFO buffer actually lowers the energy cost.

8.6.3 Optimization parameters

Since the energy cost for the memory access will be dependent on which mem-
ory organization is chosen, the optimal input buffer architecture is dependent on
the selected memory organization. Other parameters determining the sizes of the
three input buffer stages for a certain memory system environment are:

• Network traffic. The length, protocol type, and transmission error rate.
• Discard decision latency. Depends on type of packet, type of error, and the fast

path implementation.
• Buffer (dynamic) energy cost. Depends on size, clock frequency, activity,

implementation method and process.

8.6.4 Simulations

In order to optimize the average energy consumption in the three input buffer
stages, all the parameters listed in section 8.6.3 must be measured as accurately as
possible.

Table 8.1: Packet size distribution in the average traffic flow.

1-10 B 11-490 B 491-510 B 511-1500B

40% 30% 20% 10%

FIFO
PBMEM or

discarded packets

Figure 8.3: Packet flow during reception. Some packets are discarded while
streaming through the three proposed packet buffers. These are the register chain

and the FIFO in the fast path and the memory buffer. Accepted packet streams
through all buffers and into the host main memory.

Fast path input buffer
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The first parameter to investigate is the network traffic. We have used a network
analyzing tool [8.10] to do this. Further we haven chosen to investigate three cases
of network traffic flows. These are low traffic (no transmission, only reception),
heavy traffic (file transfer application) and the average traffic flow (router traffic
downscaled). The protocol type distribution for these three different traffic situa-
tions are illustrated by figure 8.4.

Further, packets length is distributed according to table 8.1, in the average traffic
flow. The decision latency for different protocols and errors is specified by the pro-
gram controlling the PPP operation. In the simulated architecture the decision

Table 8.2: Discard decision latency for different protocol processing tasks.

Protocol type
Decision latency Address Check

# Clock cycles
Decision latency Checksum

# Clock cycles

Ethernet 4 packet length in B/4

ARP 5 packet length in B/4

RARP 5 packet length in B/4

TCP 10 packet length in B/4

UDP 10 packet length in B/4

IPv4 6 8

ICMP 6 10

IGMMP 6 10

Figure 8.4: Packet type distribution in various traffic flows. At low traffic ARP/
RARP dominates while TCP dominates during heavy traffic flows. Note that no

traffic from real time applications has been modeled.
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latency is given by table 8.2. The energy cost for access to the register chain, the
SRAM based FIFO and the packet buffer SRAM memory has been modeled using
cost functions mainly from [8.8]. In order to estimate the energy cost for access of
a memory system (eq. (1)) accurately, it is essential to carefully model the effec-
tive capacitance according to eq. (2).

(1)

(2)

We have assumed a 0.35-µm standard cell process for the flip-flops in the regis-
ter chain and the use of a memory library optimized for low power. In order to
reduce fan-out in the PPP and thereby enabling high speed operation, at least five
32 bit wide registers have to be used. Using MatLab a number of different simula-
tions have been made. During the simulations the error-rates, packet buffer energy
costs, and traffic flows have been used as input parameters to find the input buffer
configuration that gives minimum average energy consumed per packet received.

8.6.5 Simulation results

Using information on energy consumption of different FIFOs, registers, and
memories [3-10], the resulting optimal solution with minimal (dynamic) energy
consumed per packet is displayed in table 8.3. Our simulations show that dis-
carded packets will consume more energy if the number of register and FIFO
stages are low. The reason is that not so many packets can be discarded before the
data has streamed into the big packet buffer memory (1 MB SRAM). Meanwhile
the accepted packets will consume less energy per packet if the number of register
and FIFO stages are reduced. The reason is that all accepted packets (except the
control oriented e.g. IGMP, ICMP, ARP, RARP, which are transferred to the con-
trol memory after the FIFO buffer) will be stored in the packet buffer memory
anyway. The simulations states that in order to optimize the packet buffer power
consumption, we have to choose a small register-based buffer, a medium sized
FIFO buffer and a large PB SRAM. The average per packet energy consumed in
the three buffer stages is in the magnitude of a few µJ (minimal 1.3). Further the
table shows that the memory organization, which decides the energy cost for a
memory access, has little effect on the result. Instead it is mainly the packet size
and discard latency that determine the optimal buffer configuration.
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Table 8.3 also shows that the average energy consumption in the three buffer
stages is significantly reduced compared to if no FIFO buffer would have been
used. Note that the number of FIFO stages to use should be a factor of two. If a bet-
ter distribution of packet lengths is used the results would be 128, 256, or 512
respectively. In a traditional type of input buffer the energy cost would increase
instead. Simulations also indicate that the network error-rate has a low impact on
the resulting buffer organization although it has a large impact on the energy sav-
ings.

From a general system power consumption perspective, it is natural to reduce the
average power consumption instead of the peak power consumption. The average
traffic flow in a network terminal is however hard to estimate since it is strongly
depending on the applications running on the host CPU. So far we have assumed
that the packets are non-fragmented. If fragmented packets are allowed we can
expect the optimal number of register stages to grow since the decision latency is
much higher.

Figure 8.5 illustrates how the energy consumption depends on the size of the
FIFO and register chain.

Table 8.3: Optimal packet buffer organization for different traffic flows and memory
organizations. Minimal number of register chain stages is 5. Memory organizations

defined in figure 8.2.

Traffic flow type Memory organization
# of FIFO

stages
Energy savings

Low a) 125 12%

b) 125 13%

c) 125 13%

d) 125 14%

Heavy a) 375 15%

b) 375 15%

c) 375 15%

d) 375 16%

Average a) 256 24%

b) 256 27%

c) 276 24%

d) 264 29%
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8.6.6 Architectural conclusions

This chapter proposes that an extra FIFO is added to the input buffer in the pro-
posed fast path architecture. This reduces the power consumption because some

Figure 8.5: Average energy consumption for a) discarded packet, b) discarded
packet due to lost fragments, c) accepted packets.
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FIFO size# registers
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packets can be discarded before they are stored in a large energy consuming mem-
ory. Our simulation results indicate that the optimal input packet buffer organiza-
tion is to use a minimal number of registers (maximally five) together with a
relatively large RAM based FIFO (256 X 32bit).

Rough assumptions made on different error rates in a typical network are accept-
able since they do not strongly effect the optimal buffer configuration. The same
thing applies to the estimations of energy costs for access of the various buffer
components.
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9
1Hardware Acceleration

9.1 Functional pages
The functional pages are all dedicated hardware blocks with limited config-

urability. Since they are dedicated for the processing they do, they have very little
control overhead, which saves power and allows for the FPs to have a very high
throughput. The functional pages are responsible for the data intensive processing

Figure 9.1: Funtional page interface. FPs are controlled by flags produced in the
C&C. The primary output consists of result flags, e.g. discard flag. Some FP also

produces result data.
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in the PPP. Their processing tasks are very diverse both in terms of type and com-
plexity. Hence, the FP hardware becomes very different. What they have in com-
mon is that they all have a limited configurability within their specific application
area. Further they all are controlled by the counter and controller. The control nor-
mally consists of flags that start and stop the processing in the functional page.
The typical FP interface is illustrated by figure 9.1.

The output from a functional page normally consists of flags. Some functional
pages also produce result data that will be exported to other parts of PPP. The FPs
can be configured using configuration registers. This configuration only takes one,
up to a few clock cycles. Configuration vectors are produced in the micro control-
ler, which also controls the configuration procedure. Using the protocol suite dis-
cussed earlier a small set of functional pages has been selected and implemented
to process data intensive parts of the protocols. They are:

• Extract and compare (XAC) FP
• CRC FP
• MII parallelization FP
• Checksum FP
• Length counter FP

9.2 CRC FP
In order to provide error detection in communication networks a method called

Cyclic Redundancy Check has been used for almost 40 years. This algorithm is
widely used in computer networks of today and will continue to be so in the
future. The implementation method has on the other hand been constantly chang-
ing. The CRC FP is very important for the overall performance of the PPP.

The CRC FP must support wire-speed processing. Further it must support all
CRC polynomials defined by the protocols covered.

A configurable CRC FP has been implemented and manufactured using a stan-
dard cell process. The CRC solution proposed is very flexible and it can process a
large set of CRC algorithms. If the bandwidth of such a configurable solution is
not sufficient, a fixed logic, parallel data CRC implementation can be used.

9.2.1 The CRC algorithm

Cyclic Redundancy Check is a way of providing error control coding in order to
protect data by introducing some redundancy in the data in an controlled fashion.
It is a commonly used and very effective way of detecting transmission errors dur-
ing transmissions in various networks. Common CRC polynomials can detect fol-
lowing types of errors:
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• All single bit error
• All double bit errors
• All odd number of errors, provided the constraint length is sufficient
• Any burst error for which the burst length is less than the polynomial

length
• Most large burst errors

The CRC encoding procedure can be described by equation 1.

(EQ 1)

V(x) is the n bit long data word transmitted and it consists of the original data and
U(x) followed by a codeword S(x) called the CRC-sum. S(x) are the extra bits
added to a message in order to provide redundancy so that errors during transmis-
sion can be detected. The length of the S(x) is denoted the constraint length. The
constraint length of the most commonly used CRC polynomials are 8, 16, 24 and
above all 32 bits. S(x) is computed according to equation 3.

(EQ 2)

(EQ 3)

S(x) is by other words the remainder resulting from a division of the data stream
and a generator polynomial g(x). Since all codewords are divisible with g(x) the
remainder of the left hand side of EQ 3 has to be zero for a real codeword.

The actual coding procedure is the same on both the receiving and transmitting
end of the line. The CRC encoding/decoding principle is illustrated by figure 9.2.

As can be seen in figure 9.2 the receiving NT perform a CRC-check on the incom-
ing message and if the result (S(x)) is zero, the transmission was error free. One
more practical way of solving this is to compute the CRC only for the first part of
the message U(x), and then do a bitwise 2-complements addition with the com-
puted checksum S(x) on the transmission side. If the result is non-zero the receiver
will order a retransmission from the sender.
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Figure 9.2: Principle of error detection using the CRC algorithm.
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9.2.2 Traditional implementations

This section introduces the commonly used and presents one new architecture
for implementation of the CRC algorithm.

• Software (SW) Solution: [9.4][9.2] The CRC algorithm can always be imple-
mented as a software algorithm on a standard CPU, with all the flexibility
reprogramming then offers. Since there in most communication network termi-
nals exists a CPU, the SW-solution will be cheap or free in terms of hardware
cost. The drawback is obviously the computational speed since no general pur-
pose CPU can achieve the same troughput as dedicated hardware. The process-
ing load might also be a problem for the host processor in many applications.

