
Linköping Studies in Science and Technology

Thesis No. 911

Hardware Architecture for
Protocol Processing

Tomas Henriksson

ISBN: 91-7373-209-5 ISSN: 0280-7971
LIU-TEK-LIC-2001:48

Department of Electrical Engineering
Linköpings universitet, SE-581 83 Linköping, Sweden

Linköping 2001

iii

Abstract
Protocol processing is increasingly important. Through the years the hardware architectures for

network equipment have evolved constantly. It is important to make a difference between termi-
nals and routers and the different processing tasks they encounter. It is also important to analyze
in detail the functional coverage of a hardware architecture. The maximal supported line speed is
also interesting and especially which functionality can be kept at this line speed.

There are some types of hardware architectures that have gained much attention in research and
from industry. Among these application specific instruction set computers, RISC with optimized
instruction sets and reconfigurable hardware architectures are most often used. Very many net-
work processors have been presented that aim for routers. So far not many protocol processors for
terminals have been suggested. In terminals the requirements are different, for example low power
consumption is very important for battery powered terminals.

I and my colleagues have proposed a novel way to build a protocol processor for a terminal. The
main concept is to use an array of reconfigurable functional pages, which are connected in a deep
pipeline. This deep pipeline serial processor is supported by a micro controller for exception han-
dling and configuration tasks. The most performance-critical functional page in an Ethernet TCP/
IP environment is the cyclic redundancy check. We allocated and scheduled the cyclic redundancy
check in parallel with other functions. After having investigated different solutions we found that
our functional page for cyclic redundancy check can manage 10 Gb/s, if a 0.15 micron manufac-
turing process is used in combination with optimized RTL code and synthesis.

Our architecture allows extensive parallel operation. The functionality is partitioned into the
autonomous functional pages, which work in parallel. This reduces control overhead and simpli-
fies the verification process. Low control overhead and extensively parallel computations admit
low-power operation. The designed processor handles reception processing on a single packet or
frame. It works in parallel with the host processor and significantly reduces the workload on the
host processor. The designed processor always operates at line speed and supports up to 10 Gb/s.

iv Abstract

v

Preface
This thesis presents the results of my research during the period August 1999-October 2001.

The following four publications are included in the thesis:

• Tomas Henriksson, Ulf Nordqvist, and Dake Liu, “Configurable Port Processor Increases
Flexibility in the Protocol Processing Area”, Inproceedings of COOLChips III An Interna-
tional Symposium on Low-Power and High-Speed Chips, Kikai-Shinko-Kaikan, Tokyo, Japan,
April 24-25, 2000, pp. 275

• Tomas Henriksson, Ulf Nordqvist and Dake Liu, “Specification of a configurable General-
Purpose Protocol Processor”, Inproceedings of Second International Symposium on Commu-
nication systems, Networks and Digital Signal Processing, Bournemouth, UK, July 19-20,
2000, pp. 284-289

• Tomas Henriksson, Henrik Eriksson, Ulf Nordqvist, Per Larsson-Edefors, and Dake Liu,
“VLSI Implementation of CRC-32 for 10 Gigabit Ethernet”, Inproceedings of The 8th IEEE
International Conference on Electronics, Circuits and Systems, Malta, September 2-5, 2001,
vol. III, pp. 1215-1218

• Tomas Henriksson, Ulf Nordqvist, and Dake Liu, “Specification of a configurable General-
Purpose Protocol Processor”, Invited submission to aspecial issue of IEE Proceedings on Cir-
cuits, Devices and Systems as an extended version of Paper 2. The manuscript is under the
process of review at the time of writing.

Other publications, not included in the thesis:

• Ulf Nordqvist, Tomas Henriksson, and Dake Liu, “CRC Generation for Protocol Processing”,
in proceedings of NORCHIP 2000, Turku, Finland, November 6-7, 2000, pp. 288-293

• Tomas Henriksson, “Hardware Architecture for 802.11b Based H.323 Voice and Image IP
Telephony Terminal”, in proceedings of Swedish System-on-Chip Conference 2001, Arild,
Sweden, March 20-21, 2001

vi Preface

vii

Acknowledgments
First of all I would like to thank my advisor Professor Dake Liu for coming up with good ideas,

for always being positive and supportive and for all interesting discussions we have had. I would
also like to thank Professor Christer Svensson for making it possible for me to start my research
activities and for many interesting discussions.

I greatly acknowledge the hospitality of Professor Ingrid Verbauwhede at University of Califor-
nia at Los Angeles (UCLA) for letting me work in her group for five months during the spring and
summer of 2001. There I gained much knowledge on routers and switches and also had the oppor-
tunity to meet many fellow researchers and discuss various topics with them.

I thank my fellow Ph. D. students Ulf Nordqvist and Lic. Eng. Henrik Eriksson, and Professor
Per-Larsson Edefors, who have coauthored papers with me.

All other members of the divisions of Electronic Devices and Computer Engineering at
Linköpings universitet who have contributed to a nice working environment and with technical
and administrative support.

SwitchCore Corp. and George Liu, Ericsson Research, have been valuable resources of informa-
tion about future industry needs and current industry practice.

The thesis work was sponsored by the Swedish Foundation for Strategic Research (SSF) by the
Integrated Electronic Systems Programme (INTELECT).

viii Acknowledgments

ix

Contents

 Abstract ... iii
 Preface.. v
 Acknowledgments.. vii
 Contents .. ix
1 Introduction.. 1
1.1 Background ... 1
1.2 Computer Network Basics .. 2
1.3 Equipment in Computer Networks.. 3

1.3.1 Network Terminals ... 3
1.3.2 Routers .. 5

1.4 Processing Tasks in Computer Network Equipment... 6
1.4.1 Processing Tasks in Network Terminals .. 6
1.4.2 Processing Tasks in Routers ... 8

1.5 Performance Measures .. 9
References ... 10

2 Network Processors...................................... 11
2.1 Network Processor Architectures..11

2.1.1 General Purpose CPU ... 12
2.1.2 Fixed Function ASIC.. 12
2.1.3 Application Specific Instruction Set Computer .. 12
2.1.4 RISC with Optimized Instruction Set ... 12
2.1.5 Reprogrammable Hardware Architectures ... 13

2.2 Network Processor Survey .. 13
2.2.1 Motorola C-5 Network Processor ... 15
2.2.2 Intel IXP 1200 Network Processor ... 16
2.2.3 Agere FPP, RSP and ASI.. 16
2.2.4 Agere NP10 and TM10... 16
2.2.5 AMCC nP7120 ... 16
2.2.6 AMCC nP7250 ... 17

x Contents

2.2.7 AMCC nP3400 ... 17
2.2.8 EZChip NP-1 ..17
2.2.9 IBM PowerNP 4GS3 .. 18
2.2.10 Silicon Access iFlow .. 18
2.2.11 SwitchCore CXE-16... 18
2.2.12 Coresma 6001... 18
2.2.13 PMC-Sierra PM7388 .. 18
2.2.14 PMC-Sierra PM2329 ClassiPI.. 19
2.2.15 Broadcom BCM 5680... 20
2.2.16 Broadcom BCM 5632... 20
2.2.17 Broadcom BCM 1250... 20
2.2.18 Solidum Systems PAX 1100 .. 20
2.2.19 Sitera (Vitesse) IQ 2000 ... 20
2.2.20 Xelerated X40...20
2.2.21 Lantronix DSTni... 21
2.2.22 Clearwater Networks CNP810SP... 21
2.2.23 ClearSpeed Platform... 21
2.2.24 Lexra LX8000 .. 21
2.2.25 Entridia Forte.. 21
2.2.26 STM Network Processor Development.. 22
2.2.27 Infineon and Dresden University.. 22
2.2.28 Tampere University TTA for Protocol Processing... 22
2.2.29 UC Berkeley Reconfigurable Platform for Wireless.. 22
2.2.30 EU Protocol Processor Project ... 23
2.2.31 KTH Protocol Processor... 23
2.2.32 UCLA Packet Decoder ... 24

2.3 Network Processor Survey Conclusion .. 24
References... 24

3 Novel Architecture27
3.1 Novel Network Processor Architecture Introduction.. 27
3.2 Functional Coverage ... 27
3.3 Mapping of the Functionality to the Architecture... 29
3.4 GPPP Configuration.. 30

3.4.1 FP Selection.. 30
3.4.2 FP Configuration .. 30
3.4.3 FP Firing... 30

3.5 GPPP Benefits... 31
3.5.1 Performance.. 31
3.5.2 Power Consumption ... 31
3.5.3 Functional Verification... 31
3.5.4 Silicon Area .. 32
3.5.5 System Perspective... 32

3.6 Functional Page Specification... 32
3.6.1 Interface to the Data Pipeline ... 32
3.6.2 Interface to the Controller .. 33
3.6.3 Interface to the Configuration .. 33

3.7 Functional Page Examples.. 33
3.7.1 CRC Functional Page ... 34
3.7.2 Internet Checksum Functional Page... 35

xi

3.7.3 IP Destination Address Functional Page .. 35
3.8 Detailed Performance Comparison Example .. 36

3.8.1 Protocol Micro Operations.. 36
3.8.2 Implementation of Destination Address Checking... 37
3.8.3 Performance Comparison ... 37

3.9 Further Details... 38
3.10 Conclusion... 38
References ... 38

4 Paper 1.. 39
Abstract ... 40

5 Paper 2.. 43
Abstract ... 44
5.1 Introduction ... 44
5.2 Functional Coverage ... 44
5.3 General architecture proposal.. 45
5.4 Control Requirements ... 46

5.4.1 Layer transparent control .. 46
5.4.2 Peripheral control.. 46

5.5 Specification of the Functional Pages ... 46
5.5.1 Ethernet checksum calculation FP (ECCFP) .. 46
5.5.2 Ethernet destination address extraction and comparison FP (EDAFP) 48
5.5.3 Ethernet length/ethertype field extraction FP (ELTFP).. 48
5.5.4 IP header checksum calculation FP (IHCFP) ... 48
5.5.5 IP version field extraction FP (IVFFP)... 48
5.5.6 IP destination address extraction and comparison FP (IDAFP) 49
5.5.7 IP header length extraction FP (IHLFP) ... 49
5.5.8 IP total length extraction FP (ITLFP) ... 49
5.5.9 IP protocol/next header extraction FP (IPNFP).. 49
5.5.10 IP reassembly FP (IRAFP) ... 49
5.5.11 TCP-UDP checksum calculation FP (TUCFP)... 49
5.5.12 TCP-UDP packet length counter FP (TULFP) ... 49

5.6 The Controller and Counter Unit ..49
5.7 Discussion ... 50
5.8 Conclusions ... 50
Acknowledgments... 50
Appendix: List of Jobs .. 51
References ... 51

