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Abstract. In order to provide error detection in communication networks a
method called Cyclic Redundancy Check has been used for almost 40 years.
This algorithm is widely used in computer networks of today and will continue to
be so in the future. The implementation methods has on the other hand been con-
stantly changing. A novel architecture suitable for use as accelerating hardware
in an protocol processor has been implemented and manufactured. It provides
both high throughput and configurability for different protocols when used in a
network terminal. Since the computation of the CRC is one of the most computa-
tional extensive operations performed by a network terminal the use of the
accelerator presented here would reduce the workload of a host processor sig-
nificantly.

1 Introduction

Both computer and human communication networks, uses protocols with ever increasing
demands on speed, cost and flexibility. There is also a strong development towards an
increased use of network protocols for applications where other techniques where common
earlier, e.g. voice and video. One reason is that packet based network protocols can normally
handle a mixture of any kind of traffic. For network node components such as routers,
switches and bridges, the performance needs can be fulfilled by using Application Specific
Integrated Circuits (ASIC) or Application Specific Standard Products (ASSP). This will
probably be the case also in the future due to there relatively cost-insensitive users. In order
to let the end-user take advantage of the bandwidth enhancement in today networks, tomor-
rows Network Terminal (NT) hardware must support transmission speeds of Gbit/s [10].
Hardware for such NT components is on the other hand sold on a cost-sensitive market share
with high demands on flexibility and usability.

Traditionally NT has been implemented using ASIC:s for the lower layers in the OSI-
Reference Model [17] with an CPU-RISC based SW implementation of the upper layers [8],
or completely implemented in software [1], [3], [17]. Usage of standard, general purpose
CPU:s, is expensive in terms of cost, space and power due to their lack of dedicated hard-
ware. There is also an upper capacity limit, set by the I/O capacity and the instruction rate of
the CPU.

In [6], [7] we presented a new architecture for configurable protocol processing that sup-
ports programmability on the upper layers and gives both configurability and high perfor-
mance on the lower layers in order to solve these problems. This kind of solution is also
supported by [18], [19] and [14]. This architecture specifies that the data-path of a protocol
processor should be implemented as configurable functional units. In paper [21] the authors
of this paper compared different implementation methods based on simulations. In that



paper we stated that the without any doubt most computational extensive task, Cyclic
Redundancy Check (CRC) [3], [20], should be implemented as configurable hardware, sup-
porting buffering free in-line processing.

The speed requirement is very important since a protocol processor must buffer incom-
ing data if jobs are not completed at wire-speed. This leads to high costs in terms of power
consumption, area and manufacturing costs due to the usage of buffers. The configurability
is also very important in order to supply for adaptability to different protocol standards.
Instead of using multiple application specific CRC generators dedicated for one (or several)
protocols that are switched between depending on which protocol that is currently in use, we
would like to use one accelerator configurable for a wide area of protocols.

Different techniques for implementation of the CRC algorithm are presented in chapter
1.1. In chapter 2 a novel implementation is presented and in chapter 3 some results and test
environment are discussed.

1.1 The CRC algorithm

Cyclic Redundancy Check is a way of providing error control coding in order to protect data
by introducing some redundancy in the data in an controlled fashion. It is a commonly used
and very effective way of detecting transmission errors during transmissions in various net-
works. Common CRC polynomials can detect following types of errors:
• All single bit error
• All double bit errors
• All odd number of errors, provided the constraint length is sufficient
• Any burst error for which the burst length is less than the polynomial length
• Most large burst errors

The CRC encoding procedure can be described by equation 1.

(1)

V(x) is the n bit long data word transmitted and it consists of the original data and U(x)
followed by a codeword S(x) called the CRC-sum. S(x) are the extra bits added to a message
in order to provide redundancy so that errors during transmission can be detected. The
length of the S(x) is denoted the constraint length. The constraint length of the most com-
monly used CRC polynomials are between 8 and 32 bits. S(x) is computed according to
equation 3.

(2)

(3)

S(x) is by other words the reminder resulting from a division of the data stream and a
generator polynomial g(x). Since all codewords are divisible with g(x), the remainder S(x)
of the left hand side of (3) has to be zero for a real codeword.

