
ABSTRACT

In the emerging research area of protocol processors
(PP) there exist many hardware platform proposals.
One example of such a platform solution has been pro-
posed by the author in a series of papers. The papers
have mainly been focusing on datapath organization
and optimization. This paper briefly introduce the pro-
posed platform and the system integration perspective.
Further this paper introduce the optimization process of
the three levels of packet buffers. This optimization pro-
cess is very complex and the optimal architectural solu-
tion is strongly dependent on a large number of
parameters, e.g. network type and traffic, host system
and physical implementation process. Using simulation
of energy consumption characteristics a number of
architectural conclusions have been made.

1. INTRODUCTION

Both computer and human communication networks
use protocols with ever increasing demands on speed,
cost, and flexibility. For network node components such
as routers, switches and bridges, the performance needs
have been fulfilled using Application Specific Inte-
grated Circuits (ASIC) or Application Specific Standard
Products (ASSP) since these applications traditionally
have had quite moderate demands on programmability.
These traditional approaches will probably continue to
co-exist with more programmable solutions such as net-
work processors (NP) in the future, due to their rela-
tively cost-insensitive and performance demanding
consumers. Having said this, it is clear that the network-
ing industry is requesting moore programmable devices
in tomorrows network.

In order to let the end-users take advantage of the
bandwidth enhancement in today networks, tomorrows
Network Terminal (NT) hardware must support trans-
mission speeds of Gbit/s. Hardware for such NT com-
ponents is on the other hand sold on a cost-sensitive
market share with high demands on flexibility and
usability. Traditionally NT has been implemented using
ASIC:s situated on the network interface card process-
ing the lower layers in the OSI-Reference Model and a
CPU-RISC based SW implementation of the upper lay-
ers. Usage of standard, general purpose CPU:s, is
expensive in terms of cost, space and power due to their
lack of dedicated hardware. Today it is easy to find Net-
work Interface Card (NIC) supporting multi-gigabit net-
works but such bandwidth can not be utilized by the

host since it requires the host to be fully loaded process-
ing layer 3 and 4 protocols, leaving nothing for the
application and system processing. The research focus
has mainly been on router and switching applications so
far, but in the future the terminals will also require off-
loading using programmable high-speed solutions.

A PP architecture intended to be used as a offloading
device in a network terminal was proposed by the
author in [1]. As most PP, it consist of more or less pro-
grammable devices that can accelerate and offload a
host processor, by handling the communication protocol
processing. The protocol processor is a domain specific
processor that have superior performance over general
purpose CPUs but still provides flexibility through pro-
grammability within the application domain. The hard-
ware platform of the protocol processor is further
discussed in chapter 2. The platform has so far only
been specified for packet reception. The remaining parts
of this paper will focus on considerations and optimiza-
tion of the memory architecture in the proposed PP plat-
form. Especially the buffering of incoming packets
using registers, SRAM FIFO and SRAM memories will
be discussed in chapter 3 and 4.

2. PROTOCOL PROCESSOR

The proposed PP is intended for offloading of packet
processing in a network terminal. The PP can handle up
to layer 4 type of protocols. An overview of the system
integration is illustrated by figure: 1. The PP consist of
three major components. The first one is a general pur-
pose micro controller responsible for the control inten-
sive processing of the slow path. This type of processing
tasks is common in the higher protocol layers. The sec-
ond component is the programmable protocol processor
(PPP) which is responsible for the high-performance
acceleration of the data-intensive processing tasks. The
last type of components are memories. There are three
types of memories, a program memory for the control
unit in the PPP, a control memory where inter-packet
control information such as connection variables is
stored. There is also a SRAM based packet buffer (PB),
situated between the offloading PP-device and the host.
The packet buffer is used for storage of incoming pack-
ets until they have finally been accepted as correct pack-
ets which should be provided to the host. If a packet
buffer not is possible to accommodate on-chip the
received packet data has to be stored in the hosts main
memory.

Power Efficient Packet Buffering in a Protocol Processor

Ulf Nordqvist
Division of Computer Engineering

Department of Electrical Engineering
Linköping University, SE-581 83 Linköping, Sweden

Phone: +46-13-282903,
E-mail: ulfnor@isy.liu.se



2.1. Streaming data

The PPP operates on streaming data. This means that
the operations have to be exactly synchronized with the
incoming 32 bit wide data stream. The main task of the
protocol processor during packet reception is to decide
if a packet should be discarded or accepted for further
processing.