6 Paper 3.. 53
Abstract ... 54
6.1 Introduction ... 54
6.2 Mode of Operation .. 54
6.3 Implementation Considerations... 55

6.3.1 Standard Cell Implementation .. 55
6.3.2 Full-Custom Implementation.. 56

6.4 Simulation Results and Static Timing Analysis.. 57
6.4.1 Standard Cell Implementation .. 57

xii Contents

6.4.2 Full-Custom Implementation.. 57
6.5 Discussion and Extrapolation of Results .. 57
6.6 Conclusion .. 59
Acknowledgment .. 59
References... 59

7 Paper 4 ..61
Abstract ... 62
7.1 Introduction... 62
7.2 Functional Coverage ... 63
7.3 General architecture proposal ... 63
7.4 Control Requirements ... 64

7.4.1 Layer transparent and dependent control.. 64
7.4.2 Peripheral control ...66

7.5 Specification of the Functional Pages... 66
7.5.1 Ethernet checksum calculation FP (ECCFP).. 67
7.5.2 Ethernet destination address extraction and comparison FP (EDAFP)...................... 67
7.5.3 Ethernet length/ethertype field extraction FP (ELTFP) ... 67
7.5.4 IP header checksum calculation FP (IHCFP)... 67
7.5.5 IP version field extraction FP (IVFFP) .. 67
7.5.6 IP destination address extraction and comparison FP (IDAFP)................................. 67
7.5.7 IP header length extraction FP (IHLFP)... 67
7.5.8 IP total length extraction FP (ITLFP)... 67
7.5.9 IP protocol/next header extraction FP (IPNFP).. 67
7.5.10 IP reassembly FP (IRAFP) ... 68
7.5.11 TCP-UDP checksum calculation FP (TUCFP) .. 68
7.5.12 TCP-UDP packet length counter FP (TULFP)... 68

7.6 The Ethernet Checksum Calculation Functional Page.. 68
7.7 The TCP-UDP Checksum Calculation Functional Page .. 68
7.8 The Controller and Counter Unit ..69
7.9 Discussion ... 69
7.10 Conclusions... 70
Acknowledgments... 70
References... 70
Appendix: List of Jobs .. 71

1

1
1
1

1
Introduction

1.1 Background

Computer network usage has increased enormously over the last decades. When the Internet
gained popularity in the middle of the 1990’s, computer networks became everyone’s concern and
the network capacity was far less than the demand. In the last five years the data traffic has actu-
ally more than doubled every year [1.1]. In the second half of the 1990’s, the optical transmission
equipment and the optical fibers have been developed in order to cope with tens of gigabits/s
(Gb/s) on each physical link. With the introduction of dense wavelength division multiplexing
(DWDM) the fiber throughput increased further by more than one order of magnitude. In the near
future capacities of 3.2 Tb/s (=3200 Gb/s) will be available. The physical limit of the fiber is
somewhere around 100 Tb/s, when efficient coding techniques are used.

The electronic equipment that processes the information sent over these optical links has how-
ever not kept up with the increase in transmission speeds. This in combination with the need for
more advanced network features, such as quality of service, traffic shaping and network security
has recently led to the development of many new hardware architectures for network equipment.
Some of these architectures are already used in commercial systems, but others are only in the
development phase. This thesis discusses the suggested hardware architectures and presents a fun-
damentally new way of performing protocol processing.

This introductory chapter briefly explains the basics in computer networks and discusses the
processing needs in computer network equipment. The next chapter introduces network processor
architectures and surveys existing and upcoming hardware architectures. Finally, the novel archi-
tecture, developed by me and my colleagues, is presented and the following chapters, including
papers 1-4, are introduced.

2 Introduction

1.2 Computer Network Basics

Computer networks are complex and many different types exist. To thoroughly describe them
all is outside the scope of this thesis, however, computer network knowledge is of importance to
understand the content of the thesis. Except for this short introduction to computer networks, the
interested reader is encouraged to read the books [1.2] and [1.3] to gain further knowledge.

Computer networks are used to connect small groups of computers, located close to each other,
so called local area networks (LANs). There is a need to interconnect these islands of connectivity
and several different technologies have been developed. Nowadays two big winners have evolved,
for LANs it is Ethernet and for LAN interconnection it is the Internet Protocol (IP). Other proto-
cols keep appearing, such as wireless access protocols. At the same time, new types of equipment,
not traditional computers, get connected to computer networks. This makes the computer net-
works steadily changing. In this thesis focus on Ethernet, IP, and associated protocols is main-
tained throughout the text.

To easier understand how networks function, it is good to use the ISO/OSI (Industry Standard
Organization/Open Systems Interconnection) reference model, which consists of seven layers, see
figure 1.1. The reference model was developed 1984 and really describes how protocols should be

implemented. Most standards do not follow the reference model in detail, but it can be seen as a
basis for all computer networks. For the Internet protocols normally layer 5 and 6 are not used.

This layering can be used to describe the difference between LANs and the Internet. LANs only
use layer 2 to forward packets to the correct destination, but the Internet uses layer 3 to forward
packets to the correct destination. A destination is identified by an address. Addresses on layer 3
are world wide unique, but addresses on layer 2 could in principle be reused in every LAN in the
world. For Ethernet however, also layer 2 addresses are world wide unique. This reduces the con-
figuration need when one device is moved from one LAN to another. Protocol layers above layer
3 are only used in the communication peers in the strictly layered model. In reality however, the
network infrastructure make use of layer 4 and sometimes also layer 7 information.

A protocol on layer N provides a service for protocols on layer N+1. At the same time it uses
services from layer N-1. Protocols on layer 7 provide services for applications and protocols on
layer 1 use a physical medium instead of any services from a lower layer protocol to fulfill its
operation. Just as the seven layer model, also this nice service provider model only works in the-

Figure 1.1: The 7 layer ISO/OSI reference model

Layer 1: Physical Layer

Layer 2: Data Link Layer

Layer 3: Network Layer

Layer 4: Transport Layer

Layer 5: Session Layer

Layer 6: Presentation Layer

Layer 7: Application Layer HTTP, SMTP

TCP, UDP, ATM

IP, ATM

Ethernet, PPP, SONET, SDH

Ethernet, SONET, SDH, V32bis

Layers and names Examples

Equipment in Computer Networks 3

ory. In practice, the layers are sometimes not easily distinguishable and even sometimes not
wanted. For example ATM, which provides a transport service and thus should be categorized as a
layer 4 protocol, is used to transport IP packets which reside in layer 3. Therefore a well bounded
layer 4 network, such as an ATM network, can be seen as a layer 2 network by layer 3 protocols,
since layer 4 protocols provide similar service as layer 2 protocols, but normally over much wider
area. The Internet Protocol can also use its own service, i.e. a layer 3 protocol uses the service of
itself in the operation called tunneling. There are many more examples of when the protocol lay-
ering does not model the exact behavior of a network, but nonetheless it provides us with a helpful
way of thinking about network protocols.

A layer handles protocol data units (PDUs), which are used for communication. A PDU consists
of a service data unit (SDU) and some control information, normally organized as a header. The
PDU of layer n+1 is the SDU of layer n, i.e. more control information is added in each layer as the
original information proceeds towards layer 1 in the sender, see figure 1.2.

1.3 Equipment in Computer Networks

The different types of equipment in computer networks can roughly be categorized into two
main classes: terminals and routers. Of course this coarse categorization is not enough when look-
ing at implementation details. In this section, the terminals and their functionality will be
described in detail and then routers are explained more briefly, since they are not of the same
importance for the hardware architecture presented in this thesis.

1.3.1 Network Terminals

Network terminals are present in many different environments. The traditional network terminal
is the desktop or laptop computer, but new types of terminals such as network printers, web cam-
eras, IP phones and various embedded systems appear more and more frequently in our offices
and in our homes. This kind of terminals are typically connected to an Ethernet or via a modem
connection. Another type of terminal is the handheld battery-powered appliance which can be an
advanced mobile phone, a personal digital assistant (PDA), or a digital camera. This type of ter-
minal is connected through a wireless access network. Voice and image telephones will also be
connected through a multi service computer network instead of the traditional circuit switched

Figure 1.2: PDU passing between protocol layers

PDU (n+1) Layer n+1

SDU (n) Layer n

Layer n-1

Header

SDU (n-1)Header

PDU (n)

PDU (n-1)

4 Introduction

specialized networks that have been used so far. These will be a very important terminal category
in the near future.

Obviously, there are totally different requirements on these totally different types of terminals.
The thing that is characteristic for all terminals is that they are end-points is a computer network.
That means that when data is transported in the network a terminal is either the source or the des-
tination of the communication. No data passes through the terminal, therefore it does not have a
need for routing capability. A general view of a terminal can be seen in figure 1.3.

The terminals have to handle all layers of protocols in the ISO/OSI reference model. Layers 5
through 7 are application oriented and not discussed here. Instead the study starts with the trans-
port layer protocols. These transport layer protocols deal with the end to end communication and
many, e.g. TCP, are connection oriented. A connection oriented protocol must build up a connec-
tion before any data can be transported and it tears down the connection when the data transfer is
completed. A connection oriented transport protocol typically assures correct delivery of data to
the destination. This means that the terminal must keep track of many connection state variables,
which describe the state of the connection, e.g. how much data has been sent, received, and
acknowledged. A terminal must also handle conectionless transport protocols, e.g. UDP, which
provides a simple datagram service to the application oriented layers.

Except for the transport layer the network layer and the link layer must also be handled. The
network layer deals mainly with routing and the link layer normally with point to point communi-
cation. The link layer in the original Ethernet worked as an ether, where every terminal could hear
all traffic on the ether, which was a coaxial cable. Nowadays, however, the terminals are most
often connected with point to point links. The network layer is by definition used by the network,
i.e. the routers, and is of little interest for the terminal. It is used to identify the communication
peer and the terminal needs to insert the correct addresses in the network protocol packet header
when sending data and check and strip the same header when receiving packets.

The link layer can just as the transport layer be connection oriented, but in many networks this is
not the case, e.g. Ethernet. Some wireless protocols are connection oriented and they introduce
similar requirements on functionality as TCP. It seems like the development goes towards conec-
tionless link layer protocols even for wireless protocols, since the IEEE 802.11 standards are
gaining popularity.

Figure 1.3: A terminal

Terminal

Network

Protocol ProcessingApplications

Equipment in Computer Networks 5

1.3.2 Routers

Routers are fundamentally different from terminals, since their main operation is not to take part
in any communication, but rather to forward data to the correct destination. Routers can operate at
many different layers in the ISO/OSI reference model, traditionally they only manage protocols
up to layer 3, but this is about to change as will be discussed later on.