The actual coding-procedure is the same on both the receiving and transmitting end of
the line. The CRC encoding/decoding principle is illustrated by figure 1.
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As can be seen in figure 1 the receiving NT perform a CRC-check on the incoming mes-
sage and if the result (S(x)) is zero, the transmission was error free. One more practical way
of solving this is to compute the CRC only for the first part of the message U(x), and then do
a bitwise 2-complements addition with the computed checksum S(x) on the transmission
side. If the result is non-zero the receiver will order a retransmission from the sender.

1.2 Traditional implementations

This section introduces the commonly used and presents one new architecture for implemen-
tation of the CRC algorithm. It should be noted that pipelining which is a common technique
for increasing of the throughput, is impossible to use for CRC because of the loop in all gen-
erators.

Software (SW) Solution[3], [1]: The CRC algorithm can always be implemented as an
software algorithm on a standard CPU or general purpose DSP, with all the flexibility repro-
gramming then offers. Since there in most communication network terminals exists a CPU
or DSP, the SW-solution will be cheap or free in terms of hardware cost. The drawback is
obviously the computational speed since no general purpose CPU can achieve the same
troughput as dedicated hardware. One general purpose RISC CPU need roughly 30 instruc-
tions / byte to perform CRC generation. The processing load might also be a problem for the
host processor in many applications.

Serial ASIC Solution: Linear Shift Register (LSR) with serial data feed [20] has been
used since the sixties to implement the CRC algorithm, see figure 2. As all hardware imple-
mentations, this method simply perform a division and then the reminder which is the result-
ing CRC checksum, is stored in the registers (delay-elements) after each clock cycle. The
registers can then be read by use of enabling signals. Simplicity and low power dissipation
are the main advantages. This method gives much higher throughput than the SW solution
but still this implementation can not fulfill all the speed requirements of today network
nodes. Since fixed logic is used there is no possibility of reconfigure the architecture and
change the generator polynomial using this implementation. Several loop-connections
schemes and reset alternatives exist.

Parallel ASIC Solution: In order to improve the computational speed in CRC generat-
ing hardware, parallelism has been introduced [2], [4], [5], [9], [11], [12]. The speed-up fac-
tor is between 4 and 6 when using a parallelism of 8. By using fixed logic, implemented as
parallelised hardware, this method can supply for CRC generation at wire speed and there-
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FIGURE 1. Principle of error detection using the CRC algorithm.
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fore it is the pre-dominant method used in computer networks. The parallel hardware imple-
mentation is illustrated by figure 3. If the CRC polynomial is changed or a new protocol is
added, new changed hardware must be installed in the network terminal. That would be very
expensive. The lack of flexibility makes this architecture non suitable for use in a protocol
processor.

LUT based solution
One way of implementing configurable hardware is by using Look-Up-Tables (LUT) as

proposed by [3], [12] and [2]. The architecture is illustrated by figure 4.

This implementation can be modified by using a larger or smaller LUT. If the size of the
LUT is reduced the hardware-cost in terms of power consumption and area will be reduced
but in the same time the Combinational Network will be increased so the effect will be can-
celled. The optimal solution has not been derived. In [21] we stated that the LUT solution
gives a rather high throughput have limitations in terms of configurability. The LUT imple-
mentation enables some configurability since it is possible to change the polynomial by
changing the content of the LUT memory. However there is no possibility to adjust for dif-
ferent constraint lengths if the combinational logic not is reconfigurable. Further any change
of polynomial and/or constraint length would take a significantly number of clockcycles to
perform since all the contents of the LUT have to be recalculated and replaced. This problem
may force the terminal to buffer the incoming data and therefore making in-line processing
impossible.

2 Implementation

Another, novel implementation method is theRadix-32 Configurable CRC Unit, has been
implemented and manufactured. The architecture combines configurable and parallel hard-
ware which makes it suitable for use in a protocol processor. The architecture will not com-
pete with the traditional methods presented in chapter 1 but rather replace them in an novel
application area. The throughput will be in the order of 30 to 50% lower than if a LUT
implementation would have been used. This is ilustrated by figure 5.
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FIGURE 4. Look Up Table based configurable hardware.