• Serial ASIC Solution: Linear Feedback Shift Register (LFSR) with serial data
feed [9.21] has been used since the sixties to implement the CRC algorithm,
see figure 9.3. As all hardware implementations, this method simply perform a
division and then the remainder which is the resulting CRC checksum, is
stored in the registers (delay-elements) after each clock cycle. The registers can
then be read by use of enabling signals. Simplicity and low power dissipation
are the main advantages. This method gives much higher throughput than the
SW solution but still this implementation can not fulfill all the speed require-
ments of today’s network nodes. Since fixed logic is used there is no possibility
of reconfigure the architecture and change the generator polynomial using this
implementation. Several loop-connections schemes and reset alternatives exist.

• Parallel ASIC Solution: In order to improve the computational speed in CRC
generating hardware, parallelism has been introduced [9.3], [9.5], [9.6], [9.10],
[9.12], [9.13]. The speed-up factor is between 4 and 6 when using a parallelism
of 8. By using fixed logic, implemented as parallelized hardware, this method
can supply for CRC generation at wire speed and therefore it is the pre-domi-
nant method used in computer networks. The parallel hardware implementa-
tion is illustrated by figure 9.4. If the CRC polynomial is changed or a new
protocol is added, new changed hardware must be installed in the network ter-
minal. That would be very expensive. The lack of flexibility makes this archi-
tecture unsuitable for use in a protocol processor.

+ +D D D D + U(x)
D

Figure 9.3: Linear Shift Serial Data Feed
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• LUT based solution One way of implementing configurable hardware is by
using Look-Up-Tables (LUTs) as proposed by [9.4], [9.13] and [9.3]. The archi-
tecture is illustrated by figure 9.5.This implementation can be modified by using
a larger or smaller LUT. If the size of the LUT is reduced the hardware cost in
terms of power consumption and area will be reduced but in the same time the
Combinational logic will be increased so the effect will be cancelled. The opti-
mal solution has not been derived. This solution enables some configurability
since we can change the polynomial by changing the content of the LUT mem-
ory. However there is no possibility to adjust for different constraint lengths.

9.2.3 Evaluation of implementation alternatives

10 different implementation alternatives of the CRC algorithm, including one
CPU RISC-based SW-implementation, have been examined. They have been
described using Mentor Graphics Renoir and VHDL, synthesized and optimized
using Build Gates from Cadence and the place and route was done using Ensemble
P&R from Cadence. The technology used is AMS 0.35 µm.

Since most network protocols are byte based, using a parallelism of more than
eight, complicates the CRC implementation, even if other parts of a protocol pro-
cessor might run on other clock frequencies using for example a 32 bit wide input
stream. It is possible to use a higher degree of parallelism but if it can be avoided, it
should be.

Combinational
logic

U(x)

S(x)

State registers

Figure 9.4: Parallel Fixed Logic Implementation
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Figure 9.5: Look-Up Table based configurable hardware.
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The fixed logic and parallel input implementation is the fastest, as seen in table 1
. This complies with results reported in earlier work. We can also see that the
LUT-based method gives about twice the speed of the Configurable Radix 16
implementation at the cost of a 4.5 times higher area. A big part of the area in the
LUT based architecture is the LUT registers, but the power consumption will any-
way be considerably higher than the power consumption in the Radix-16 imple-
mentation. In many upcoming applications, such as HIPERLAN [9.16], [9.17], the
power consumption will be crucial. The speed supported by the Radix-16 imple-
mentation exceeds 0.6 Gbit/s, which is sufficient since today NT applications do
not demand higher troughput. Since the logic in that specific implementation dom-
inates and the connection delay is quite small, there will be a considerable
increase of the speed powered by downscaling in future technologies. The speed-

up factor due to scaling s will be up to s2 which means that even protocols as 10-
GEthernet which will come in the future can be supported by the Radix-16 imple-
mentation [9.14] thanks to scaling.

Conflicts with other processes make interlayer processing difficult, not to say
impossible when using the SW algorithm run on a CPU. This means that even if
the SW algorithm alternative can be implemented on a high-performance CPU
that provides the speed that is needed, it is not suitable for protocol processors
such as those described by [9.7] and [9.8].

Because of the superior performance of a parallel ASIC implementation, it will
be used for implementation of network-core components. The concept of using
several ASIC implementation as Functional Units in a protocol processor and just
letting the processor turn on the CRC that is currently used, as in VLIW architec-
tures, might also be of interest although you then have no configurability for sup-
port of new protocols.

Software solutions for low speed protocols will also be used for low-speed appli-
cations, but an increasing area of applications demands high-speed configurable
protocol processing, including CRC generation. Further, software solutions lacks
power efficiency. A hardware architecture that can fulfill this specifications is the
structure based on Look-Up tables as proposed in [9.5].
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9.2.4 Proposed CRC implementation

Another novel implementation method, the Radix-32 Configurable CRC Unit, has
been implemented and manufactured. The architecture combines configurable and
parallel hardware, which makes it suitable for use in a protocol processor.

• Configuration

By noticing that any polynomial of a fixed length can be represented by imple-
menting the CRC using a LSR with switches on the loop back as illustrated by fig-
ure 9.6, a configurable hardware can be implemented using NAND-gates to
implement the switches.

This allows us to change the polynomial g(x) of a given length L by storing a bit
description of the polynomial in a register. However some protocols uses CRC with

Table 1: Comparison between different CRC implementations. Pads are not included in
the area computation.

CRC implementation
Polyn.
Length

Area

[mm2]

Max
Clk freq.
[MHz]

Max
Speed

[Mbit/s]

Serial Input - fixed Ethernet Polynomial 32 0.014 413 413

Serial Input - any polynomial 32 0.017 369 369

Serial Input - any polynomial 16 0.011 355 355

Parallel(8) Input - any polynomial 32 0.061 109 875

Parallel(8) Input - any polynomial 16 0.038 130 1039

Parallel(8) Input - fixed Ethernet Polynomial 32 0.035 208 1663

Parallel(8) Input LUT Based 32 0.225 169 1358

Configurable Radix-16 CRC - any polyno-
mial

32 0.050 166 663

Configurable Radix-16 CRC - any polyno-
mial

16,24,32 0.052 153 612

SW Pure RISC (43893 clk cycles / 1500 Bytes) any 600 164

+ +D D D

Figure 9.6: Configuration by use of switches in the circuit feed back wire.

“0” “0”
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different constraint length L. This can be solved by using reset-signals for the flip-
flops not used as illustrated in figure 9.7. All flip-flops also need a preset input
since before the start of the computation all flip-flops must be set to “one”.

• Parallelism

In order to improve the speed of the Radix-32 Configurable CRC, an 8-bit wide
input data stream is used as can be seen in figure 9.8. The resulting bit in each
position k in the CRC register then depends on the value of the k-8 CRC bit, the
last eight CRC bits, the polynomial bit description and the input bits. The logic,
which consists mainly of XOR and NAND-functions, provides the necessarily
configurability.

For a fixed polynomial CRC, the throughput gets higher with wider inputs. The
speedup in a configurable CRC is however not that significant. In simulations we
have found it to be less than 20% when doubling the input width from 8 to 16 bits.
Further it is clear that every network seen today are byte-based. This means that a

+ +D D D + U(x)
+ +D D D+

Reset

Figure 9.7: Changing constraint length using reset-signals. In this particular
example the constraint length can be changed between 3 and 6 bits.

32

8

8 8 8 8

8

Data in

Polynomial reg

Figure 9.8: Bytewise calculations enhances the throughput of the CRC.

Loop logic

Switches Switches Switches Switches
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multi-byte calculation of the CRC must handle the last bits width special algo-
rithms. That is why an 8-bit wide input has been chosen.

The polynomial registers make it possible to implement any given CRC algorithm
of a given size. Using shut-down logic on parts of the circuit enables the CRC to be
configured for 8, 16, 24, or 32 bit polynomials. This means that CRC polynomials
for protocols such as HIPERLAN, UMTS, ATM and Ethernet are manageable.

9.2.5 Measurement results

A Radix-32 Configurable CRC Unit Radix-32 Unit was implemented using
AMS 0.35 µm standard cell process.

The chip manufactured contained three different CRC generators and one Paral-
lel/Serial-converter for speedup of the input data feeding. The chip photo can be
viewed in figure 9.9.

In order to use a minimum number of pads on the chip the polynomial register
was implemented using a shift register. The output is serially shifted out from the
chip. Due to the limited number of pads the controlability of the chip is limited.
Therefore testing on random data has been used in order to verify the functionality.
Another test limitation is the fact that the measurement equipment (pattern genera-

Figure 9.9: CRC test chip.



110 Hardware Acceleration

tor) available only allowed stepwise increment of the frequency. However, by
reducing the supply voltage one can calculate the theoretical maximum through-
put. Using this method the measured maximum frequency for the design is 189
MHz which gives a throughput of 1512 MB/s. The result from static timing analy-
sis suggested 186 MHz, which is very close.

9.3 Extract and Compare FP
The XAC FPs are used for extraction of header information that will be used by

other parts of the PPP. They are also used for comparisons between the data
stream and a data vector stored in the FP. This is used when the destination
address of a packet is checked. A XAC FP contains one or several 32-bit registers
holding the values to compare with the extracted vector. It also contains a register
holding the extracted vector. The XAC FP can compare four 8-bit values, two 16-
bit values or one 32-bit value with the extracted vector. It generates a number of
result flags based on the comparisons. The XAC FP is functionally divided into
four slices each comparing one byte. One of these byte-slices is illustrated in fig-
ure 9.10.

In order to support more advanced program flow selection the use of more regis-
ters and compare units must be considered. Once the protocol coverage is set it is
easy to decide the numbers of XAC FPs as well as the number of parallel compar-
ators and registers in each.

=

x_vec_slice

data_in

x_vec(31 downto 0)

mask result

data_out

sel_mux

data_in_mux

reg_mux

‘0’

Figure 9.10: One out of four byte comparing slices in the XAC FP.
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9.4 Parallelization FP
The MII parallelization FP must be included if the PNI is going to be used with

the MII as interface. The MII produces 4 bit wide data. The FP is responsible for
parallelization and alignment of the data, before it is passed on to the 32 bit wide
input buffer chain.

9.5 Checksum FP
The Checksum FP essentially consists of a pair of 1-complement adders and is a

simplified version of the FP described in [9.1]. An overview of the checksum calcu-
lating FP is illustrated by figure 9.11. According to the investigations done by my
colleagues this FP can operate at 10 Gbit/s, which is unreachable using a general
purpose processor.