A router that only works on layer 1, the physical layer, is called a repeater. A repeater simply
amplifies the signal carrying the data so that it can travel longer distances. A router that works on
layer 2 is normally called a switch. A complete router works on layer 3 and interconnects two or
more layer 2 links of different type, which are nowadays normally point to point links. The Inter-
net Protocol (IP) is the network protocol that has become dominant in the world and it is not likely
that any other network protocol will take over in the foreseeable future, except from the next gen-
eration IP, IPv6.

Although routers main task is to forward data packets, they also act as end points for some com-
munication, the management communication. In a router the rules for how to forward packets are
stored in a table. Updating information for this table is among the things that must be communi-
cated to the router. Management protocols normally also allow an operator to collect statistical
information about the data traffic that flows through the router.

Generally the router activities can be split into two planes, the data plane and the control or
management plane. The data plane consists of the performance demanding and simple task of for-
warding packets to the correct link. The control plane consists of all other activities, that are more
complex, but do not require so fast handling, although routing table updates may be as frequent as
several hundred per second.

Traditionally routers are therefore built up with two different paths for packets. The fast path for
packets that shall only be forwarded and the slow path for packets that require more complex han-
dling. The packet stream from each link is split into the fast path and the slow path as early as pos-
sible in the processing.

Routers are becoming more complex as it is realized that they can be used for traffic shaping,
policing, statistics gathering, security, and quality of service. All of these tasks require the router
to process also layer 4 information in the packet header and sometimes even layer 7 information,
which typically requires scanning through all data in the packet.

Traffic shaping deals with the task of balancing the traffic that must pass a single point in the
network on two or more links that eventually all will lead to that point. Policing is concerned with
limiting the traffic from or to a certain terminal or group of terminals, e.g. if a company has only
paid for a certain bandwidth, the Internet service provider (ISP) will limit their usage to this band-
width. Statistics gathering is needed to efficiently be able to use traffic shaping and policing and
may also be used by the operator in order to analyze the network performance and resolve possi-
ble bottlenecks. Quality of service normally deals with guaranteed bandwidth and guaranteed
delay from source to destination with a certain high probability. Thus packets from certain
sources or packets that are part of certain connections may get prioritized treatment over packets
with only best effort service. For real time voice and video transmission, quality of service is
essential. Security can be anything from simple firewall tasks, such as not allowing packets from a
specific source to enter a special part of a network, to advanced virus scanning and denial of ser-
vice attack detection and prevention.

Routers are built in two completely different ways. The traditional architecture has the links
connected to line cards. The line cards include almost all functionality of the router. They are con-
nected to a switching backplane, which takes care of the transport of packets from one line card to
another. Packets are split into cells, which are passed over the backplane after arbitration has been

6 Introduction

used. Each line card needs to have buffers for incoming and outgoing packets, since the backplane
normally does not have the capability to store many cells. Each line card can support one or many
links. If there are many links these typically share the processing resources on the line card. This
type of routers are referred to as big routers in this thesis, and can be seen in figure 1.4. They are

common in the core and in the distribution parts of the networks.

The other way to build a router is the one chip solution, which tries to include all functionality
into one single silicon die. These routers obviously are not as scalable as the line card based, but
may allow high transmission speeds on a small number of links. Normally only the fast path is
handled by this one chip router and additional components such a slow path processing and mem-
ories are needed to complete the router. This type of router is referred to as a small router in this
thesis and can be seen in figure 1.5. Here the switching between the links is normally handled by
shared memory. All links must be able to write and read packets from the shared memory at line
speed, which puts a very high requirement on the memory bandwidth. This type of router is nor-
mally used in the access parts of the network. There are of course also mixtures of the two main
types of architectures.

1.4 Processing Tasks in Computer Network Equipment

The processing tasks that arise from the protocols used in computer networks will be addressed
in this section. They will be the foundation for the discussion on hardware architectures for net-
work processors in the next chapter. Like the previous section also this one is split into one part
that discusses network terminals in deep and another section that briefly discusses the routers.

1.4.1 Processing Tasks in Network Terminals

The processing tasks in network terminals are described here, special attention is given to the
tasks which have to be performed on incoming packets. We are more interested in the reception of
packets than the sending of them because of the unbalanced data load. A terminal receives more
data than it transmits. Therefore it is more interesting to optimize the process of packet reception
than that of packet transmission.

When a packet arrives at the terminal, first of all the physical layer must be handled. The physi-
cal layer includes some kind of coding or modulation or both. The physical layer protocols differ

Figure 1.4: A general view of a big router

Switching backplane

line

card

line

card

line

card

line

card. . .

Processing Tasks in Computer Network Equipment 7

a lot, depending on if the medium is wire, wireless or fiber. Also distance and bitrate influence the
protocol. In this thesis, the concentration is on layer 2-4 and the important observation is that from
the physical layer processing a bitstream is outputted. This bitstream is supplied to the data link
layer. In the data link layer typical tasks are:

• Check the destination address
• Determine the packet length
• Calculate and check a checksum
• Demultiplex the packet stream, dependent on layer 3 protocol
• Decompress compressed headers and/or data

For connection-oriented data link layer protocols, tasks coping with the connection handling are
also required. Those are discussed in the transport layer.

When the layer 2 header has been stripped off, the packet it is sent to the network layer entity.
Here only IP and IPv6 are considered, since they are expected to dominate the network layer for a
long period of time. In e.g. Ethernet networks an address resolution protocol (ARP) is used to find
the corresponding Ethernet address to a given IP address. ARP can also be seen as part of the net-
work layer, although it is often labeled layer 2.5. This is because it provides a service to the IP and
thus is layer 2 protocol, but it uses services provided by Ethernet and thus is layer 3. It is typical
for control and management protocol that they do not fit in the reference model very well. Simi-
larly internet control message protocol (ICMP) and internet group management protocol (IGMP)
could be considered to be on layer 3.5. Normally however they are said to be part of the network
layer. When considering all above mentioned protocols to belong to the network layer, the pro-
cessing task are the following:

• Check ARP operation code
• Update ARP table
• Trigger ARP reply
• Check the IP destination address
• Check IP version
• Calculate and check IP header checksum
• Decrypt encrypted packets
• Reassemble fragments

Figure 1.5: A general view of a small router

One chip router

PHY

PHY

PHY

...

8 Introduction

• Handle time-outs for missing fragments
• Process IP options and IPv6 extension headers
• Demultiplex the packet stream, dependent on layer 4 protocol
• Check ICMP type and code
• Trigger ICMP reply
• Check IGMP version
• Check IGMP type

On layer 4, like IP on layer 3, TCP and UDP have become totally dominant during the last years
and there is no reason to believe that any other layer 4 protocol can compete with these in the
foreseeable future. They also represent two totally different types of transport protocols, TCP is
connection oriented and provides a reliable byte stream between sender and receiver. UDP is
conectionless and provides a best effort datagram service between sender and receiver. TCP is
typically used for point to point communication of important and delay insensitive data. UDP on
the other hand, is used for broadcast, multicast and delay sensitive communication or by applica-
tions, that implement the reliability in the application layer. The processing tasks in the transport
layer are:

• Calculate and check the checksum
• Check destination port
• Demultiplex the packet stream and deliver payload to application
• Reorder out of order data
• Discard duplicate data
• Trigger an acknowledgment packet
• Check TCP flags
• Manage the connection state
• Update the window size
• Process TCP options

1.4.2 Processing Tasks in Routers

The processing tasks in routers are twofold. All routers can act as terminals for control and man-
agement functions, thus they require the same processing as terminals, as well as the processing
of the routing and management protocols. However, for terminals it is often important to perform
this processing with small memory, low power consumption and so on. For routers it is a small
part of the total functionality and most packets that enter a router are not destined for it. Instead
they must be forwarded and this subsection will study the processing tasks that are associated
with the forwarding of packets.

As for terminals, no attention is given to the physical layer. The data link layer on the other hand
can be of different type than for terminals. For terminals most often Ethernet or a wireless local
area network (WLAN) are used. For routers, on the other hand, SONET, SDH, and ATM are com-
mon, but also Ethernet and other types of access networks. Although ATM handles switching
functionality internally, it is seen as a data link layer when IP packets are transported in ATM cells
between IP routers. The layer 2 processing is similar to the processing in terminals and therefore
not presented again. ATM imposes other processing tasks as well, but they are not discussed here.

The network layer is the most important layer for the router. The traditional router only uses
information in the network layer to determine the handling of a packet. In a pure layered network
the router should not care at all about the transport layer, but in IP networks the router has to do
some operations also on the layer 4 header fields. The classical processing tasks for the network
layer and the transport layer are:

• Extract destination address

Performance Measures 9

• Perform longest prefix match on destination address with routing table
• Switch packet to the right output link
• Decrease time to live/hop limit counter
• Process IP options
• Update checksums
• Gather traffic statistics

When more functionality is added to the routers, the processing requirements change. For most
of the new functions a more thorough packet classification is needed. It is no longer enough to
forward packets based on their destination address. More header fields are used to identify flows
and groups of flows. Sometimes only the destination address and the source address are used to
classify the packet, but also transport layer protocol, source port and destination port can be used.
To enable single time classification for each packet, multiprotocol label switching (MPLS) has
been suggested and is likely to be used. The main idea is to classify packets at the first router they
encounter, give them a label which identifies the flow they belong to by a 24 bit label. This label
can then be used by the other routers in the network to forward the packet. The use of MPLS
introduces new processing tasks, such as packet classification, label management and label
updates.

Another type of new functionality is scanning through the data content of the packet. This may
have two different purposes. First, it can be to detect and discard packets that contain viruses or
other not wanted data. Second, it may be to use layer 7 information in the forwarding process. The
layer 7 information is not organized in a structured header as layer 3 and layer 4 information is,
instead it is in text format, e.g. http and ftp. An example is to have a router, connected to a web
server farm, where each server has different content, one may serve pdf-file requests, one may
serve a special group of customers that require better and faster service than the public, one may
handle secure transactions and so on. Then the router must detect which kind of http request the
packet contains in order to forward it to the adequate server. These types of functionality require
scanning through the data of the packet, which is a multiple string matching operation.

1.5 Performance Measures

Network equipment can be of very different complexity. Except for the processing that for
example a router is capable of, another important issue is how fast transmission speeds it can sup-
port. Typically two different classes of tasks are essential, those that are made on all parts of the
packet and grow in complexity linearly with the packet length and those which are made once per
packet and have the same complexity no matter how much data the packet may contain.