3. PACKET BUFFERING

According to figure: 1 received packets will stream
through the fast path (e.i. PPP) and if the packet is
accepted, the payload data will be stored in a memory.
Then the application running on the host CPU can
access the data for further processing. The memory
where the packets are stored must be at least 1 MB in
order for a TCP payload to be accommodated. There
exist many different ways of organizing the memory
architecture in the terminal. Some of the design choices
are illustrated by figure: 2. The optimal solution
depends mainly on the available chip area, e.i. on-chip
memories will always be desirable if they are possible
to accommodate. Minimal area will be used if the proto-
col processor and the host can use shared memories
(figure: 2 a and b). The problem with shared memories
is that the host processing (e.i. the application) will be
interrupted leading to performance degradation.
Remember that the purpose of the protocol processor is
to offload and accelerate the application processing run-
ning on the host. In order to reduce this host OS distur-
bance a special on-chip packet buffer (> 1 MB) can be
used for intermediate storage of the incoming packets.
This is illustrated by figure: 2 c. The host memory orga-
nization is not a part of this research project and is very
hard to predict, but as illustrated in figure: 2 the pro-
posed PP platform can be integrated with a wide variety
of host architectures.

3.1. Optimization

As illustrated by figure: 2 d, the received packets
streaming through the input buffer into the PB SRAM
will be discarded if the protocol processor detects any
errors in the packet. Packets will be discarded if the
address, port numbers, checksums, CRC, etc. is
errornous. This is the reason why it make sense to use
three different packet buffering components in the
architecture.

Example: According to figure: 2 d), α packets are
received and streams through the registers in the input
buffer. Then β packets will be discarded leaving α−β
packets to be buffered in the SRAM FIFO. While
streaming through the FIFO another χ packets will be
discarded. According to this finally ε=α−β−χ−δ packets
will be accepted.

In order to reduce fan-out in the PPP and thereby
enabling high speed operation, at least five 32-bit wide
registers have to be used.

Figure 1. System and memory organization overview.

NT Host

CPU

L1
Cache

L2
Cache

DMA

O
ff-

ch
ip

 h
os

t m
em

or
y

Input buf

Accelerat

C&C

PMEM CMEM

µC

PΒΜΕΜSoC

PPP

Host

MEMInp. buf.

PPP

Chipa)

Host

MEMInp. buf.

PPP

Chipb)

Host

MEMInp. buf.

PPP

Chip

Cache

PBPA

c)

FIFO
PB

discarded packets

d)

Figure 2. Input buffering design choices. a) Data is
transferred directly to the host on chip memory. b)
Data stored in the host-off-chip memory. c) A Phy
ASIC deals with layer2 reception. A Packet Buffer

SRAM stores received packets before the host access
the data. d) Some packets are discarded while stream-

ing through the 3 levels of receiving packet buffers.

Input buffer

α β χ δ ε



3.2. Optimization parameters

What are the input parameters determining the sizes of
the three input buffer stages?

• Network traffic. The length, protocol type, and
transmission error rate.

• Discard decision latency. Depends on type of
packet, type of error, and the fast path implementa-
tion.

• Buffer stage (dynamic) energy cost. Depends on
size, clock frequency, activity, implementation
method and process.

4. SIMULATIONS

In order to optimize the average energy consumption
in the 3 input buffer stages a number of assumptions
have to be made. First of all I assume that the packets
are non-fragmented and that the length and type of
packets is distributed according to table 1 and 2. The
decision latency for different protocols and errors is
specified by the program controlling the PPP operation.

Using MatLab a number of different simulations have
been made. During the simulations the error-rates,
buffer costs and buffer sizes has been used as input
parameters to find the input buffer configuration that
gives minimum average energy consumed per packet
received.

4.1. Simulation results

As illustrated by figure: 3 the discarded packets will
consume more energy if the number of register and
FIFO stages are low. The reason for this is that most
packets can be discarded before the data has streamed
into the big packet buffer memory (1 MB SRAM). In
figure: 4 we can see that the accepted packets will con-
sume less energy per packet if the number of register
and FIFO stages are reduced. The reason is that all
accepted packets except the control oriented (e.g.
IGMP, ICMP, ARP, RARP) will be stored in the packet
buffer memory anyway. In figure: 5 the two different
types of packets (discarded and accepted) has been
combined and we can identify the architecture that gives
a minimal energy consumption. Using assumptions on
the error rates in a normal network extracted from a net-
work statistics [2] and information on energy consump-
tion of different FIFO, registers and memories [3-8], the
resulting optimal solution with minimal energy con-
sumed per packet is displayed in table 3 and 4. The
tables state that in order to optimize the packet buffer
architecture from a power perspective, we have to
choose a small register based buffer, a medium sized
FIFO buffer and a large PB SRAM. The energy con-
sumed in the three buffer stages is about 40000 times
the switching energy in a standard cell based flip-flop..