For the IP header checksum, all the fields in the header are included in the compu-
tation. For UDP and TCP the checksum includes the IP pseudo header (figure 9.12)
together with the whole UDP or TCP packet. Hence, the checksum FP must be con-
figurable for these three types of checksum calculations.

There are basically two aproaches possible for the implementation of this acceler-
ator. Either the control (including construction of pseudo headers), is handled inter-

1-complement adder

1-complement adder

16

1616

Register

Figure 9.11: Checksum FP.

16

Result

Figure 9.12: IPv4 pseudoheader

Zeros (8) Protocol field(8) Payload Length (16)

IP Destination address (32)

IP Source address (32)
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nally or by the C&C. If the C&C is responsible for the control, more general
checksum computations are supported. In order to calculate checksums for pack-
ets divided into several fragments, intermediate checksums must be calculated,
stored, and finally added together. Hence, the control is much simpler if frag-
mented packets are not accepted by the PNI.

9.6 Length counter FP
The length counter FP is responsible for counting the lengths of a packet. This is

used to find out when all fragments have been received, and when to start and stop
checksum calculations. The length counting is syncronized by the C&C, which
uses it to schedule its actions. The length counter FP consists of one adder, and
two registers. One register holds a stop value and the other is used as an accumula-
tor register. When the two register values are equal, an output flag is generated.
This flag is then used to stop the checksum calculation FP.

9.7 CMAA
In chapter 11 an acceleration engine named CMAA included in the PPP is dis-

cussed. The Control Memory Access Accelerator (CMAA) operates both as a
memory controller and as a packet classifier. The CMAA also performs reassem-
bly of fragmented packets. The CMAA accelerates the access to control variables
stored in the control memory. This access is based on data extracted from the
packet headers using the XAC FP. The core parts of the CMAA are two look-up
engines (LUE). The LUE mainly consist of Content Addressable Memories
(CAM). The throughput and latency of the CMAA are strongly dependent on the
number of entries the LUE have in their connection tables. If the number of entries
implemented after the bench-marking and optimization procedure is relatively
low, e.g. 16 or 32, the latency, throughput, area, and power consumption will be
acceptable. Also with this small number of entries the CMAA would significantly
relax and accelerate the overall PNI processing. A deeper investigation of the
application is however required before the final number of entries can be decided.
This process also requires the use of network processing benchmarks. A behav-
ioral VHDL model of the CMAA has been implemented by me. I have also imple-
mented a structural model of the control path. The critical path of the CMAA
consists of the LUE which remains to be implemented using full custom design
techniques.

9.8 Hardware timer assist
Managing and updating the timers can become a large part of the processing of

the TCP and IP protocols. Note that the number of timers is proportional to the
number of network connections. Hence, the problem is not as severe in a network
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terminal as it is in routers even tough one can imagine terminals that must support
many simultaneous connections, e.g. fileservers. If the supported number of con-
nections is high, timers must be considered to be offloaded from the micro control-
ler since the hardware cost is limited and the hardware is very efficient. A hardware
timer consist of a counter, a memory including all the timer events in an ordered
(linked) list and some small control logic. Normally millisecond granularity is
enough but simulations indicate that fine granularity improves the overall network
performance. Since handling of timers is a task implemented by the µC, no timer
FP has been implemented, but in complex terminals it may be considered.

9.9 Comments
All FPs can perform high throughput processing due to their relatively dedicated

architecture. The slowest and most complex one is the CRC FP. It still manages a
multi Gigabit throughput in such a mature standard cell process as the 0.35 µm
AMS 3-M 3.3 V if the number of covered CRC algorithms are low.

Apart from the FPs mentioned above we can also consider other types of FPs if
the protocol coverage would be changed. Examples on such FPs are cryptographic
FP, coding FP etc. With a different set of FPs it would also be possible to cover
wireless protocols and ATM protocols. This illustrates the generic nature of the
architecture.
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10
1Counter and Controller

Implementation
10.1 Problem formulation

As stated earlier there are basically two approaches available for wire-speed pro-
tocol processing. Either a dual clock system with a high-speed pipeline processor
[10.2] responsible for the protocol processing or a synchronized data-flow
machine[10.1] with no pipeline penalty. Which to choose depends on the require-
ments on the protocol processor system set by the terminal application. This chap-
ter will discuss implementation alternatives for the Counter and Controller unit.

10.2 Synchronized data-flow implementation
For normal instructions the synchronized C&C uses two instruction pipeline

stages as illustrated by figure 10.1. It fetches instructions from the wide program
memory using one pipeline stage and executes the fetched instruction in the next
pipeline stage. Note that there is no Register File (RF) or write result stage in the
instruction pipeline since the C&C only consumes and produces flags, not data. In
order to avoid stalls, the instruction decoding stage has been eliminated and
instead fully decoded instructions are stored in the program memory. Stored
instructions are used directly as control signals.

The number of stored instructions can be very low due to the limited protocol
coverage. In theory the number of instructions stored is maximally one plus the
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number of instructions required for protocol header processing times the number
of protocols covered. The number of instructions required for the processing of
one protocol header is equal to the length of the protocol header (in Bytes) divided
by four due to the synchronized 32 bit wide data stream. Hence, nine protocols
with 20 Byte long headers each, requires maximally 55 instructions. Normally this
figure can be reduced significantly due to redundancy between different protocols
and the fact that not all header fields are used. These instructions are stored either
in the result memory of the branch unit or in the program memory. As the number
of instructions are kept relatively small, the cost for these wide memories is
acceptable. Further it allows the access to the program memory (fetch) to have low
latency.

There are many alternative ways of implementing a hardwired case-statement.
Using a simplified TCAM (STCAM: See “CAM implementation issues” on
page 139) is one rather straight forward alternative. The STCAM based branch
unit depicted in figure 10.3 uses the PC value and flags generated in FPs as inputs.
If there is a match in one of the CAM entries, i.e. a conditional branch is taken, a
new instruction and instruction fetch address are provided. Since this STCAM will
be a part of the critical path of the PPP and thereby determine the maximum clock
frequency it can operate at, it is very important to optimize this CAM search. The
latency of a CAM search is mainly dependent on the size of the two search fields
and the number of entries in the memory. The latency of the CAM search must be
added to the latency of the XAC FP and Muxes to find the critical path of the PPP.
An implementation of the C&C suitable for synchronized special purpose proto-
col processing is illustrated in figure 10.2.

Using AMS 0.35 µm standard cell library an implementation of the synchro-
nized data-flow version of the C&C has been completed. The implemented branch
unit supports 16 different conditional branches, each with four case entries. Static
timing analysis of the implemented layout shows that the critical path is 10.9 ns
long, which indicates that it can support wire speed processing at 2.9 Gbit/s. This

Fetch Execute
Fetch Execute

Figure 10.1: Instruction pipeline. The synchronized implementation of the C&C
uses a two-stage instruction pipeline for most instructions. In order to avoid

branch penalties a special unit supporting conditional branches has been added.
This unit makes it possible to perform a program flow selection using a single

clock cycle. If a conditional branch is taken the fetched instruction is discarded
and the new instruction and fetch address are provided by the branch unit.
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is comparable with the performance of a configurable CRC FP implemented using
the same process.

Branch unit

PMEM (micro code)

PC

Dec instr“1”

C&C

Flags

to/from

FPs

Figure 10.2: Branch unit supporting single clock cycle program flow selection.
The critical path includes extraction of packet header data, comparison and

branch decision.

Critical path

PC

 new PC

Dec
instrBranchUnit

Figure 10.3: The branch unit makes its branch decision based on the program
counter value and flags created in FPs.

Decoded instructions
and next PC valueSTCAM

flags
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10.3 Pipelined C&C implementation
Using the set of protocols earlier described in this thesis a pipelined implementa-

tion methodology of the C&C has been done. The organization of the C&C is
depicted in figure 10.4. The C&C datapath consists of a multiplier free ALU, a
status register and a register file. The register file is used to transfer information
between FPs, the CMAA and the C&C.

The pipelined C&C uses an application specific ISA. The ISA is very simple
since most processing tasks are handled by FPs, the C&C essentially only func-
tions as the PPP control path. The simple instruction set consists of 12 instruc-
tions. They are listed in table 1.

Each instruction is 24 bit long. Logic instructions are used to extract and modify
the flag information stored in the status register. Arithmetic instructions are used
for checksum calculation of fragmented packets and control memory address cal-
culation. The move instruction operate on the register file while load is used for
setting of the status registers or the register file. These status registers are used to
communicate with the FPs and the CMAA.

High frequency operation is enabled using pipelining according to figure 10.5.
The number of pipeline stages used is five although only arithmetic instructions
uses all five stages.

It requires the program memory to be pipelined since two stages are used for the
instruction fetch. I have not implemented such a memory. Instead I used a behav-

Table 1: ISA for the C&C

Type of instruction Name # of stages

Logic And 4

Or 4

Not 4

Arithmetic Add (16 bits) 5

Sub (16 bits) 5

Transfer Load (immediate) 4

Move 4

Jump Jump unconditionally 4

Brneqz 4

Breqz 4

NOP
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ioral memory model. The size of the memory is small and using pipelining it
should be possible to achieve very high speed memories using full custom design
techniques.

Since the C&C operate at a different clock frequency compared to the FPs and the
CMAA synchronization is needed. This takes place in the status register. Flags gen-
erated in FPs are written to some registers while control signals from the C&C (e.g.
start, stop, discard) are written to others. Flags generated in the C&C uses high
speed registers to temporary store the flags until the status register is updated using
the network clock. Using clock dividing circuitry, these two clock regions can
remain in phase with each other.

The program flow selection in a pipelined C&C is straight forward. Using masked
logic operations, result flags from FPs are transformed into branch conditions.
These conditions can then be tested using branch instructions.

These branch instructions is the kernel operation of the C&C. Hence, branch pre-
diction is very important for the overall performance of the PNI. The optimal
branch prediction is dependent on a number of parameters but most importantly the
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Figure 10.4: C&C organization for general purpose terminal processing.
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Figure 10.5: Five stage instruction pipeline. Only arithmetic instructions uses the
second execute-stage.
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protocol set. Hence, the branch prediction scheme as well as the hardware imple-
mentation are application domain specific. Branch prediction is today a huge area
in the research community and the problem is a common part of all computer
architecture designs.

Due to the inherit uncertainty of the processing latency in a pipelined processor,
the cycle by cycle synchronization of the data flow must be questioned. Instead
packet synchronization or even buffered wire-speed processing may be considered
in order to allow for higher network speeds. As will be shown in section 10.4.2, it
is however possible achieve high speed protocol processing if the tasks are lim-
ited.