This can give two limitations on the router performance, one is straightforward. That is the
throughput of the per bit tasks, which directly limit the link transmission speed. The other comes
from the per packet tasks. Here sometimes the smallest possible packets are considered, which
guarantees functionality independent of packet length. The smallest packets in most networks are
TCP acknowledgments, which consist of 40 bytes on layer 3 and 44 bytes on layer 2 in SONET
environment. In some cases however the average packet length is considered, and this requires
that a huge buffer is present in order to store incoming packets that have not been processed so far.

Only some standard link transmission speeds are important to support, for the core network
these are 2.5 Gb/s, 10 Gb/s, and 40 Gb/s at the time of writing. These transmission speeds corre-
spond to the standards OC-48, OC-192 and OC-768 respectively. OC stands for Optical Carrier
and OC-1 corresponds to 51.84 Mb/s. After OC-48 normally the next standard is an increase in
transmission speed by a factor of 4. This means that the next step will be OC-3072 which stan-
dardizes 160 Gb/s as the new transmission speed. It will, however, take some years until equip-
ment can be built that supports such high speed. Most product announcements during the year

10 Introduction

2001 aim at OC-192, i.e. 10 Gb/s, this standard is very appealing to support since it also means
that LANs and MANs that use 10 Gigabit Ethernet can be handled with the same processing
resources.

Considering the transmission speed 10 Gb/s and the minimum packet of 44 bytes = 352 bits, the
network processor has only 35.2 ns to process each packet. Since most network processors are
designed by using semicustom ASIC design flow, the clock frequency normally is limited to less
than 300 MHz and approximately 10 clock cycles are available for each packet.

So when the maximal speed is supported most often the processing is very limited and typically
only includes the basic functionality. When more complex processing is wanted the speed
decreases and since only standard speeds are really interesting to support suddenly 4 times as
much processing can be used in the next step. When investigating network processors it must be
studied in detail exactly which functionality can be maintained at which speed. This thesis will
however not evaluate network processors in detail and such information is left out in the next
chapter, which surveys many existing network processor architectures, based on the fundamental
processing element organization.

References

[1.1] L. Geppert, “The New Chips on the Block”, IEEE Spectrum, January 2001, pp. 66-68

[1.2] A. S. Tanenbaum, “Computer Networks”, Prentice Hall, third edition, 1996

[1.3] W. R. Stevens, “TCP/IP Illustrated, Volume 1 The Protocols”, Addison-Wesley, 1994

11

2
2
2

2
Network Processors

2.1 Network Processor Architectures

For terminals and especially for routers many new types of hardware architectures have been
introduced during the recent years [2.1]. However, specialized programmable architectures for
protocol processing have been suggested earlier, two of the earliest publications are [2.2] and
[2.3]. This section studies the basic hardware architectures that are used for protocol processing,
starting with traditional general purpose CPUs (central processing units) and fixed function
ASICs (application specific integrated circuits). Then more advanced architectures are described.
These new specialized architectures are often called network processors or protocol processors.
They are of the type domain specific processors, which also exist for other applications [2.4]. The
purpose of this type of processors is to cover only the functionality of an application domain, but
still provide flexibility within this domain. This approach adds flexibility when compared to an
ASIC solution and reduces control overhead when compared to a general purpose CPU. Reducing
the control overhead leads to less power consumption and higher performance.

Except from the processing unit of networking equipment, also the memory organization and
the interconnect system are utterly important. They are however harder to categorize and most
systems still use the von Neuman architecture. This means that data is stored in a memory, which
is connected to the processing unit via an arbitration based bus. Writing and reading data to and
from memory are tasks that require very much time and consume power. It is clearly not the opti-
mal memory architecture for high speed networking equipment. Although changing the memory
organization and the interconnect system can reduce the flexibility, to a large extent it only influ-
ences the performance, not the functionality, of the system.

Some of the network processors which are discussed in the next section are integrating several
components on a single chip. This clearly reduces the flexibility of the system, since restrictions

12 Network Processors

have been made concerning the interconnect structure between the components of the system.
However, it may be the best way to achieve the desired performance since on chip communication
normally is faster and more power efficient than off-chip communication.

2.1.1 General Purpose CPU

In many terminals, especially desktop and laptop computers, general purpose CPUs are used for
protocol processing. This was also the case in early routers and sometimes occur in embedded
systems. The general purpose CPU has, of course, all the functionality needed to handle all kinds
of protocols, but does it very inefficiently since there is a huge control overhead for each instruc-
tion, since it has to be fetched and decoded. There is also an overhead associated with operations
on header fields that are shorter than the CPU word length. The general purpose CPU has prob-
lems with real time processing due to interrupt handling, cache hierarchy and operating system
and normally needs to buffer the packets several times. The general purpose CPU is most often
only used for layer 3 and above processing, since layer 2 tasks often require real time processing.

2.1.2 Fixed Function ASIC

The fixed function ASIC is the total opposite to the general purpose CPU. The ASIC is designed
for one protocol only and handles that very efficiently. The big problem is the lack of flexibility,
nonetheless, ASICs are very successful for some protocols, e.g Ethernet. The ASIC typically
operates on a stream of data and does not suffer from the overhead of buffering data in a random
access memory.

2.1.3 Application Specific Instruction Set Computer

Application specific instruction set computers are also called application specific instruction set
processors (ASIPs). The idea with an ASIP is to design an instruction set that matches the appli-
cation. This gives fairly high flexibility and at the same time, crucial operations can have a single
instruction and thus be executed efficiently. The ASIP uses a standard von Neuman architecture.
To find the correct instruction set, instruction profiling can be used. This means that the algo-
rithms are executed in a simulator and statistics are gathered of how often each operation is used.
It must then be decided which operations get specialized instructions and which will require a
sequence of instructions. If some sequence of operations is frequently appearing in the execution
it may be considered to cluster these operations into one single instruction.

The number of instructions required for a certain task can differ a lot between ASIPs and gen-
eral purpose CPUs and also between two different ASIPs. Therefore, the traditional measurement
of computing power, million instructions per second (MIPS) no longer suffice as performance
measurement when comparing network processors.

2.1.4 RISC with Optimized Instruction Set

The RISC (reduced instruction set computer) with optimized instruction set is similar to the
ASIP. The big difference is that here a standard RISC architecture is the basis and some instruc-
tions are added to this core instruction set. This simplifies the development of the architecture as
well as of the supporting tools, such as compilers. However, it may result in some implemented
functionality that is unnecessary for the network processing domain. This approach can be seen as
a mixture of the general purpose CPU and the ASIP.

The added instructions can be implemented in some different ways:

• Instruction accelerationmeans that no new instructions have been added, just that the instruc-
tions most frequently used are efficiently implemented.

Network Processor Survey 13

• Data path extension means that the data path has been extended with new blocks that handle
the added instructions. Still the execution is controlled in the same way as for the original
RISC. The single instruction multiple data (SIMD) type of processors fall into this category.

• Slave processor extensionmeans that the added instructions are executed in a slave processor,
that makes the modified RISC become a multiple instruction multiple data (MIMD) machine.
That is, the new instructions can execute in parallel with the original RISC instructions and
the control path of the processor must be redesigned.

2.1.5 Reprogrammable Hardware Architectures

Reprogrammable hardware architectures have successfully been used for many types of applica-
tions. The big advantage over traditional processors is that they allow much more parallel process-
ing, just like an ASIC. Reprogrammable architectures also have the flexibility that an ASIC lacks.
Two types of general low grained reprogrammable architectures are available, programmable
logic devices (PLDs), which realize sum of products functionality and field programmable gate
arrays (FPGAs), which have small lookup tables to allow any logic function. PLDs are suitable
for implementing finite state machines (FSMs), which are normally used in the control path of an
architecture and FPGAs are suitable for implementing the data path.

Reprogrammable architectures can also be more application specific. They would then be coarse
grained in the sense that the reconfigurability is not on bit level, but on word level [2.5]. This type
of architectures sacrifice some flexibility in order to achieve better performance and lower power
consumption than PLDs and FPGAs.

2.2 Network Processor Survey

In this section several network processors are discussed and categorized in two dimensions.
First it is discussed where in a system they fit in and then their internal architecture is analyzed.
The network processors are of very different nature, some are commercial products, others are
research projects and yet some may only be recently announced and therefore not much informa-
tion is available.

This section will mostly discuss the internal architecture of the processing elements, but as men-
tioned in the previous section, the communication architecture and the memory organization are
of at least as big importance. For some of the architectures which will be presented it is clear that
concern has been taken to these issues and then it is mentioned in the text.

Apart from the hardware architecture of a network processor also the programming support is
very important. However, the programming environment, consisting of high level languages,
compilers, debuggers etc. is outside the scope of this thesis. Nonetheless it should be noticed that
some network processors have compilers for C or C++, others have support for some special net-
work programming language and some have to be programmed using low level microcode. Which
is the best is not clear and all approaches are likely to coexist for the next few years.

Table 2.1 summarizes the important characteristics of the discussed network processors.

Table 2.1: Network Processor Comparison Summary

Processor System Aspects Applications Architecture

Motorola C-5 Router Layer 2-7 RISC + ASIP

Intel IXP 1200 Router Layer 2-7 RISC + ASIP

Agere FPP, RSP, ASI Line Card Data Path ASIP + ASIC

14 Network Processors

Agere NP10 and
TM10

Line Card Data Path ASIP + ASIC

AMCC nP7120 Line Card Layer 3 RISC + ASIC

AMCC nP7250 Line Card Layer 3

AMCC nP3400 Router Layer 3-7 RISC

IBM PowerNP 4GS3 Router Layer 2-4 RISC + ASIP + ASIC

Silicon Access iAP Line Card Address Lookup ASIC + ALU

SwitchCore CXE-16 Router Layer 2-4 ASIC

Coresma 6001 Terminal Layer 2-3 RISC

PMC-Sierra PM7388 Line Card Layer 2 ASIC

PMC-Sierra PM2329
ClassiPI

Line Card Classification ASIP + ASIC

Broadcom BCM
5680

Router Layer 2-7 ASIP + ASIC

Broadcom BCM
5632

Router Layer 2 ASIC

Broadcom BCM
1250

Router Layer 4-7 General-purpose
CPU

Solidum Systems
PAX 1100

Line Card Classification Reconfigurable

Sitera (Vitesse) IQ
2000

Router Layer 2-7 ASIP + ASIC

Xelerated X40 Line Card Layer 2-4 ASIP

Lantronix DSTini Terminal Layer 2-4 General-purpose
CPU + ASIC

Clearwater Networks
CNP810SP

Router Control Path RISC

ClearSpeed Platform Line Card Classification + for-
warding

SIMD

Lexra LX8000 Line Card Layer 3-7 RISC

STM Network Pro-
cessors

ASIP + ASIC

Infineon + Dresden
University

Router/Terminal Layer 2-4 RISC

Table 2.1: Network Processor Comparison Summary

Processor System Aspects Applications Architecture

Network Processor Survey 15

2.2.1 Motorola C-5 Network Processor

The C5NP can handle cell and packet processing, table lookup processing, and queue manage-
ment functions, which makes it suitable for routers. It could with some supporting circuits such as
memory be the heart of a small router, but it could also reside on a line card in a traditional router.