Table 1: Packet size distribution.

1-10 B 11-490 B 491-510 B
511-

1500B

40% 30% 20% 10%

Table 2: Packet type distribution and discard
decision latency.

Type # of packets
Decision latency

Address (Checksum)

Ethernet 104 4 (Length)

ARP 2 5 (length)

RARP 2 5 (Length)

TCP 65 10 (Length)

UDP 32 10 (Length)

IPv4 97 6 (8)

ICMP 2 6 (10)

IGMMP 1 6 (10)

Total 104

Table 3: Dependency on error rates in the network.
(Error factor 1 corresponds to CRC error rate = 10-5

and TCP lost packets = 0.01 as examples)

Error factor
 Register

stages
FIFO
Stages

Energy/
Packet

[105FF]

10 5 122 4.03

5 5 122 4.02

1 5 122 4.02

10
(Including
PHYASIC)

5 126 3.98

Table 4: Dependency on buffer implementation.
(L=FIFO Length)

Register
stage
write
cost

FIFO
write
cost

PB
Access

cost
#Reg #FIFO

4.5 15+L 700 5 122

4.5 15+2L 700 5 97

4.5 15+2L 1500 5 122

4.5 15+L 1500 5 125



5. CONCLUSIONS AND FURTHER WORK

To conclude the different simulation results obtained
we can note that the optimal packet buffer organization
is to use a minimal number of registers (5), a relatively
large RAM based FIFO (97-125 X 32bit). Further we
can notice that the packet error rate does not affect these
figures very much (< 1%). This means that the very
rough assumptions made on different error rates in a
typical network still are acceptable. The same thing
apply to the assumptions made on energy cost.

In order to get a better understanding on the real
energy cost of the two SRAM, a memory compiler and
detailed power estimations or simulations are needed.

So far we have assumed that the packets are non-frag-
mented. If fragmented packets are allowed we can
expect the optimal number of register stages to grove
since the decision latency is much higher (10-40 clock
cycles).

Finally the optimal solution depends on the host sys-
tem memory architecture. If the PB MEM is replaced by
the host memory the input buffer (registers and FIFO)
should be larger.

REFERENCES

[1] D. Liu, U. Nordqvist, and C. Svensson, “Configura-
tion-Based Architecture for High Speed and General-
Purpose Protocol Processing”, IEEE Workshop on Sig-
nal Processing Systems, Taipei, Taiwan, 1999, pp.
540-547.

[2] IPTraf IP Network Monitoring Software, on the www,
http://iptraf.seul.org/

[3] S. Barbagallo, M.Lobetti Bodoni, D.Medina, G.De
Blasio, M.Ferloni and D.Sciuto, “A Parametric Design
of Bui-in Self-Test FIFO Embedded Memory,” IEEE
International Symposium on Defect and Fault Toler-
ance in VLSI Systems, pp221-229, 1996.

[4] A.R. Feldman and T Van Duzer, “Hybrid Josephson-
CMOS FIFO,” IEEE Transaction on Applied Super-
conductivity, Vol.5, No.2, pp2648-2651, 1995.

[5] G.N.Pham and K.C.Schmitt, “A High Throughput,
Asynchronous, Dual Port FIFO Memory Implemented
in ASIC Technology,” Second Annual IEEE ASIC
Seminar and Exhibit, pp, 1989.

[6] M. Hashimoto, etc., “A 20ns 256K*4 FIFO Memory,”
IEEE J. of Solid State Circuits, Vol.23, No.2, pp490-
499, 1988.

[7] Austria Micro Systems, “0.35 m CMOS Libraries
(C35)”, on the www, http://asic.austriamicrosys-
tems.com/data books/index_c35.html

[8] NEC, “Data-sheet µPD431000A”, on the www, http://
www.nec.com

Figure 3. Average energy consumption of discarded
packets.

Figure 4. Average energy consumption of accepted
packets.

Figure 5. Average per-packet energy consumption in
the three input buffers. Minima in [5, 122].


	ABSTRACT
	1. INTRODUCTION
	2. PROTOCOL PROCESSOR
	2.1. Streaming data

	3. PACKET BUFFERING
	3.1. Optimization
	3.2. Optimization parameters

	4. SIMULATIONS
	4.1. Simulation results

	5. CONCLUSIONS AND FURTHER WORK
	REFERENCES

	Power Efficient Packet Buffering in a Protocol Processor
	Ulf Nordqvist
	Division of Computer Engineering
	Department of Electrical Engineering
	Linköping University, SE-581 83 Linköping, Sweden
	Phone: +46-13-282903,
	E-mail: ulfnor@isy.liu.se