The critical path of the pipelined C&C is the ALU. Static timing analysis of the
layout of the C&C datapath shows that the simple ALU can run at 588 MHz when
implemented using AMS 0.35 µm standard cell library. If the C&C runs at a four
times as high clock frequency, the PPP can support for a network speed of
4.7 Gbit/s. If the protocol coverage is increased, the C&C might have to run at
more than 16 times as high clock frequency compared to the network interface
(GMII). This however still allows for up to 1 GBit/s of wirespeed processing.

10.4 Simple packet decoding example
In order to illustrate the difference between different C&C implementations a

very simple packet decoding example can be used. In this example the PNI

Figure 10.6: Packet header fields used for packet decoding in example.

Ethernet Destination Address 47-16

Ethernet Destination Address 15-0 Ethernet Source Address 47-32

Ethernet Source Address 31-0

Ethernet Type IP ver IP HL IP ToS

IP Length IP ID field

IP Fragmentation IP TTL IP Protocol field

IP Header Checksum IP Source Address 31-16

IP Source Address 15-0 IP Destination Address 31-16

IP Destination Address 15-0 UDP Source Port

UDP Destination Port UDP Length

UDP Checksum ...

Ethernet Frame Check Sequence (CRC)

PAYLOAD DATA
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decodes a UDP/IP/Ethernet packet. The protocol processing includes checking des-
tination addresses, destination ports, CRC, IP header CS, UDP checksum, and IP
protocol field which is illustrated in figure 10.6. Only one specific port and address
is checked.

In order to implement the C&C it is important to notice the placement of different
FP accelerators. In this example the placement and the used set of FPs are illus-
trated by figure 10.7.

10.4.1 Synchronized dataflow example

In this example only one protocol type and destination is allowed at each layer.
This means that the program flow selection is very simple. In fact it is possible to
use only one XAC FP since packet header data never is compared to more than one
value. During the packet decoding of one packet a number of instructions is exe-
cuted. Some instructions are fetched from the program memory while branch
instructions are fetched from the branch unit. As illustrated by figure 10.8 the
branch unit contains 10 different branch instructions. They are used to check for
packet arrival, to see when FPs are ready and to test the result. Further branch
instructions are used for matching of packet header fields such as Ethernet destina-
tion address, type, protocol, IP destination address, and UDP destination ports. If
any of these packet header fields does not match the value stored in the branch unit,
the packet will be discarded. The branch unit checks if the PC is valid, if the flags
match the entry and if the branch should be taken at match (E) or no match (N).

Instructions fetched from the program memory sends flags to FPs or the µC to
control or acknowledge a packet respectively.

CRC
FP5

XAC
FP0

CS
FP2

XAC
FP1

CS
FP3 LC FP4

Figure 10.7: FP organization and numbering.
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Table 2: Program memory content

PC Instr Jump address FP control

0 NOP Ready_reg, Mask

1 BR 3 FP0: Mask, reg0

2 BR 5 FP0; Reg1

3 Set Discard

4 Jmp 0

5 Nop

6 BR+Set 8 FP2: Start
FP0: Mask, reg2

7 Jmp 3

8 Set FP3: Start
Start: LC

9 BR 11 FP0: Mask, Reg3

10 Jmp 3

11 NOP

0

3

5

8

11

3

15

18

18

21

0

1

2

6

9

12

13

15

18

19

N

N

E

E

E

N

E

E

N

E

Wait for start signal

FP0, reg0, (EA_high)

FP0, reg1, (EA_low)

FP0, reg3, L16 (Type field)

FP0, reg3, H16 (Protocol field)

FP0, reg4, L16, (IP_DA)

FP0, reg4, H16, (IP DA)

FP0, reg2, (UDP port)

Ready_reg

OK_reg

PC Nxt_PC

wait

Discard

NOP

NOP

Start LC

Discard

NOP

Store

NOP

NOP

Nxt_FP_ctrl

Checking

Figure 10.8: Branch unit content.
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10.4.2 Pipelined C&C

This example does not cover reassembly of fragmented packets. Hence, only
seven instructions are needed. They are:

• BRNEQZ
• BREQZ
• NOP
• JMP
• LOAD
• AND
• NOT

All jump instructions (JMP, BRNEQZ, and BREQZ) executes the following
instruction unconditionally. Hence, a misspredicted branch will result in a penalty
of two instructions when the instruction pipelined is flushed. BRNEQZ is predicted
as always taken while BREQZ is predicted as Not taken. In the simple example an
erroneous speculation means that the packet should be discarded.

According to my behavioral simulations the C&C maximally needs three instruc-
tions per network clock cycle to handle simple packet decoding of UDP/IPv4/
Ethernet using the specified ISA. I.e. we need three times as many instructions
compared to the synchronized implementation due to increased task complexity.
Complexity comes from a more complex classification and reassembly handling.
This number (three) is rather low compared to many other (e.g. [10.2]) pipelined
protocol processors but the number of tasks compared in the C&C is also lower.

12 BR 3 FP0: Reg4, Mask, Shift

13 BR 15 FP0: Reg4, Mask, Shift

14 Jmp 3

15 BR 17 FP0: Reg2, Mask

16 Jmp 3

17 Store

18 BR 18 Ready_reg: Mask

19 BR/Set 21 OK_reg: Mask
Stop store

20 Jmp 3

21 Set Set: Packet OK

22 Jmp 0

Table 2: Program memory content

PC Instr Jump address FP control
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E.g. checksum calculations have been offloaded. This low number indicates that a
network speed of 6.2 Gbit/s is supported.

The content of the program memory for this simple example is listed in table 3.

Table 3: Program memory content.

PC Instruction Source Adr/Dest
Network

clock
cycles

Wait: 0 NOT Ready reg 0

1 BRNEQZ 0

2 LOAD Reg0 FP0

3 LOAD Reg1 FP0 1

4 AND FP0 2

Eth Adr: 5 BREQZ 10

6 NOP

7 AND FP0, Mask 3

8 BRNEQZ 14

9 LOAD FP0, Reg3

Discard: 10 LOAD Direct

11 JMP 0

12 NOP

13 NOP

Type: 14 NOP 4

15 NOP

16 NOP

+1

PMEM

Fetch

DEC

JMP ctrl

Decode Execute

NOP

Flush

Ctrl
signals

Figure 10.9: Instruction pipeline with a simple branch prediction. It always exe-
cute following instruction before predicting BRNEQZ taken and BRWQZ not

taken.
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17 AND FP0, Mask 5

18 LOAD FP2-start

19 BRNEQZ 24

20 NOP 6

21 NOP

22 JMP 10

23 NOP

Length counting: 24 LOAD Start FP4 6

25 NOP

Protocol: 26 AND FP0, Mask 7

27 BRNEQZ 32

28 LOAD FP0: Reg4

29 NOP

30 NOP

31 JMP 10

IP_DA: 32 NOP 8

33 NOP

34 NOP

35 AND FP0, Mask 9

36 BREQZ 10

37 LOAD FP0: Reg2

38 AND FP0, Mask 10

39 BRNEQZ 44

40

41 NOP

42 NOP

43 JMP 10

UDP: 44 AND FP0, Mask 11

45 BREQZ 10

46 NOP

47 LOAD Start store µC 12

Table 3: Program memory content.

PC Instruction Source Adr/Dest
Network

clock
cycles
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Note that this example is the simplest possible. In a more complex terminal, the
C&C would require more clock cycles and program memory to perform the
packet decoding. Further, a different (general purpose) branch prediction algo-
rithm would be used. In the general case it is possible to implement a branch pre-
diction algorithm based on the most common type of protocols and connections.
This optimization would however not improve the worst case processing latency.

10.4.3 Conclusions

This example illustrates the main difference between the two implementation
alternatives for the C&C proposed in this thesis. The synchronized dataflow
implementation have no synchronization registers and no need for buffering, but
on the other hand, the branch unit and the XAC FP is a part of the critical path
which limits the scalability.

The pipelined C&C can manage very high speeds when the processing does not
involve complex program flow selection or classification. While classification can
be offloaded from the C&C as shown in the next chapter, the number of protocols
covered will directly effect the number of instructions needed to process the
packet. But if the number of protocols grow, the usage of non-buffered processing
is questionable anyway. The pipelined processor uses more memory and registers
than the alternative implementation which is a drawback.

48 NOP

Check result: 49 AND Ready reg, mask

50 NOT Mask

51 BRNEQZ 50

52 AND Ready reg, mask

53 AND OK reg, mask

54 NOT

55 BREQZ 10

56 NOP

57 JMP 0

58 LOAD Ack/reset

Table 3: Program memory content.

PC Instruction Source Adr/Dest
Network

clock
cycles
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11
1Control Memory Access

Acceleration
11.1 Introduction

For general purpose protocol processing with a significant number of simulta-
neous connections and protocols, this thesis proposes a high-frequency pipelined
implementation of the counter and controller. A pipelined processor with an effi-
cient speculation methodology gives a larger area, power and memory consump-
tion compared to the synchronized data-flow implementation. For general purpose
protocol processing, there are however no alternative available. Due to the large
number of simultaneous connections in such general purpose terminals, a CAM
assisted classification accelerator denoted Control Memory Access Accelerator
(CMAA) is proposed. This accelerator can also accelerate the reassembly han-
dling of received fragmented packets. This accelerator is also responsible for con-
trolling the PPP access to inter-packet information stored in the control memory.

11.2 Control Memory Access Accelerator
As mentioned earlier the micro controller is responsible for the communication

control, i.e. signaling handling. Using a general micro controller is a straightfor-
ward method similar to the traditional way of slow path processing in a GP CPU.
The problem with this solution is that the control information must be transferred
between the micro controller, the PPP, and the control memory with low latency in
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order for the PPP to process its part at wire speed and make the decision if the
packet should be discarded. In general purpose terminal processing the address
check becomes very complex due to the larger number of connections to check for
in the receiving terminals connection table. The only possible solution for high
speed general purpose classification is to use an accelerator, a.k.a. classification
engine. Further, acceleration of slow path processing offloads the micro processor.
Hence, a platform including accelerating hardware assist and control interfaces
dedicated for packet recognition and control memory access have been developed.
The Control Memory Access Accelerator (CMAA) presented in this chapter uses
two Look-Up Engines (LUE) in order to recognize and classify the incoming
packet. These LUE essentially consists of Content Addressable Memories (CAM)
which are well known and commonly used in routing and switching applications.
One of the early work in this area is [11.1].