The C5NP is a multiprocessor chip, which has 16 channel processors (CP) and 5 supporting
units for table lookup, queue management, buffer management, switching interface and control,
see figure 2.1. The supporting processors are most likely of ASIC type, except for the executive
processor for control, which is a standard RISC core. The CPs consist of 3 parts, one RISC core
for internal control and two serial data processors (SDPs), one for transmit and one for receive,
see figure 2.2. The SDPs are special processors, that run microcode and thus can be categorized as
application specific instruction set processors. [2.6]

Tampere University
TTA

Router ATM switching Reconfigurable

UC Berkely platform
for wireless

Terminal Layer 1-4 Reconfigurable

PRO3 Router/Terminal Layer 3-4 Reconfigurable +
RISC

KTH Protocol Pro-
cessor

Router IP forwarding RISC

UCLA Packet
Decoder

Router Packet decoding ASIP

Table 2.1: Network Processor Comparison Summary

Processor System Aspects Applications Architecture

Figure 2.1: C5NP Architecture Overview

CP

Buses

Queue
Man-
age-
ment

Buffer
Man-
age-
ment

Switch-
ing

Inter-
face

Table
Lookup

Unit

Control
Processor

CP CP. . .CP CP

16 Network Processors

2.2.2 Intel IXP 1200 Network Processor

The IXP 1200 can just as the C5NP act as the heart in a small router, but requires some more
surrounding circuits.

The IXP 1200 consists of a StrongARM RISC core and 6 microengines. The microengines are
application specific instruction set processors and just like the SDPs, they run special microcode.
[2.7]

2.2.3 Agere FPP, RSP and ASI

The Agere three chip solution is aimed for line cards in a big router. The three chips can perform
classification, policing, traffic management, quality of service, traffic shaping and packet modifi-
cation functions. The fast pattern processor (FPP) and the routing switch processor (RSP) are in
the fast path of the router, but the agere system interface (ASI) is performing tasks both in the fast
path and in the slow path, see figure 2.3. Together the three chips manage all fast path tasks for a
line card, but for the slow path there is a need for support, typically a RISC processor. The ASI
only provides an interface for such a processor.

Internally the fast pattern processor (FPP) is built up of several blocks, that work in parallel. The
input framer splits the data stream into 64 byte blocks. The rest of the processor works on these
blocks. Totally the FPP can be considered as an ASIP with supporting fixed function circuitry on-
chip. The RSP is internally built up of three very long instruction word processors (VLIW) which
are ASIPs. Each of these three is dedicated to its function, traffic management, traffic shaping,
and stream editing respectively. There is also some fixed function circuitry on-chip in the RSP.
The ASI is an ASIC for configuration, interfacing to a microprocessor bus and for some support
to the FPP. [2.8]

2.2.4 Agere NP10 and TM10

Agere NP10 and TM10 are the successors to the FPP, RSP, and ASI. They are intended to han-
dle the full functionality on a line card.

The internal architecture is not revealed, but they are programmable to some extent so most
probably they are again a combination of ASIPs and fixed function circuitry on-chip. [2.8]

2.2.5 AMCC nP7120

The nP7120 is a network processor for a line card in a big router. It handles packet processing,
including packet classification and manipulation. It is extendable since it has interfaces for exter-
nal units such as search engines.

Channel Processor

32-bit
RISC
Core

Serial Data
Processor

Serial Data
Processor

Figure 2.2: C5NP Channel Processor Organization

Network Processor Survey 17

The nP7120 consists of two processor cores which are optimized for network processing and
therefore resides in the RISC with optimized instruction set category. Accompanying these pro-
cessor cores are also some on chip fixed function blocks. [2.9]

2.2.6 AMCC nP7250

The nP7250 is just like the nP7120 a network processor for a line card in a big router. The pro-
cessing it can handle is also similar, but nP7250 can cope with higher data rates than nP7120.

Internally the nP7250 consists of two network processor cores, a packet transformation engine
and a policy engine. It has not been revealed of which type the internal units are. [2.9]

2.2.7 AMCC nP3400

The nP3400 is a single chip router. It can handle layer 3-7 policy based switching and two
nP3400 can be combined to allow more ports. One nP3400 handles 24 Fast Ethernet ports and 2
Gigabit Ethernet ports.

Internally the packet processing is handled by multiple processor cores and other modules for
e.g. switching, queue management, scheduling, statistics gathering, and classification. The pro-
cessor cores are most likely of the same type as the ones in nP7120, i.e. in the category of RISC
with optimized instruction set. [2.9]

2.2.8 EZChip NP-1

NP-1 is a network processor, which is aimed for line cards in a big router. It can be used for e.g.
flow-based traffic policing and URL switching. Thus it performs protocol processing up to layer
7.

NP-1 is built up of an array of processor cores. Each of the processors is optimized for it specific
task, there are processors for parsing, searching, resolving and modification. Each is programma-
ble and has an application specific instruction set. Beside these four processor cores there is also
some fixed function circuitry on chip. [2.10]

Figure 2.3: Agere FPP, RSP and ASI Overview

FPP

ASI

RSP

Packet Stream

Fast Path

Slow Path

18 Network Processors

2.2.9 IBM PowerNP 4GS3

The PowerNP can function as a single chip router, or be part of a bigger router. Two PowerNPs
can be directly connected to form a medium sized router or the PowerNP can be placed on a line
card in a big router. The PowerNP can handle layer 2-4 protocol processing. The PowerNP han-
dles both fast path processing and slow path processing.

Internally the PowerNP is constructed as an embedded processor complex (EPC) surrounded by
fixed function medium access control units (MACs) and queue management and scheduling units.
The EPC consists of one embedded PowerPC processor and 8 dyadic protocol processor units
(DPPUs). Each DPPU has two core language processors (CLPs) and 9 coprocessors. The CLPs
execute picocode and can thereby be categorized as application specific instruction set processors.
The coprocessors accelerate special functionality, such as checksum calculation and tree search.
The coprocessors are of fixed function circuitry type and do not execute any sequential code.
[2.11]

2.2.10 Silicon Access iFlow

The iFlow family of network processors has many members, which can be combined into vari-
ous combinations and can thus fit in many different places in the network equipment. Most
appealing, however, is to combine some of the chips to build a line card for a big router.

Information is only available on the iFlow address processor (iAP), which manages the routing
table and lookup requests. This is done in a pipelined fashion and the iAP belongs to the fixed
function ASIC category, since it does not execute any sequential program, nor is it reconfigurable
enough to be a reconfigurable hardware architecture. Silicon Access calls it a coprocessor. On
chip there is also an arithmetic logic unit (ALU), which operates in parallel with the pipelined
lookup. The ALU can be used for field modification or statistics gathering. [2.12]

2.2.11 SwitchCore CXE-16

The CXE-16 is a single-chip router for layer 2-4 switching. It provides packet decoding, queue
and buffer management, classification, and prioritization. Even the packet buffer is on chip.

The CXE-16 is built up of fixed function blocks, with limited reconfigurability. Thus it belongs
to the fixed function ASIC category. [2.13]

2.2.12 Coresma 6001

The Coresma 6001 is a host-based universal protocol processor. It can handle many protocols on
layer 2 and layer 3. It is intended for desktop computers and supports a PCI interface in order to
be able to connect to the main computer bus.

The Coresma 6001 consists of 4 RISC processors, two work in the transmit path and the other
two in the receive path, see figure 2.4. There are also fixed function units to support e.g. CRC
(cyclic redundancy check) and DES (data encryption standard). There is no information on any
optimization of the RISC cores, so the Coresma 6001 is considered to belong to the general-pur-
pose processor category, although the interconnection and the special units are dedicated for the
applications. [2.14]

2.2.13 PMC-Sierra PM7388

The PMC-Sierra PM7388 is a frame engine a data link manager and handles protocols on layer
2. It is typically situated on a line card in a big router. It can handle Frame relay, HDLC, and PPP
for several connections.

Network Processor Survey 19

The PM7388 can handle only three different protocols and does not have any programming pos-
sibilities so it belongs to the category of fixed function ASICs. Internally a fixed interconnection
of functional blocks manages the data flow. [2.15]

2.2.14 PMC-Sierra PM2329 ClassiPI

The ClassiPI chip solves the packet classification task and typically resides on a line card in a
big router. It is intended to work in cooperation with a network processor and is capable of han-
dling rules on layer 2, 3, 4, and 7. One ClassiPI chip can hold 16K rules, but can be cascaded with
up to 7 other chips in order to increase the capacity.

The main component of the ClassiPI is the classification engine (CE), which performs the actual
rule matching. Other important blocks are the field extraction engine (FEE), which performs fixed
and configurable header field extraction, and the results FIFO, which stores results until the coop-
erating network processor takes care of them. There is also a control/sequencer, which controls
the other units. The control/sequencer is running a sequential program, but the other units are

RISC
Processor

Core

Shared
Mem-

ory

CRC

RISC
Processor

Core

Shared
Mem-

ory

CRC
&

DES

RISC
Processor

Core

Shared
Mem-
ory

CRC

RISC
Processor

Core

Shared
Mem-
ory

CRC
&

DES

Address
Filter

FIFO

FIFO

FIFO FIFO

FIFOFIFO

Timer

PCI Interface

Transmit PHY Interface Receive PHY Interface

Figure 2.4: Coresma 6001 Overview

20 Network Processors

fixed function blocks, with only some configuration possibility. The ClassiPI must therefore be
considered as a mixture of an ASIP and a fixed function ASIC. [2.16]

2.2.15 Broadcom BCM 5680

The BCM 5680 is a single chip router. It can handle Ethernet forwarding and IP switching and
also filtering tasks up to layer 7. It works with Ethernet interfaces up to 1000 Mb/s. Totally 8 ports
are supported.

The major blocks, except for the MACs, are the packet buffer, the non-blockable switch, and the
ARL tables. The filter engine is programmable and thus the BCM 5680 consists of both an ASIP
and fixed function blocks. [2.17]

2.2.16 Broadcom BCM 5632

The BCM 5632 is a single chip router, capable of handling Ethernet switching. It supports one
10 Gigabit Ethernet port and twelve 1 Gigabit Ethernet ports.

The BCM 5632 is built up from fixed function blocks for buffer management, queue handling,
port managing and payload buffering. It is a typical fixed function ASIC with a clear application
specification. [2.18]

2.2.17 Broadcom BCM 1250

The BCM 1250 is a multi-processor aimed for many kinds of routers and switches. It can reside
on a line card in a big router, but also be the heart of a small router. It can perform deep packet
lookup and layer 4-7 processing.