2.1 Configuration

By noticing that any polynomial of a fixed length can be represented by implementing the
CRC using a LSR with switches on the loop back as illustrated by figure 6, a configurable
hardware can be implemented using NAND-gates to implement the switches.

This allows us to change the polynomial g(x) of a given length L by storing a bit descrip-
tion of the polynomial in a register. However some protocols uses CRC with different con-
straint length L. This can be solved by using reset-signals for the flip-flops not used as
illustrated in figure 7. This also enables a programable shut-down feature that saves power
when the CRC is in-active. All flip-flops also needs a preset input since before the start of
the computation all flip-flops must be set to “one”.

2.2 Parallelism

In order to improve the speed of the Radix-32 Configurable CRC, a 8 - bit wide input data
stream is used as can be seen in figure 8.
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The resulting bit in each position k in the CRC register then depends on the value of the
k-8 CRC bit, the last eight CRC bits, the polynomial bit description and the input bits. The
logic, which consists mainly of XOR and NAND-functions provides the necessarily config-
urability. The logic is further explained by (4), note that the sum is modulo-2 (implemented
as XOR).

(4)

For a fixed polynomial CRC, the throughput gets higher the wider inputs are used. The
speedup in a configurable CRC is however not that significant. In simulations we have found
it to be less than 20% when doubling the input width from 8 to 16 bits. Further it is clear that
every network seen today are byte-based. This means that a multi-byte calculation of the
CRC must handle the last bytes in a transmission using some special algorithm which will
increase the overall complexity and thereby reduce the gain. That is why a 8 bit-wide input
has been chosen.

The polynomial registers makes it possible to implement any given CRC algorithm of a
given size. Using shut-down logic on parts of the circuit enables the CRC to be configured
for any polynomial with a constraint length up to 32 bits. This means that for example CRC
polynomials for protocols such as HIPERLAN, UMTS, ATM and Ethernet is manageable.
The CRC unit can be reconfigured for a new protocol within on clock cycle and then process
an incoming packet without using buffers or memory.
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3 Measured results

TheRadix-32 Configurable CRC Unit Radix-32 Unit was implemented using a synthesis
tool called Build Gates from Cadence. Place and Route tool was Silicon Ensemble, also
from Cadence. The standard cells used comes from AMS 0.35 m 3.3 V process.

The chip manufactured contained 2 additional designs and one Parallel/Serial-converter
for speedup of the input data feeding. In order to use a minimum number of pads on the chip
the polynomial register implemented using a shift register. Also the output is bit-serial out
shifted from the chip.

Due to the limiting pad numbers the controllability of the chip is limited. Therefor test-
ing on a limited set of random data has been used in order to verify the functionality.
Another test limitation is the fact that the measurement equipment (pattern generator) avail-
able only allows stepwise increment of the frequency. However one can by reducing the sup-
ply voltage theoretically calculate the maximum throughput. Using this method the
measured maximum frequency for the design is 189 MHz which gives a throughput of 1512
MB/s. The simulated result from static timing analysis suggested 186 Mhz which is very
close.

4 Conclusions and further work

This paper incudes an overview of different implementations of the CRC algorithm from
a throughput and flexibility point of view. Further a solution suitable for use in an protocol
processor has been presented.

With a 8 bit wide input Configurable Radix -32 CRC running on 189 MHz a throughput
of about 1.5 GB/s which is sufficient today. In a few years the dominating terminal protocol
will probably be 10 GEthernet which means that the speedup required is under 7 times. That
is obviously within reach without changing the architecture used by just taking advantage of
scaling. If the CRC is used as a accelerating functional unit in a protocol processor such as
the one presented in [6] it would significantly reduce the workload of the host processor.
Since it operates on wire-speed the need for buffering of incoming data is removed and
power consumption will be reduced significantly. Multiple protocol processors can then be
used as port processors on a system-on-chip (SoC) in order to provide really high data-rates.

A reasonable continuation of this work is to integrate the CRC with a configurable
encoder and decoder for convolutional codes since they are both used together in many pro-
tocols. Using such an accelerator the need for buffering and scheduling handled by a host
processor would be relaxed in many wireless applications.
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