11.2.1 Header data

The purpose of storing control information is to ensure that connection-oriented
protocols (e.g. TCP) can perform protocol processing on the payload, which can
be divided or segmented into many lower layer packets. These packets can arrive
out-of-order and in case of connection oriented protocols the routing information
is not included in all packets. Hence it is obvious that some information on the
current status of a connection must be stored in order to be able to continue the
processing when the next packet arrives. In the case of the protocol set discussed
earlier in this chapter the following information is normally needed.

• Protocol type
• Length (received so far)
• Total length (transmitted in the last IP packet)

The length field(s) is provided to the length counter adder in the PPP which
updates the number and finally sends the updated value to one of the XAC FP.
There it is compared to the total length value which is stored in the control mem-
ory. If they are equal, the micro controller is notified that all packet fragments have
been received and this entry will be removed from the search list. If unequal, the
new length value is written back to the control memory.

• Accumulated checksum results

The checksum result is provided to one of the checksum calculating adders,
which adds it to the recent packets checksum using a 1-complement addition, and
produces a new checksum. If the length is equal to the total length which means
that the whole payload message has arrived the updated checksum it is sent to one
of the XAC FP for comparison with the received checksum.

• IP Source and Destination Address.
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The source address is extracted from the data stream by the PPP. The address
value is then used to construct a pseudo header. The pseudo header is used in the
checksum calculation. Normally, only one destination address is used for unicast
packets in a terminal. This means that it is not needed to be stored in the control
memory.

• TCP Source and Destination Ports

The type, ports, and address fields identifies a specific connection. To see if a
incoming packet should be discarded or accepted these fields must be checked.
They are also used to identify which application the payload should be directed to.

• Identification number

The IP identification number is used to find the correct memory buffer in the con-
trol memory.

• Pointers to the memory position of proceeding and succeeding packets/seg-
ments.

In order to provide all of the services stipulated by the TCP standard, more con-
nection related information than listed above needs to be stored. On the other hand
the only information needed for the PPP to perform its processing is the informa-
tion highlighted in bulleted text. The information stored in the control memory can
also be used to calculate the host memory address. An algorithm for this type of
memory address calculation remains to be implemented for the general case even if
it is simple for special applications, e.g. VoIP. A general algorithm for in-order
data-buffering in the host memory would significantly reduce the host processor
interrupts. This type of algorithm would benefit from an accelerated access to the
control memory. This issue will not be further discussed in this chaper.
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11.2.2 Accelerator interface

The CMAA interface to the rest of the PPP and the micro controller is illustrated
by figure 11.1.

Basically the input to the CMAA consists of flags and an instruction generated in
the C&C. In table 1 the simple instruction set (6 instructions) is listed.

As output the CMAA generates a number of flags. The two data buses are being
used only for transport of packet header data.

Table 1: Lightweight instruction set

Name Source Internal configuration

New packet dbus0= IP ID field Packet type

Load register dbus0 Port or Address word

ID CAM operation dbus0 write, read or remove

PA CAM operation dbus0 write, read or remove

Release to micro con-
troller

Set memory buffer dbus1 Packet type

Instr (8)
Type (8)

dbus0 dbus1

mem access (4)

check buffer (1)
release packet (1)

Ready

Packet ready
Memory locked

discard (1)
Packet discarded
New packet

CMAA

first_fragment (1)

Figure 11.1: Accelerator interface.

Mask (4)

fragmented (1)

ID found
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11.2.3 Data path

An overview of the CMAA architecture is illustrated in figure 11.2. The CMAA
data path includes two LUEs, a buffer pointer generator, and a simple memory
access selector. The Primary LUE (PLUE) only includes one CAM, which has 16
bit wide entries, M entries and a W bit wide result memory. The purpose of this unit
is to check if we already have received a fragment of the incoming packet. This is
checked using the IP Identification field (IP ID). If an arriving packet is frag-
mented, the fragmented flag will be produced in the C&C and provided to the
CMAA. Then the fragment is checked in the PLUE to see if a packet buffer exists
in the Control memory. If the CAM in the PLUE does not have a matching identifi-
cation field entry, a new packet buffer will be created and the IP ID will be written
to the PLUE CAM. In the packet buffer, inter-packet variables such as length and
checksums will be stored. If the packet is non-fragmented there is no need to store
its IP ID so the packet buffer is created directly on the control memory address pro-
vided from the mem buffer gen unit in figure 11.2. The SLUE is a classification
engine including 6 CAMs and its purpose is to check for valid connections. The
two data buses are 32 bit wide. The mem buffer gen generates new buffer addresses
for both packet buffers and connection buffers. The address generation is controlled
from the µC.

As the other accelerating devices in our protocol processor, e.g. FPs, the CMAA
remains in idle mode while not in operation. Power-up will be performed when a

Control

MEMORYSecondary LUE

Primary
LUE

data bus 0

W

mem buffer gen

r/w

data bus 1

Ctrl unitIP_ID
FSM

Type

Figure 11.2: CMAA architecture. An accelerating hardware architecture for con-
trol memory access in the protocol processor. Based on traditional packet classifi-
cation techniques it support low latency access to stored connection variables in

the control memory

no_match write address
generator
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new packet arrives. This reduces the power dissipation significantly in a network
terminal due to the un-even time distribution of the packet reception.

In this paper we leave the final CAM design and implementation to be further
investigated and optimized. The reason behind this is that they are extremely
important for the overall performance and they require different design tech-
niques, tools, and expertise than the rest of the PPP. Final implementation of the
LUE will of course have a huge impact on the performance of the CMAA. This
issue is further discussed in section 11.2.7.

A layout of the CMAA excluding the two LUE and the buses has been produced.
The number of standard cells and the area of the CMAA excluding the input regis-

ters and the two LUE are 716 and 0.105 mm2 respectively. This part of the CMAA
has been simulated, using static timing analysis on the layout, to run at almost
300 MHz. This means that it is not included in the critical path of the PPP. Since
we use registered inputs and outputs in the CAMs, it is the SLUE that will be the
critical path of the CMAA.

11.2.4 Control procedure

The normal packet reception procedure of operation in the CMAA, is illustrated
by figure 11.3. The procedure is controlled by the control unit finite state machine
(FSM) in the CMAA.

If a new packet arriving is fragmented, the PPP provides CMAA with the IP ID
number and gives a new-packet instruction to the CMAA. The IP ID is then stored
in the input registers to the PLUE. Next 2 clock cycles, the CMAA continues to
load ports and IP addresses while the PLUE checks if a fragment of this payload
has already been received. If there is a match in the PLUE search, the correspond-
ing address pointer to the buffer in the control memory, which is stored in the
PLUE result memory, is stored in the input register to the control memory. While
the PPP continues the packet processing, it can then access the control memory
directly. If the new fragment contains the layer 4 header, the port, source and type
fields are loaded from the PPP and then checked in the SLUE. If this loading is
completed after the PLUE search, i.e. it is a IPv4 packet, the SLUE can immedi-
ately check the connection information. Otherwise the control unit remains in the
check connection state while the loading continues. Based on the SLUE result, the
packet is either discarded or the matching connections address pointer is provided
to the data bus 1. Next clock cycle, the data bus 1 value will be stored at the packet
buffer address which is already stored in the input register to the control memory.
This means that the µC easily can access the connection information. Then the
CMAA hands over to the PPP using the packet-ready flag.
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After the PPP has received the packet-ready flag, it continues to process the
packet and updates the control memory.

After successful packet processing, the PPP releases the packet to the CMAA.
Next clock cycle, the CMAA releases the lock of the control memory, starts buffer
pointer updating, and sends the new-packet flag to the µC. During the update state,
the CMAA also updates the write address for new entries to the two LUEs. This is
only done if a write operation has been performed. During the write address search,
the CMAA uses one of the generic adders in the PPP to search for empty entries.
When the pointer updating and the CAM write search is finished the CMAA
returns to the wait-for-new-packet state.

11.2.5 Control memory organization

The control memory is organized according to figure 11.4. As illustrated the con-
trol memory consists of a number of different buffers storing inter-packet informa-
tion. Further the memory includes all the control oriented packets that is going to
be processed in the micro controller software. Since these protocols are completely
processed by the micro controller, the payload of these packets is also stored in the
control memory. For TCP and UDP type of packets only preprocessed header infor-

wait for new packet

load ports, addresses and search for IP ID

send mem adr

wait for C&C

update

check connection

release to µC

PLUE
result

discard

Store connection

 to C&C

N

No_connection

match

Figure 11.3: Control handling procedure within the CMAA.

Y

Connection
checked

in packet buffer
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mation is stored. In the packet buffers, layer 3 information needed for reassembly
is stored. Each packet buffer is deleted when the entire layer 3 packet has arrived.

11.2.6 Look-up Engine architectures

The SLUE consists of 6 CAMs as illustrated by figure 11.5. The outputs gener-
ated by the CAMs are vectors containing zeros or ones describing table matches.
These are used to select the address pointer in the result memory, i.e. a pointer to
the control memory address for the received packet.

Control memory
Packet buffer

TCP buffer

Other buffers, e.g. UDP

Connection pointer

Checksum

total length length

...

... ...

Entire control packets
e.g. IGMP, ICMP, ARP, RARP

IP address Port numbers

Packet list and memory location

Other connection variables

Figure 11.4: Memory organization in the control memory.

1

1

0

1

1

0

match

1 1 1

match

0

TCAM

STCAM

Input key

Content

Mask

Content Group
Mask

Figure 11.6: Simplified TCAM principle.
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The 7 different CAMs we propose to be used in the CMAA architecture will have
a huge impact on the performance, size and power figures of the entire design.
Therefore they require a thorough investigation and optimization procedure in
order to obtain the optimal system performance. Even if the optimization of these
CAMs is not in the scope of this thesis, some characteristics and requirements on
the CAMs can be noted. First of all we propose that CAMs should be used instead
of TCAMs ([11.4] and [11.5]). This reduces the cell size and power dissipation.
The primary LUE is a standard CAM memory with 16-bit content and M entries.
The result memory is M times the length of the control memory address W.

In order to provide flexibility for different protocols we use a concept we call
Simplified TCAM (STCAM) illustrated by figure 11.6 in the secondary LUE.
Instead of using ternary bit comparisons as in TCAMs we only provide a wildcard
function to the entire CAM. In figure 11.7 there is an illustration showing how the
secondary LUE uses the STCAM principle.

The mask input enables a wildcard functionality for different fields when recog-
nizing an incoming packet according to table 2. The table shows that the proposed
SLUE architecture can be used for various types of protocols. A careful use of
these wild cards is needed in order to avoid multiple matches. By using the type

128

328

328

Type

Write
flag

Adr RAM

N X W

New_buffer
pointer

dbus0

dbus1

Port&Type
STCAM

Address
STCAM

Delete
flag

write adr
generator

Conv.
logic

N

N

nor

no_connection

Figure 11.5: Secondary Look-Up Engine (SLUE) architecture. Note that the con-
version logic that converts the matching vector to a result memory adress can be

eliminated if the matching vector is used directly as word lines in the memory.
This however require that the RAM must be implemented in the same manufactur-

ing process.