The BCM 1250 consists of two 64-bit MIPS processor cores, some high-speed interfaces, mem-
ories and buses to connect it all together. This makes the BCM 1250 reside in the general purpose
computer category. [2.19]

2.2.18 Solidum Systems PAX 1100

The PAX 1100 is a classification engine, which works in cooperation with another network pro-
cessor. It is typically situated on a line card in a big router. The functionality includes classifica-
tion on layers up to layer 7.

The PAX 1100 is built around programmable state machines. This allows programming of the
classification details, but the general functionality is fixed so the PAX 1100 belongs to the recon-
figurable hardware architecture category. [2.20]

2.2.19 Sitera (Vitesse) IQ 2000

The IQ 2000 network processor supports deep packet processing and could be part of a small
router or could also be situated on a line card in a big router. It can handle processing on all proto-
col layers up to the applications.

Internally 4 processor cores work together with coprocessors to manage the functionality. There
is also a special interconnect system on chip. The processor cores are of application specific
instruction set type, but the coprocessors handle fixed functions and thus resides in the category of
fixed function ASICs. [2.21]

2.2.20 Xelerated X40

The X40 Packet Processor is aimed for line cards in big routers. It can handle classification, for-
warding, framing and deframing.

Network Processor Survey 21

The X40 is constructed as a programmable pipeline. The core block is a packet instruction set
computer (PISC) which belongs to the group of ASIPs. One or more PISCs in combination with a
classification block form a classify-action unit. The whole architecture consists of several of these
classify-action units, which each perform one task in the packet processing pipeline. [2.22]

2.2.21 Lantronix DSTni

The Lantronix DSTni is an architecture for terminals. It is typically used for terminals which
have less processing power than desktop or laptop computers. It can handle Ethernet and TCP/IP
processing.

The DSTni is built up from several cores on chip, for the network connection a fixed function
Ethernet MAC and an enhanced 80186 processor are essential. All layer 3 and 4 processing is per-
formed in the 80186 microprocessor core. [2.23]

2.2.22 Clearwater Networks CNP810SP

CNP810SP is a network services processor that can be used on line cards for exception process-
ing, i.e. handling parts of the slow path. It can also support the control processor in a big router
and then be situated on a service card.

The CNP810SP is constructed as a simultaneous multi-thread core which runs MIPS code. 8
instruction queues can execute in parallel on 10 functional units with a separate set of registers.
The CNP810SP can also execute a small number of additional instructions, so called network pro-
cessing extensions. Thus it can be categorized as a RISC with optimized instruction set from the
programming point of view, but the architecture is different from a traditional RISC core. [2.24]

2.2.23 ClearSpeed Platform

The ClearSpeed platform is intended for line cards in big routers. It can handle advanced classi-
fication and forwarding and is therefore part of the fast path on the line card.

The internal structure consists of a number of multi-threaded array processors (MTAP), which
are connected through an on-chip network called ClearConnect. Each MTAP can have up to 8
processing element (PE) blocks and each PE block contains up to 256 PEs. There is also a central
sequence controller and a generic unit controller in each MTAP. The MTAP is a single instruction
multiple data (SIMD) machine since all PEs get the same instruction sequence. The PE is an 8-bit
ALU with register file, local memory, and interconnect interfaces. It is hard to categorize the
ClearSpeed platform to be any of the types of architectures discussed in the previous section. It is
clearly a highly parallel computing engine, where not much is revealed about the internal PE
instruction set. [2.25]

2.2.24 Lexra LX8000

The Lexra network processor core LX8000 is aimed at line cards in big routers. It can also be
used for load balancing web server switches and voice over IP (VoIP) gateways. So it can handle
processing up to layer 7.

Internally the LX8000 is a RISC core that executes the MIPS instruction set, but also has spe-
cific instructions for supporting multithreading and bit field manipulation. It clearly fits in the cat-
egory of RISC with optimized instruction set. [2.26]

2.2.25 Entridia Forte

Forte is a network processor for packet classification and forwarding. It fits on a line card in a
big router. It can handle policing, traffic shaping and packet modification.

22 Network Processors

The Forte chip is a configurable hardware architecture with fixed functionality. The config-
urability is limited to choosing which functionality to include in the packet processing. Interfaces
are present for external packet storage as well as for external forwarding table and forwarding
table management. The circuit belongs to the category of configurable architectures and provides
a coarse grain configurability. [2.27]

2.2.26 STM Network Processor Development

The STM network processors are based on Octagon, an on chip communication network, that
allows multiple data transfers concurrently. The actual processing is performed in nano processors
and fixed function blocks. [2.34]

2.2.27 Infineon and Dresden University

This processor is developed for various network applications. It can be used both in terminals
and in routers. Focus is on layers 2-4, where header fields do not match word boundaries. The
processor has been used for xDSL protocol processing as an example.

The architecture is based on an ARM RISC core, but has significant modifications. Among
these are the data movement instructions and the bit position addressing the most important. Bit
position addressing means that an instruction specifies not only which registers to operate at, but
also the bit width and the starting positions in each register. The processor is still a RISC with
optimized instruction set. [2.28]

2.2.28 Tampere University TTA for Protocol Processing

The transport triggered architecture (TTA) presents a totally new view on how to design a pro-
cessor. Originally the concept was developed for other types of applications than network pro-
cessing. The main concept is to have only one instruction, which is move. The data can then be
transported to the functional units (FUs) of the processor and as soon as input data is available at
an FU, it will process it and produce an output. In this way, the program controls data movement
rather than data processing. The FUs can be fixed function blocks or to some extent configurable.

The TTA was used for network processing in the TACO protocol processor, which was exempli-
fied with an ATM processor, see figure 2.5. The key design tasks are to decide on which FUs to
include in the processor and how to design the interconnections. If a bus system is used it must be
decided how many buses there are and also if all FUs have to be connected to all buses. Since the
sequential program controls the data movement and only indirectly the processing, this processor
is considered as a reconfigurable hardware architecture. [2.29]

2.2.29 UC Berkeley Reconfigurable Platform for Wireless

This project aims at designing protocol processing hardware for wireless terminals. The main
goal is to achieve very low power consumption. The functionality should include layers 1-4 for
protocols such as 802.11, Bluetooth, and HomeRF. This hardware architecture should also be pos-
sible to use in sensor networks, where the power consumption requirements are even harder.

The way to achieve low power is to use reconfigurable hardware. The observation is made the
FPGAs are good for data path operations and PLDs are better for control intensive operations,
such as FSM implementation. Therefore all processing tasks are categorized as either data inten-
sive or control intensive and then implemented in the corresponding part of the mixed FPGA and
PLD reconfigurable platform. The architecture undoubtedly belongs to the reconfigurable hard-
ware architectures category. [2.30]

Network Processor Survey 23

2.2.30 EU Protocol Processor Project

The protocol processor project (PRO3) aims at developing a protocol processor for high speed
applications. It could be used in terminals as well as in routers. In a terminal it would handle pro-
tocols on layer 3 and 4 as well as an interface to the application layer.

The PRO3 consists of two major parts, an embedded RISC core and a reconfigurable pipelined
module (RPM), see figure 2.6. The RPM is intended to handle the small number of functions, that
corresponds to the big portion of the total workload. Other control related tasks are to be handled
by the RISC core. The RPM can be implemented as fixed function blocks, with some config-
urability or in an FPGA. This architecture obviously resides in the reprogrammable hardware
architecture group. [2.31]

2.2.31 KTH Protocol Processor

In this project the focus is on the control path of a protocol processor. The intended applications
include IP forwarding, which requires many if-then-else statements when implemented purely in
software. Thus the processor should support the fast execution of branch instructions.

Figure 2.5: TACO Protocol Processor in ATM configuration (courtesy S. Virtanen)

Reconfigurable
Pipelined
Module

Generic
Decoder

Embedded
RISC

Processor Core

Message
Recogni-

tion

Generic
Encoder

Figure 2.6: PRO3 Functional Architecture

24 Network Processors

The key architectural feature is the instruction memory, which contains special fields associated
with each instruction for fast branching. The traditional part of the instruction controls an ALU
and a register file. Thus it can be categorized as a RISC with optimized instruction set, where the
added instruction part is executed in parallel with the original instruction in a slave processor unit.
[2.32]

2.2.32 UCLA Packet Decoder

The UCLA project tries to develop a new design methodology for domain specific processors
and uses network processors as the first application. The packet processor that has been developed
so far handles packet decoding on layer 2, 3, and 4. It is intended as a part of a one chip router, but
could also be used on a line card in a big router or in a terminal.

The packet decoder consists of three data paths and one control path. There is one data path on
each protocol layer, but just one central controller. The packet decoder has been developed by
instruction profiling and the construction of a new instruction set. Therefore it is an ASIP. It is
however different from traditional processors since it operates on a data stream instead of on data
stored in memory. [2.33]

2.3 Network Processor Survey Conclusion

The conclusion of the survey is that many different architectures have been introduced. They all
try to solve different tasks within the protocol processing domain. Some architectures are aimed at
high-speed operation of a small number of tasks. Other network processors aim at full program-
mability and thereby should be able to handle all possible processing tasks.

Most efforts have focused on high-speed routers, for which performance is much more impor-
tant than low-power operation. Most network processors are aiming for the fast path in the rout-
ers, but some cover parts of the slow path as well. There is a general disagreement on how much
functionality to include on one chip and how much freedom to leave for the system designer.

In the next chapter I introduce yet another architecture, which has been developed in our
research team. It belongs to the reconfigurable architecture category and of the architectures

described here, it has most in common with the PRO3 architecture. In the end of the next chapter
our architecture is compared to the programmable architectures from several different points of
view.

References

[2.1] B. Hubbs, “A Survey of Highly Integrated Ethernet DataComm”, IEEE Aerospace Confer-
ence 1998, vol. 4, pp. 489-498

[2.2] H. Ichikawa, H. Yamada, T. Akaike, S. Kanno, M. Aoki, “Protocol Control VLSI for
Broadband Packet Communications”, Globecom ‘88, pp. 1494-1498

[2.3] A. S. Krishnakumar, W. C. Fischer, K. Sabnani, “The Programmable Protocol VLSI
Engine (PROVE)”, Supercomm/ICC ‘92, pp. 459-465

[2.4] R. Ernst, “Embedded System Architectures”, in A. A. Jerraya, J. Mermet, “System-Level
Synthesis”, Kluwer 1999, pp. 1-43

[2.5] P. Schaumont, I. Verbauwhede, K. Keutzer, M. Sarrafzadeh, “A Quick Safari through the
Reconfiguration Jungle”, DAC 2001, pp. 172-177

[2.6] http://www.motorola.com/SPS/RISC/smartnetworks/products/netproc/
C5NP_M994862703126.htm

Network Processor Survey Conclusion 25

[2.7] http://developer.intel.com/design/network/products/npfamily/ixp1200.htm

[2.8] http://www.agere.com/netcom/nps/docs.html

[2.9] http://www.mmcnetworks.com/Solutions/nP7120.asp

[2.10] http://www.ezchip.com/html/in_prod.html

[2.11] http://www-3.ibm.com/chips/techlib/techlib.nsf/products/IBM_PowerNP_NP4GS3

[2.12] http://www.siliconaccess.com/products/

[2.13] http://www.switchcore.com/frames.php?left=/left_menu.php&hilite=9&menu=2&content
=/products/cxe-16.shtml

[2.14] http://www.coresma.com/prod_6001.html

[2.15] http://www.pmc-sierra.com/products/details/pm7388/

[2.16] S. Iyer, R. R. Kompella, A. Shelat, “ClassiPI: An Architecture for Fast and Flexible Packet
Classification”, IEEE Network, March/April 2001, pp. 33-41

[2.17] http://www.broadcom.com/products/5680.html

[2.18] http://www.broadcom.com/products/5632.html

[2.19] http://www.broadcom.com/products/1250.html

[2.20] http://www.solidum.com/products/1100.cfm

[2.21] http://206.216.176.9/products/categories.cfm?family_id=5&category_id=16

[2.22] http://www.xelerated.com/page.asp?page=products

[2.23] http://www.lantronix.com/products/eds/dstni/index.html

[2.24] http://clearwaternetworks.com/products.html

[2.25] http://www.clearspeed.com/pdf/epf_presentation.pdf

[2.26] http://www.lexra.com/products.html

[2.27] http://www.entridia.com/products/forte.html

[2.28] X. Nie, L. Gazsi, F. Engel, G. Fettweis, “A New Network Processor Architecture for High-
Speed Communications”, SIPS’99, pp. 548-557

[2.29] S. Virtanen, J. Lilius, T. Westerlund, “A processor architecture for the TACO protocol pro-
cessor”, IEEE NORCHIP 2000, pp. 204-211

[2.30] T. Tuan, S.-F- Li, J. Rabaey, “Reconfigurable Platform Design for Wireless Protocol Pro-
cessors”, ICASSP 2001, pp. 893-896

[2.31] G. Konstantoulakis, V. Nellas, C. Georgopoulos, T. Orphanoudakis, N. Zervos, M. Steck,
D. Verkest, G. Doumenis, D. Resis, N. Nikolaou, J.-A. Sanchez-P., “A Novel Architecture
for Efficient Protocol Processing in High Speed Communication Environments”, ECUMN
2000, pp. 425-431

[2.32] Y. Ma, A. Jantsch, H. Tenhunen, “A programmable protocol processor architecture for
high speed internet protocol processing”, IEEE NORCHIP 2000, pp. 212-216

[2.33] M. Attia, I. Verbauwhede, “Programmable Gigabit Ethernet Packet Processor Design
Methodology”, ECCTD 2001, vol. III, pp. 177-180

[2.34] P. G. Paulin, F. Karim, P. Bromley, “Network Processors: A Perspective on Market
Requirements, Processor Architectures and Embedded S/W Tools”, IEEE DATE 2001, pp.
420-426

26 Network Processors

27

3
3
3

3
Novel Architecture

3.1 Novel Network Processor Architecture Introduction

In this chapter, the main contribution of this thesis is introduced. It is the result of a research
project from my research team, which started in 1999. I and my colleagues have developed a
novel architecture for protocol processing. In this chapter, an overview of the functionality and the
architecture is given. Then, in the next 3 chapters material published at conferences is presented
and finally the last chapter consists of a submission to a journal.

We call our architecture the general-purpose protocol processor (GPPP). The architecture
focuses on terminal protocol processing. Especially it deals with processing of tasks that only
concern reception of one packet or frame. For tasks that involve several packets, the GPPP only
provides supporting functions, such as extraction of information and information preprocessing.

The GPPP consists of configurable units, called functional pages (FPs). It is a data stream pro-
cessor, i.e. it operates on a stream of data rather than on data stored in a memory. There is no
sequential program executing in the GPPP, instead the control is hierarchical, and supported by a
micro processor [3.3]. An overview can be seen in figure [3.1].

3.2 Functional Coverage

The GPPP is an architecture template. Starting from this general template many different instan-
tiations can be made. They all have the same general structure, but may differ regarding which
FPs are included. The thing that is common to all of them, regarding the functional coverage is
that they are handling tasks, which can be completed on one single frame or packet. For protocol
processing tasks that include a sequence of packets or both receiving and sending packets, the

28 Novel Architecture

GPPP needs support from a unit that handles the interpacket behavior. The GPPP however can be
used as an assistant.

The GPPP is mainly concerned with the reception of packets, but a similar architecture could be
used for sending packets. The exact requirements on such a processor have not been investigated.

As described in the first chapter, protocols are layered and each layer adds information to the
original packet. Normally this information is added in the form of a header, preceding the payload
data. Eventually this leads to a packet looking like the one in figure 3.2. This is the kind of packet
that the GPPP will receive and decode. The layer 2 header will be received first, then the layer 3
header, and so on. The GPPP can perform processing on all layers simultaneously, so called inte-
grated layer processing.

The GPPP works in parallel with the host processor of the terminal. In traditional terminals such
as desktop and laptop computers, the protocol processing of layers 3 and above is handled in the
host processor. The GPPP will reduce the workload on the host processor by managing the proto-
col processing for received packets.

Figure 3.1: Overview of the GPPP

F
un

ct
io

na
l P

ag
e

F
un

ct
io

na
l P

ag
e

F
un

ct
io

na
l P

ag
e

F
un

ct
io

na
l P

ag
e

. . .

Controller

data in

Memory

micro processor

Figure 3.2: A general packet that is received by the GPPP

Layer 2 headerLayer 3 headerLayer 4 headerLayer 5-7 headerPayload

Mapping of the Functionality to the Architecture 29

3.3 Mapping of the Functionality to the Architecture

For each protocol layer some tasks need to be executed. Dependent on how complex the tasks
are one or more FPs are used for each task, see figure 3.3. Each FP is constructed as a coarse-

grained reconfigurable unit. This means that the reconfiguration is possible on word level instead
of on bit level as in e.g. FPGAs. The functionality of a FP is thus predefined to a certain extent, all
FPs are different and specialized to a group of tasks.

Each FP is self-contained, i.e. it handles its task without the need of any support. It solely
requires a start signal and once it has completed its task, which may take several clock cycles it
reports the result.

The packet is received in words, which may be of arbitrary length. For the instances of the
GPPP that have been implemented so far, the word length has always been 32 bits. The words go
through a pipeline in their way through the GPPP. After each pipeline register the data may be dis-
tributed to one or more FPs. In this way, each FP only needs some of the words for the completion
of its task. The important aspect here is to notice that there will be several clock cycles when the

Figure 3.3: Example of mapping of the functionality

F
un

ct
io

na
l P

ag
e

F
un

ct
io

na
l P

ag
e

F
un

ct
io

na
l P

ag
e

F
un

ct
io

na
l P

ag
e

. . .

F
un

ct
io

na
l P

ag
e

F
un

ct
io

na
l P

ag
e

F
un

ct
io

na
l P

ag
e

F
un

ct
io

na
l P

ag
e

Function A

Function B Function C

Function D

Function E

Part of functional
description

30 Novel Architecture

FP does not receive any new data. These clock cycles are used to complete the task or if not
needed the FP goes into sleep mode.

Together the FPs execute all tasks that are required for the processing when receiving a packet.
They need however to be coordinated. This is handled by the controller. The controller takes care
of the firing of the FPs and makes sure that the scheduling is correct. It also collects and combines
the results of the FPs in order to decide how to proceed with the packet. This decision is handed
over to the supporting micro controller, which can take care of communication with the applica-
tion, handle interpacket tasks and memory management.

3.4 GPPP Configuration

The configuration of the GPPP is done at three levels [3.2]:

• FP selection
• FP configuration
• FP firing

Each level has different possibilities and restrictions. They will each be described in the next
subsections.

3.4.1 FP Selection

There are a number of FPs designed. More can be added when a need appears. Since each FP
has a configurable functionality it can be used in several protocols, which include similar tasks.
The combination of the tasks for a certain protocol stack requires a certain minimum set of FPs to
be able to execute all tasks. For an instance of the GPPP to be able to handle this protocol stack, at
least this set of FPs must be included in the processor.

By choosing such a minimum set the processor has limited flexibility. This can easily be
improved by adding more FPs. For each protocol stack that should be covered by an instance of
the GPPP the minimum set of FPs is extracted. Then the union of all these sets is derived to form
the required FPs for the processor. By adding FPs in this way a well described flexibility has been
introduced to the instance of the GPPP.

3.4.2 FP Configuration

Each FP has internal configuration possibilities. Some FPs have less need than other for flexibil-
ity internally. For those the configuration may include some control signals for a data path. Other
FPs require more flexibility, which can be implemented as a small micro controller which runs
micro code inside the FP. In this case the micro code is the configuration data.

A concrete example of an FP and its configurability is a CRC (cyclic redundancy check) calcu-
lation unit, which has a data intensive task of calculating the CRC of all data in the packet. The
configurability resides in the CRC polynomial and possibly the polynomial length.

The FP flexibility is designed into the FP before it is known exactly which protocols it will be
used for. Thereby the flexibility is not driven by the application, but rather by the designer, who
has to make the choice of how much flexibility to include in an FP. This leads to flexibility which
may not be required by the final processor. However, it could also improve the lifetime of a pro-
cessor, by providing the possibility to change protocols in a not anticipated way.

3.4.3 FP Firing

FP firing is concerned by the fact, that some protocol headers are not always of the same size.
This leads to that header fields of higher layer headers may be received at different latencies from

GPPP Benefits 31

the start of the packet for consecutive packets in the same network. Therefore, the FPs concerned
with those header fields must be fired at different times for different packets.

The controller is the unit that conducts the whole operation of the GPPP and fires the FPs. To be
able to know when to fire which FP all FPs that complete their tasks or part of their tasks report
this to the controller. With the use of this information, the controller can fire each FP at the correct
instant of time.

The FP firing is the only GPPP configuration which is data dependent, the FP selection and the
FP configuration are made before execution.

The controller is configured to do this firing depending on which protocol stack to process. The
configuration of the controller as well as of the FPs is managed by the supporting micro processor.