Mask
Mask

an
d
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field, which is an internal type, it is possible to avoid multiple matches which
means that the priority logic in the SLUE can be eliminated. Further it enables the
connections to be written in the CAM in an arbitrary order.

It can always be discussed how much the IP version 6 (IP v6) protocol will be
used in the future but we have chosen to include it since the penalty is not as
severe in network terminals as it is in routers. The reason for this is that in network
terminals we only have one destination address to check for unicasting. This can
be done in other parts of the PPP. Hence 128 bits can be excluded from the CAMs
entries. For broad and multicasting packets a different type field is generated and
only the destination is checked (instead of the source address). This reduces the
penalty we have to pay in forms of larger CAMs when including IP v6. There exist
however routers where only 64 bits out of the 128 in the IP v6 address are used for
packet classification. The reason is that in such networks the other 64 bits is just a
copy of the MAC address. If such method would be applied the CAMs can reduce

Table 2: Configurations using masking for different packet types and applications.

Protocol
examples

Type
Source

Port
Destination

Port
Source
Address

Destination
Adr

IPv6
Unicasting

Optional Optional 16 128 *

IPv6
Broad or
multi casting

Optional Optional 16 * 128

IPv6 alt Optional Optional 16 64 64

IPv4 Optional Optional 16 32 32

IPv4 Optional Optional 16 32 *

UDP Optional 16 16 32

Type
CAM

SPort
CAM

SPort
CAM

IP Adr
CAM 0

IP Adr
CAM 1

IP Adr
CAM 2

Match

Result

no_connection

Mask Mask Mask Mask

Figure 11.7: The two different STCAM in the SLUE each consists of three ordi-
nary CAMs and some masking functions. Each of the CAMs uses N entries.

Mem
ptr

N

Memory
(RAM)
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the wordlength of the content with additionally 64 bits by eliminating the IP Adr 2
in figure 11.7. Since this architecture will be used in a network terminal the activity
will not be as high in the CAMs as it would be in a router. The reason is that we
only do a load and search operation when a new packet arrives, not every clock
cycle. The low activity significantly reduces the power consumption in the CAMs.

11.2.7 CAM implementation issues

The total size of the 7 CAMs and their result memories will be a major part of the
systems chip area. It is very hard to make predictions on the sizes of these CAMs
since that is a matter of optimization effort and implementation strategy. Further
the complex placement and routing requires a full-custom approach even for stan-
dard cell based designs. Even without a final layout, a lower bound on the chip-area
can be estimated. Using standard cells from our design process (AMS 0.35 µm

3.3 V 3-M) an optimized bit-slice cell in a CAM is approximately 350 µm2 which
results in a lower bound on the combined CAM area according to EQ 1. The result

memories must store M + N times W bits using approximately 180 µm2 each.

(EQ 1)

As an example M=16, N=64, and W=20 can be considered. The chip-area for the

two LUEs would then be at least 4 mm2. This figure is acceptable but if more
entries are to be considered, a process migration to smaller geometries is natural.
The number of entries to implement is a matter of optimization. This optimization
procedure requires a careful analysis of application requirement and network traf-
fic. Never the less it is clear that in NT, the required number of network links is not
as high as in routers. Hence M and N does not need to be very large for most appli-
cations and networks.

In order to examine our architectural performance, it is crucial to know how many
clock cycles each search operation in the two LUE requires. We expect the system
clock to have a period of maximally 7.5 ns in a 0.35 micron process, based on tim-
ing analysis on other parts of the PPP. Hence the maximum network speed is
4.3 Gbit/s using the specified 32 bit wide input buffers. Since we are sure that there
is only one packet being processed at any given time, we do not necessarily need
the LUEs to be pipelined, i.e. we do not need any internal intermediate results to be
stored. Instead a multi-cycle-path design technique can be used. To use pipeline
stages or not is an implementation issue for the CAM designers. Simulations show
that the small PLUE will not require more than 2 clock cycles to complete one
search, i.e. it has a critical path shorter than 15 ns. Then we assume M is maximally
64.

ACAM 16 M× 128 40+( ) N×+( ) 350 M N+( ) W 180××+×= µm
2
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The number of clock cycles required for a search operation in the SLUE is equal
to the critical path divided by 7.5 ns. The critical path consists of circuit delays
and wire delays. If the SLUE are being implemented using standard cells the logic
delay is simple to calculate. For N=64 there will be approximately 15 logic cells in
the critical path which leads us into believing that 2 clock cycles is enough. The
problem is that in larger CAMs a big part of the critical path is wire delay. In my
research design (N=256) I have used synthesis and P&R tools from Cadence. The
resulting implementation result is very far from optimal and does not meet my
requirement of 3 clock cycles. The design is simply to large and hence the P&R
problem to complex. Therefore the conclusion is that the design strategy must be
changed to something more custom oriented even if the CAM is rather small com-
pared to the one used in routers. Clearly a bitslice manipulating placement strat-
egy has to be used for efficient CAM design regardless of the size. Anyway the
conclusion after studies of other comparable CAM designs and discussion with
industry CAM designers is that, for N less than or equal to 256, a search operation
will require maximally 4 clock cycles (or pipeline stages). For N=64, 3 clock
cycles are definitely enough. These figures apply to standard cell based designs.

Even with a pessimistic feature size projection (Moores law), there is no reason
to believe that scaling not can support the CMAA to run at clock periods around 3
ns using 3 clock cycles for one search operation. Hence the CMAA could be used
in a 10 Gbit/s network such as 10 Gigabit Ethernet, using already available pro-
cesses, i.e. 0.13 micron. The resulting latency for CMAA operations is further dis-
cussed in section 11.2.8.

The latency, critical path, and power consumption in the LUE are of course
depending on M, N, and W. To optimize these variables simulation on real world
network traffic is required. Until this optimization phase is completed the numbers
M=16, N=64, and W=20 will be considered for further architectural development.



Enabling flow based QoS 141

11.2.8 CMAA decision latency

The proposed architecture for access of the control memory reduces the control
memory access latency to a few clock-cycles. The fast path latency determines how
big the input buffer chain has to be. The latency of the CMAA must be added to the
latency of the PPP in order to calculate the total fast path latency. We propose that
the SLUE should use 3 clock cycles to perform a search. A 3-clock-cycle type of
SLUE would give a maximum memory access latency of 11 according to table 3
when a new packet has been received. Further the table shows that a four cycle type
of CAM architecture, will give a maximum memory access latency of 12 clock
cycles. This of course have an impact on the pipeline register chain in the PPP and
the total latency for a packet reception and delivery to the micro controller.

The PPP can start the processing of an incoming packet before the control data
has been accessed from the control memory. Therefore this latency only sets a
lower limit on the latency of the total packet reception. The total latency is however
mainly dependent on the processing activities, including interrupts and stalls, in the
micro controller.

11.3 Enabling flow based QoS
Using the fast control memory access, it is possible to enable quality of service

(QoS) to the reception. Any kind of priority parameters or flow parameters can be
stored in the different buffers in the control memory. These can then be used for
multiplexing of the incoming data stream if a flow based operation is demanded.

11.4 Shared control memory
The motivation for separating the protocol processing into one PPP-part and one

µC-part is of course to use the programmability of the µC when processing control
intensive tasks and still have high-performance and low-power implementation of

Table 3: Examples on memory access latency for various packets received. (PLUE requires
2 clock cycles to perform a search)

Layer 3 protocol

# clock cycles
latency for CMAA

operation
3 stage SLUE

# clock cycles
latency for CMAA

operation
4 stage SLUE

IPv4 - new packet 9 10

IPv4 - old packet, new fragment 4 4

IPv6 - new packet 11 12

IPv6 - old packet, new fragment 4 4
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the data intensive processing. This distributed architecture however requires an
interface, and that interface is the control memory unit together with control flags
to and from the C&C. As mentioned before, the PPP only needs to access the
memory when a new packet is received and then only a limited part of the control
information is used. Since the latency of this access directly effects the length of
the input buffer chain, the PPP must have priority over the µC when it comes to
memory access. In fact the µC only have access to the control memory when the
CMAA resides in the update or wait-for-new-packet state according to figure 11.3.

11.5 Implications on system performance
Each hardware acceleration block in the PP has been seperatively implemented

and simulated using static timing analasys.The conclusion is that they can operate
at network speeds of moore than 170 Mhz. Since all parts of the fast path operates
on streaming data it means that the network can run at this clock frequency. The
fast path architecture processes each packet, delivers data and control signals to
the micro controller and then returns to idle mode. When the fastpath, e.i. the
C&C, has returned to idle-mode it can start processing the next packets. Hence,
the proposed fast path architecture can operate in high speed networks as long as
the gap between the incomming packets is sufficient for the processor to return to
idle mode. This must be supported by the network protocol. Hence, better solu-
tions are to either use an input packet buffer or multiple protocol processors that
are hardware multiplexed.

The slow path consists of the micro controller which is enough flexible to fully
offload the TCP and protocols alike. The micro controller is not capable of pro-
cessing the packets at wire speed. This may limit the performance of the entire
system for extreme traffic situations. The fast path does however offload some of
the tasks traditionally processed on general purpose hardware. This will relaxe the
slow path. The amount of offloading depends on the traffic flow and requires fur-
ther simulations.

In order to verify the functionality of the CMAA block used as proposed in a fast
path, a cycle-true and bit-true behavioral model has been simulated. The simula-
tion model covers the fast path packet reception. The model includes GMII net-
work interface (32 bit wide input). Further a behavioral model of the CMAA
including 16-entry, 3-stage pipeline CAMs has been used.

So far the only protocols simulated are TCP and IPv4. Fast path tasks simulated
includes CRC, IP reassembly, checksum calculation and data stream demultiplex-
ing. The C&C is programmed to cover these protocols using a the program mem-
ory in the C&C model. The network traffic simulated is random.
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The simulations verifies that the proposed CMAA architecture can be used in the
protocol processor environment. Further it shows that when programmed for TCP
the minimal distance allowed between 2 packets is 23 clock cycles (ideal is none).
In addition to this limitation the simulations also shows that the minimal number of
clock cycles required per received Ethernet packet processed is 38. The decision
latency in the CMAA contributes to this figure. These architectural limitations
strongly effects the performance compared to an ideal solution. Especially for
small packets which is the worst case. The overall system performance is on the
other hand much dependent on the network traffic. If the traffic does not include
many fragmented packets the CMAA may not be worth using due to the perfor-
mance degradation. In that case a PP without CMAA acceleration should be used.

11.6 Summary
A novel architecture for acceleration of control memory access in a protocol pro-

cessor for network terminals was presented in this chapter. The architecture uses
classification engines and concepts which has traditionally been used for network
infrastructure components. The proposed architecture enables low latency access to
connection state variables, partial checksum results and any other control informa-
tion stored in the shared control memory. Hence inter-packet processing such as
reassembly has been accelerated using our flexible protocol processor architecture
for network terminals. Further it offloads the micro controller so that a wide variety
of protocols can be processed in a programmable way, using the proposed protocol
processor platform in high-speed networks. The proposed architecture can process
the fast path in a multi gigabit network, implemented in a mature standard cell pro-
cess such as AMS 0.35 µm.

For general purpose terminal processing the C&C must be implemented as a pipe-
lined processor and use a CMAA to accelerate reassembly. classification and con-
trol memory access. Synchronized control of FPs and CMAA is enabled by use of a
wide status register. It is however not possible to maintain synchronization with the
data stream without use of buffers when minsized packets are allowed. Hence, ter-
minals requiring the use of a CMAA to handle connections and reassembly is not
suitable for data-flow processing. Instead packet synchronization, increased mini-
mal allowed packet sizes, lower network speed, or flow synchronization must be
considered. I.e. the proposed dataflow processing architecture must be modified if
fragmented packets and a large number of connections are supported.
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12
1Conclusions

A dual processor architecture for protocol processing in network terminals was
proposed. It uses configurable accelerators to offload data intensive processing
tasks. These accelerators are controlled using a programmable Counter and
Controller (C&C). Control intensive tasks are handled by a general-purpose
micro controller.

The architecture was developed to meet increasing demands on bandwidth,
flexibility, and cost in todays network terminals. Using accelerators the pro-
posed architecture supports multigigabit network speeds when implemented in a
mature process technology. Flexibility requirements are supported in three
stages. At design time a suitable implementation method can be selected for
accelerator and C&C depending on the intended application domain. Hardware
accelerators can be configured online and the data path is controlled in a pro-
grammable way. Further the micro controller supports unregular slow path pro-
cessing.

The proposed architecture is power efficient due to its reduced memory usage
compared to traditional designs. The proposed architecture was developed with
computer network terminals in mind but it may also be used for other types of
packet based network entities, e.g. gateways, PDAs, and wireless terminals etc.
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The proposed protocol processor architecture is based on synchronized data flow
processing. This thesis concludes that the use of data flow based processing is
suitable for special purpose terminals. In more complex terminals, which require
fragmented packets and a large number of connections to be handled, the pro-
posed architecture must be modified by adding a special control memory access
accelerator. This accelerator is needed since fragmented packets require the pro-
cessor to access inter-packet information stored in the control memory. In com-
plex terminals, this control memory access leads to an increased decision latency.
The increased decision latency will lower the performance if the synchronized
processing scheme is used. Hence, this thesis proposes that when used in complex
terminals, the protocol processor should use input packet buffering.



Future work

“Only the wisest and stupidest of men never change.”
--Confucius
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13
1Media Gateways

With the proliferation of Internet-connected devices including cellular tele-
phones, 2-way pagers, and personal digital assistants (PDAs), there is a market for
efficiently delivering web-based content to these devices. A transcoding media
gateway is a specialized router that converts high-bandwidth or high-resolution
data (e.g. video) to lower-bandwidth (suitable for wireless links) or lower-resolu-
tion (suitable for handheld displays). Thinning a data stream to match the capabil-
ities of the end device can reduce latency and improve efficiency in the use of
transmission bandwidth. The media gateway shares many characteristics with a
normal network terminal which has been the focus of this thesis. Hence, this chap-
ter is included in the thesis as a discussion around knowledge transfer with focus
on finding suitable areas for future research.

13.1 Multi-processor issues
It is possible to divide gateway architectures into homogenous, specialized heter-

ogeneous, and hybrid systems. A homogenous system consists of identical proto-
col processors as illustrated by figure 13.2. The internal architecture, the access to
shared memory and the access to hardware accelerators are equal between the pro-
cessors. A specialized heterogeneous system consists of protocol processors opti-
mized more or less hardwired for a specific task like packet classification, routing,
or QoS. This is depicted by figure 13.1. This solution is well suited for a system
with a well defined problem space that is unlikely to change much over time. An
ethernet switch is a typical example of such a system. A hybrid system can be con-
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structed in several ways. One way is to combine several groups of protocol proces-
sors into a system. For example into one group that consists of identical protocol
processors optimized to handle intra-packet operations and another group that is
optimized to handle inter-packet operations. Another possibility is to have certain
basic functionality common to all protocol processors but extra accelerators avail-
able on some.

According to earlier research on protocol processing, heterogeneous or hybrid
systems are the only choice for protocol processing. Homogenous system does
not support requirements on performance and power-consumption as good as het-
erogeneous systems.

13.1.1 Communication between protocol processors

The communication between protocol processors should be optimized to handle
short header transfers. A classical protocol processor does not care about the pay-
load data beyond storing it once in the ingress part and retrieving it once in the
egress part. It is also possible to reduce the amount of shared memory accesses by
connecting protocol processors in a serial manner. A buffer in between the proto-

Parse header Find destination
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Figure 13.1: Heterogeneous Protocol Processing Architecture.
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Figure 13.2: Homogenous Protocol Processing architecture.
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col processors aids synchronization. As the message parsing is done in an inherent
serial manner, many synchronization problems can be avoided.

13.1.2 Synchronization in multiprocessor systems

There are basically two types of data structures requiring synchronization: struc-
tures that are read often and seldom updated, and structures that are both read and
updated often. A routing table is seldom updated whereas a data structure detailing
the usage and allocation of the payload memory would be updated and read very
often.

The general purpose CPU would typically update data structures fairly seldom.
Care must be taken to either have the data structure in a consistent state during the
entire update or make provisions to either duplicate the structure or stall readers
during inconsistent times.

Data structures that are updated often require careful design. Some systems have
dedicated units to control these structures, for example a unit to handle the alloca-
tion of incoming payload data.

13.1.3 Accelerators

By using accelerators, i.e. dedicated hardware, the processing performance can be
substantially increased. The accelerators are normally self-contained and does not
require a lot of control. Hence the over all control overhead can be reduced which
reduces the memory cost and increases the efficiency. The accelerator approach is
suitable if there exist processing tasks that are common and non-suitable for gen-
eral purpose hardware processing.

A lot of different accelerators could be used for network processing in media
gateways:

• CRC: Required for both incoming and outgoing packets. A configurable
solution supporting all polynomials is most efficient.

• Checksum accelerator: Required to deal with IP packets.
• RNG: A true random number generator could be beneficial to some cryp-

tographic applications.
• PRNG: A pseudo random number generator could be useful in QoS.
• Timers: Flexible hardware timers offload timer management in tasks like

shaping.
• Queue manager: Used to speed up QoS.
• Classification engine

When deciding what kind of accelerators to use in a multi-processor gateway
there, the coprocessor approach must be considered. Third party coprocessors and
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common interfaces to them becomes more and more common. Hence, they may
be a cost effective solution.

13.1.4 Multi-port packet processing

In a gateway with multiple (physical) ports coming in and going out, the pro-
posed PPP can be used for port-processing while the micro controller implements
inter packet tasks for one or more ports. This is depicted by figure 13.3. In order to
find a good partition between and organization of tasks, processors and memories
extensive behavioral modeling and simulation are required.

13.1.5 Application processing

Normally a gateway must support three basic functions. First of all packets needs
to be received (terminated) and transmitted (created) at speeds specified by stan-
dards defined for each protocol layer. Secondly a switching function must be sup-
ported. Finally, there are many application layer tasks which have to be supported.
These include voice compression, tone processing, fax/modem communication
etc. Since these tasks are so complex, the DSPs they normally run on are normally
implemented as a separate chip. Normally off-chip memories are used to transport
data to and from these DSPs. Using the technology scaling it might be possible to
have all these DSPs and memories on-chip in the future but today it is not really
feasible. Hence, this chapter does not further discuss the application integration
on-chip.

Intra-PP

Intra-PP

Intra-PP

Intra-PP

Intra-PP

Intra-PP

Intra-PP

Intra-PP

Switching memory or

crossbar switch

Inter-PP

Inter-PP

Inter-PP

Inter-PP

Figure 13.3: Multi-processor partition using the concept of intra- and inter-packet
processors.
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13.1.6 Efficient task allocation

According to my previous research results, I strongly believe that task-allocation
should be done according to processing requirements. I.e. dedicated hardware
acceleration of throughput driven tasks and general-purpose programmable devices
handling flexibility demanding tasks.

Intra-layer processing, i.e. the traditional way of processing network communica-
tion protocols, gives a processing overhead since a lot of intermediate results and
data transports must be performed. The main advantage with inter-layer (the oppo-
site of intra-layer) processing is the reduced amount of data transportation and pro-
cessing since we reduce the need for intermediate results. Another advantage that
the interlayer processing gives us is that the processing can be divided and then dis-
tributed to different computational units depending on the type of processing rather
than layer (protocol) type. Hence, each of the two processors in our proposed dual-
processor architecture is always optimized for the specific type of tasks that will be
processed which gives both a high performance and a high degree of domain-spe-
cific flexibility.

13.1.7 Parallelization scheme

One of the most critical design decisions in a media gateway system is the selec-
tion of parallelization scheme. Hence, it is a very important research issue. Follow-
ing we list a couple of possible parallelization alternatives.

• Using multi-threading

If it is possible to reduce Inter-processor and memory accesses, use more parallel
data transfers to reduce the transfer latency (overhead), and make each processor
more self-contained, the multi-threading approach would be more efficient.

• Using port processing

Parallelization could be applied if there is one protocol processor supporting each
physical port. The shared resource is the control memory.

• Using protocol-layer processing

Another possible parallelization scheme is to have one processor process each
protocol layer. This means that the packet data is shared.

• Using connection-based processing

Each processor handles one (or a group of) connections. This require a flexible
processor and avoid control memory sharing, i.e. the connection states does not
have to be shared. The drawback is saturation during bursty traffic.
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• Using task-based processing

Each processor is dedicated for a specific (or group of) protocol processing
tasks. A dedicated hardware is possible but it requires a lot of shared memories.

13.1.8 Inter-processor communication

Normally different types of processors used in a multi-processor gateway have
different types of interfaces and bit-rates. They have different control-path and
memory interfaces. Regardless, it is important to remove the overhead in the Inter-
Process Communication and create:

• Common data-path interfaces

In network processors it is common to transport data in fixed-sized cells over the
back-plane. The size of these cells and the tagging (control-information) that is
connected to each cell must be designed and evaluated with a system-perspective.
This data-path interface have a huge impact on the memory architecture. Hence,
they must be co-optimized.

• Low-overhead common signaling-interface

By nature a heterogeneous system will have a heterogeneous and distributed
control path. It is important that this signaling interface is kept simple (to avoid
overhead) yet flexible.

13.2 Gateway memory systems
Memory is a major part of any modern SoC. Since memory technology is not

scaling with Moores law, the part of the system that is memory, is currently
increasing. Recently, there has been some new types of memories emerging.
These are dedicated for network processing (search engines) but the increased
bandwidth and reduced latency has not been enough. Hence, the main research
focus has been (and should continue to be) on memory usage.

A transcoding media gateway is a specialized router that converts high-band-
width or high-resolution data (e.g., video) to lower-bandwidth (suitable for wire-
less links) or lower-resolution (suitable for handheld displays). Thinning a data
stream to match the capabilities of the end device can reduce latency and improve
efficiency in the use of transmission bandwidth.

The processing in a media gateway can be classified according to the task-type
which is illustrated by figure 13.5. There are some tasks suitable for processing on
general purpose processors, some on DSPs and some on dedicated network pro-
cessors.

During the processing of a packet in the media gateway different memories are
accessed several times which is depicted in figure 13.4. These accesses is a major
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contributor to the overall power consumption and therefore important to minimize.
One common way of doing that is to place the payload in memory when a packet is
received and not to access it before the data is transmitted. Some times this is not
possible because the algorithm needs to access the payload data, e.g. voice com-
pression. In order to reduce the size and number of accesses to the memory, it is
important to carefully schedule the memory usage and architecture.

Ingress packet
processing

Egress packet
processing

Application

processing

On- or off-chip memory

Figure 13.4: During the processing of a packet in a gateway, data normally have
to be stored to and then accessed from memory several times before a new packet
has been created and then sent away. If the number of memory accesses can be

reduced it will result in a reduction both the memory size as well as the area and
power consumption which will reduce the cost.
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Figure 13.5: A heterogeneous system architecture is required due to the heteroge-
neous nature of the processing tasks in a media gateway. As a result of this heter-
ogeneous nature of the system, the memory organization becomes very important.
It is the key-issue for successful integration of all these processors (General Pur-
pose CPUs, Protocol Processors, or DSPs) which may have different bit-rates and

heterogeneous interfaces for control.
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The basic requirements on the memory architecture in a media gateway includes:

• Sufficient scalability/flexibility
• Sufficient throughput/bandwidth
• Low power/area consumption

13.3 Application driven memory optimization
Packet information is normally stored and accessed several times during the pro-

cessing (packet traversal) in a gateway. First of all, the packet is stored in an Input-
buffer before the Ingress processing takes place. In our previous research we have
shown how this input buffer can be eliminated by data flow based processing
which reduces the memory access.

Secondly, the payload is stored in a shared memory acting as the switch of the
gateway. Using cut-through switching, the size of the memory acting as a crossbar
switch can be lowered. Cut-through switching is a method to improve the through-
put (bandwidth) of the switch but it can also be used to provide QoS and reduce
the memory cost. If the packet data have to be processed by an application proto-
col, e.g. voice compression or echo cancellation, additional memory access and
data exchange is required. If this communication have to be off-chip due to the
limited chip-area available, it is very costly in terms of power and latency. Memo-
ries are also used to store the program-code and control information (e.g. connec-
tion state variables). All of these heterogeneous (logical) memories can and
should be optimized so that an efficient memory architecture is obtained.

13.3.1 System-level hand-over

Normally a gateway must support three basic functions. First of all packets needs
to be received (terminated) and transmitted (created) according to standards
defined for each protocol layer. Secondly a switching function must be supported.
Finally, there are many application layer tasks which have to be supported. These
include voice compression, tone processing, fax/modem communication etc.
Since these tasks (and the DSPs they normally run on) is large and complex sys-
tems, they are normally implemented as a separate chip. Normally off-chip memo-
ries are used to transport data to and from these DSPs.

If all of the Media Gateway could be accommodated on-chip, this system-level
hand-over memory access can be avoided. That would lower both the processing
latency and the power consumption.

13.3.2 Switching memory usage

IP is based on best-effort while ATM supports a variety of QoS requirements.
The drawback of IP is the low bandwidth while it does not require any setup delay
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since it is connection-less. The ATM has the opposite characteristics. Today it
becomes interesting to combine the two in order to find a high-performance switch-
architecture that supports QoS. This is especially interesting in mixed networks.
Consider for example a gateway with IP on one side and ATM on the other. By
nature such a gateway must combine the properties of both an IP and an ATM
device.

An ATM-packet is small (53 bytes). If the size of the payload-data is relatively
moderate, ATM networks provide higher throughput compared to IP networks, due
to the shorter header length (5 B compared to 20 B).

The drawback with ATM is that a Virtual Circuit (VC) has to be established
between the sender and the receiver in order for the ATM packets to find their way
to the destination. The main advantage of ATM networks is the inherent support for
QoS. One example is low latency transmission using prioritization which is very
important for certain applications, e.g. VoIP/VoATM.

There are fundamentally two ways of designing a switch. One is the store-and-
forward method where a packet is basically stored, reassembled, and checked for
different types of errors before it is forwarded to an output-link. This is the tradi-
tional way of implementing an IP switch. One drawback is that the latency can not
be guaranteed although flows can be prioritized.

The other solution is to use some sort of cut-through switching which means that
parts of a payload or packet is forwarded before it has been assembled in the
switch. This means that the reassembly and other processing tasks in the switch are
bypassed. This can for example be used if a long IP packet comes in to the switch
and thereafter is forwarded as ATM packets. When the IP header is received the
switch knows where to send the data. Hence, it can be transmitted to an output link
as soon as enough data to fill one ATM packet (48 B) has been received. This nor-
mally increases the throughput since the routing procedure is simplified because
the VC has already been setup. Cut-through switching also means that the memory
position where the beginning of the packet has been stored, is free to be used to
store new payload data coming which is depicted in figure 5. If the packet-size is
500 B this reduces the memory size with 90% as illustrated by figure 13.6.

There are two situations where the use of cut-through switching is especially ben-
eficial:

1) If a certain flow of packets have many large packets the latency can be reduced
if packets are sent out before all of the packets have arrived. This also reduces the
memory size since the entire payload is not stored in the memory at the same time.
If the switch for example identifies a TCP Syn request and an ftp message in the
upper-layer payload it is natural to guess that this flow will contain many large
packets.
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2) If a certain flow/session (host-host pair) have higher priority, e.g. demands
lower latency during a VoIP session, it is possible to provide low latency using
cut-through switching.

Cut-through switching can be applied to some flows or to all. If only some flows
uses cut-through switching the others use normal store-and-forward type of
switching. A switch typically has a mode where the operating mode of a port will
change from cut-through to store-forward if the error rate exceeds a certain (con-
figurable) threshold.

13.3.3 Control memory

The proposed control memory stores inter-packet connection variables. This
information is used to support reliable end-to-end communication between net-
work entities. It basically tells the gateway what to do with received packets (ATM
or IP). This information is normally shared between the ports of the gateway, e.g.
routing tables. Hence, this type of memory is very difficult to distribute because of
coherence problem. This is however an interesting topic for future exploration.
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Figure 13.6: The amount of memory used in a cut-through switching system (IP
to ATM conversion) compared to IP store-and-forward switching as a function

of IP payload length. If the payload size is greater than the size of an ATM pack-
ets payload (48 B), the memory-size can be reduced.
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13.3.4 Program memory

The proposed PPP has an optimized ISA which is dedicated to control a number
of configurable hardware accelerators (Functional Pages). The optimized ISA and
the configurable hardware reduces the control-overhead. This means that the size of
the program memory can be significantly reduced which saves area, power and
consequently money.

13.3.5 Caches

Host Address Caching is an existing solution [5], but in general packet data lacks
both temporal and spatial dependencies and therefore the use of data-caches is not
very useful in network processors. On the other hand the application processing
DSPs in a gateway system may be efficiently supported by data-caches. Instruction
caches is normally very useful. But if a small code-memory (including branch-
units) is used the use of instruction caches becomes questionable.

In order to successfully distribute caches to different processors in a multi-proces-
sor system, it is very important to keep all the caches coherent. E.g. if a routing-
table is updated in one NP all other routing tables must be updated. In instruction
caches the coherence is not as important.

13.4 Implementation issues
Once a memory organization and hierarchy has been decided, a second stage of

optimization starts. The physical and logical implementation have a huge impact on
the memory cost and performance.

13.4.1 Memory technology mapping

The selection and development of SRAM, DRAM, and new types of low-latency-
access memories is important for bandwidth, latency and power-consumption. Nor-
mally all of the memory can not be accommodated on-chip, so a selection of which
parts of the memory architecture to be On/Off-chip is important.

13.4.2 Search engines

Search-engines are commonly used to identify the actions to perform in a gateway
based on header information of received packets. There are three ways of imple-
menting these search engines. Basically each way represents a special type of
memory, i.e. CAM, TCAM, and RAM-based memories. Using combination of this
a very efficient classification and filtering can be supported. Besides the design of
these search-engines, one interesting research topic is the interfacing between these
accelerators and other processors in the system, e.g. look-aside interfaces.
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13.4.3 Payload management

A payload manager is essentially a hardware-based memory controller. It keeps
track of payload data stored and have three basic functions:

A read-pointer controls which packets should be read from the payload memory
for transmission on output links. A write functions allocates and point out memory
positions where new payloads are written. Finally the payload-manager should
have a free-list function that point out free memory positions. It is especially
tricky to keep track of multi-cast messages. They should be kept in the payload
memory until the message has been transmitted onto a number of output links.

13.5 Conclusion
As a conclusion the following items are listed as possible and perhaps even suit-

able future research topics in the area of Protocol Processors for Media Gateways.

• Task analysis to find suitable accelerators
• Evaluation of parallelization schemes
• Development of data-path and signaling interfaces for inter-processor commu-

nication
• Memory controller (accelerator) design for fast path processing
• Search-engine design including interfaces using benchmarks
• Evaluation and design of a cut-through switching system using benchmarks
• Cache design
• Input buffer optimization through wire-speed processing
• Memory technology evaluation from a system perspective
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