3.5 GPPP Benefits

The GPPP is a novel architecture for protocol processing and has some big advantages over tra-
ditional architectures, but also some drawbacks. The drawbacks could be summarized by one
word, support. The GPPP requires support by for example a micro processor, which has to handle
the tasks that the GPPP is not capable of.

The benefits are more, but different depending on what is compared to. If the alternative is an
ASIC the advantage of the GPPP is mainly flexibility. It is more adequate to compare to a tradi-
tional processor, running a sequential program, since in the domain of protocol processing of
reception of packets the GPPP offers similar flexibility.

3.5.1 Performance

The performance of the GPPP is definitely higher, since it operates at line speed and each clock
cycle one new word of packet data is taken care of. The traditional processor loses a lot of valu-
able clock cycles just when fetching data from the memory.

The combination of the GPPP with the host processor results in less computing load on the host
processor. A detailed example of this is given in section 3.8.

3.5.2 Power Consumption

The GPPP has a very small control overhead, almost all activity in the processor is useful for the
operation. FPs that are not needed at the moment can be kept in sleep mode, which further reduces
the power consumption. The data is never stored in memory until the processing is finished and
the payload can be stored in a memory area allocated by the correct application.

In traditional processors, the whole packet is stored in memory and read and written to memory
more than once after that. The control overhead is huge in a traditional processor, consisting of
fetching and decoding instructions. There is also a computational overhead when the operation
uses a shorter word length than the processor.

3.5.3 Functional Verification

The functional verification is becoming an increasingly big part of the design of digital systems.
Normally the verification of the hardware is considered tough, but verifying software of a com-
plex system is also tedious. Especially if one processor executes several functions, which are tim-
ing critical. Then the interrupt response times get very important and hard to foresee.

The GPPP simplifies verification of the hardware by splitting it into well partitioned FPs, which
can be verified one at a time. The infrastructure which connects the FPs to the data pipeline and
the controller can also be verified stand-alone. The configuration vectors for the FPs are of a lot

32 Novel Architecture

smaller complexity than the program for executing the same task in software on a traditional pro-
cessor.

3.5.4 Silicon Area

Although the silicon area of a circuit is no longer of the same importance as some years ago, it is
still expensive to produce big chips. The GPPP is intended to be integrated in a system-on-chip,
which may contain several other processors, memory, analog circuits, etc. The yield when manu-
facturing such large chips is dependent of the chip area, so it is important to reduce the size of all
components.

The GPPP achieves a small silicon area since the overhead is very low. Almost all transistors
contribute to the actual computations that are to be made. In a traditional processor the instruction
decoding and the cache memory management take up a big part of the area.

3.5.5 System Perspective

When considering a terminal as the system, the GPPP will improve the overall system perfor-
mance. This is done by moving the protocol processing functionality from the host processor to
the GPPP. Thereby the workload on the host processor is reduced and it can more efficiently serve
the applications, or for power sensitive terminals the host processor can run at a slower frequency
and thus save power. The power consumption in the GPPP is much less than the saved power in
the host processor due to the less overhead, as described earlier.

The GPPP could also be used as the packet decoder in a router. In a small router, which tries to
integrate all functionality onto one chip the small area as well as the low power consumption is
important. In a big router which handles a few links on a line card, the most important feature is
the performance, which is kept even at complex processing. This is the case since more complex
processing in the GPPP means more FPs, which all work in parallel. In a processor that runs
sequential code, more complex processing means more instructions and thus longer execution
time per packet. This means that more complex processing reduces the performance for a tradi-
tional processor, but not for the GPPP.

3.6 Functional Page Specification

As mentioned earlier, an FP may have any internal micro architecture. It could be a small micro
controller, running some short sequence of micro code instructions, a data path with configurable
control signals, a configurable finite state machine (FSM) or a combination of the three.

For different tasks different micro architectures are most suitable. It is up to the designer to
chose the appropriate micro architecture when implementing the FP. The only thing that is some-
what fixed are the interfaces. There are three interfaces to each FP, see figure 3.4.

3.6.1 Interface to the Data Pipeline

The interface to the data pipeline is simple. The data pipeline lets the incoming data pass
through the pipe word by word. The FP has to have an input that can receive the data from the
pipeline. Normally this input should be of the same width as the word length of the pipeline. It
could, however, happen that an FP only uses a header field, that is part of a word and then the
input could consist of only those bits. This reduces the flexibility, since if the protocol changes so
that the header field will reside in another part of the data word, the interface must be redesigned.

Functional Page Examples 33

3.6.2 Interface to the Controller

The interface to the controller consists of two parts. One part is fixed and has to be implemented
by all FPs. The other part is variable and may be different for every FP. The fixed part consists of
a start input, which is the signal for firing the FP, an enable input, which can put the FP in sleep
mode by going inactive, and a discard output, which is a signal from the FP that tells the control-
ler to discard the packet.

The variable part consists of an arbitrary number of control signals, which are inputs to the FP
and likewise an arbitrary number of flags, which are outputs form the FP. The control signals and
flags support the FP operation and may be used for inter FP communication since the controller
can forward the flags from one FP as control signals to another FP.

3.6.3 Interface to the Configuration

Before the normal operation of the GPPP can start it must be configured. The configuration
interface is fixed for all FPs. It consists of two inputs, the configuration clock and the configura-
tion data. The scan chain of flip-flops that store the configuration vector is clocked by the configu-
ration clock and when the GPPP is operational the configuration clock is shut off. Thereby the
configuration bits are not changing when the GPPP is operating.

3.7 Functional Page Examples

I have implemented a VHDL model of the GPPP framework, including the data pipeline and the
controller. I have also implemented one instance of the GPPP, that handles Ethernet and IP pro-
cessing and parts of the UDP and TCP protocols.

In this section somewhat detailed descriptions of three functional pages are given. First the CRC
functional page, then the functional page for TCP and UDP checksum calculation and finally a
functional page for IP destination address checking.

Figure 3.4: Functional Page Interfaces

Functional Page

data

en
ab

le

st
ar

t

di
sc

ar
d

co
nt

ro
l s

ig
na

ls

fla
gs

configuration clock

configuration data

34 Novel Architecture

3.7.1 CRC Functional Page

The cyclic redundancy check (CRC) calculation is the performance limiting factor for the GPPP
for Ethernet, IP and TCP. Therefore it is important to have an efficient implementation of the
CRC. To achieve this I have studied several previous CRC implementations, some are listed in
Paper 3. Then the best realization for hardware implementation was selected, which is based
directly on Galois fields.

The CRC specification uses a bit sequential implementation as its reference. It is very hard to
improve the performance of the CRC without using parallel techniques. The general structure of a
parallel implementation can be seen in figure 3.5. The register and the output are of width 32 bits

for Ethernet. The CRC used for Ethernet is called CRC-32 and is by the way the same that is used
for ATM. I chose to implement the CRC with an 8 bit parallel input, since that is the minimum
data unit in TCP and UDP communication.

The realization I did and most other are based on XOR functions, since that is the basic function
in the CRC specification. In standard cell libraries XOR gates are not very well implemented and
the result is that after synthesis the gate-level netlist contained no XOR gates at all. Instead the
CRC functionality was realized with NAND gates, NOR gates and inverters. This is not an opti-
mal implementation, but estimations predict that it can nonetheless achieve 10 Gb/s in a 0.15
micron process technology [3.4].

By making a full custom layout we succeeded to achieve more than 5 Gb/s throughput in a 0.35
micron process technology, so there is a potential to make even faster designs with the use of opti-
mized XOR gates.

By introducing more complex control logic it is possible to use a higher degree of parallelism
and also take care of the special cases that may arise in the beginning and the end of the calcula-
tions. These special cases arise if the packet length is not divisible by the CRC input width. I have
made a design with 32 bit wide input. There is of course an area penalty associated with this
change, but since 4 times as many bits can be handled every clock cycle, the throughput can be
increased.

Figure 3.5: Parallel CRC implementation

Combina-
tional Logic

Input data
CRC output

Functional Page Examples 35

3.7.2 Internet Checksum Functional Page

The checksum calculation in TCP and UDP is traditionally done in the host processor within the
operating system kernel, before the payload data is handed over to the application. The GPPP
introduces the possibility to handle the time and power consuming calculation in an FP. We have
designed such an FP, that handles all computations and also keeps track of partially calculated
checksums, that belong to fragmented IP packets.

This FP is briefly described in paper 4. The functionality is straight forward for non-fragmented
packets. For those the packet is split into 16 bit words, which are added by one’s complement
addition. To work well in the 32 bit instance of the GPPP, this FP first adds the first and the second
part of the current data word and then adds that sum to the accumulated sum, see figure 3.6.

The calculation unit also has to manage the pseudo header form the IP header, that must be
included in the calculation. This pseudo header differs for IPv4 and IPv6 since the address format
changes between the versions of the Internet protocol.

The computation gets a lot more complicated when fragmented packets are considered. The FP
thus needs to keep track of a lot of state variables, such as which fragments have been received,
what is the current value of the checksum and so on. In cooperation with a reassembly supporting
FP it also manages time-outs, which have to occur if not all fragments of a packet are received
within a certain time limit.

The data path of our FP supports more than 11 Gb/s throughput when implemented in a 0.18
micron process technology [3.5].

3.7.3 IP Destination Address Functional Page

The IP destination address FP (IDAFP) is exemplifying a broader type of FP, the extract and
compare type. These FPs extract a certain part of the header and compares it to some pre-config-
ured values. For the IP destination address FP this particular field is the internet address that spec-
ifies the packet destination.

There can actually be several values that are acceptable as destination address. The first we nor-
mally come to think of is the IP address of the terminal, but also packets sent broadcast and on

Figure 3.6: Internet Checksum Calculation

Adder

Adder

First part Second part

36 Novel Architecture

multicast may be accepted, dependent on the configuration of the terminal. The IDAFP thus needs
to perform many comparisons. I have chosen to implement these comparisons in parallel. This
means that the result of the IDAFP will be ready one clock cycle after the IP destination address
field has reached it. It is important to produce this result as soon as possible, since if the packet is
not meant for the particular terminal where the GPPP is operating all functions should be shut
down in order to save power.

The comparison could also have been done sequentially, in order to save chip area. Only the
comparators would have been saved and some additional control logic would have been neces-
sary. The memory to store acceptable addresses would still have been required and thereby the
constraint on how many addresses to support would have remained the same. I have chosen to
support 8 addresses in my implementation, one for the address of the terminal, and the remaining
7 for broadcast and multicast addresses.

The sequential comparison would imply that the IDAFP would need more clock cycles to finish
and produce its result. It would however not reduce the performance of the GPPP, since all other
FPs can operate in parallel with the IDAFP and the number of clock cycles needed would still be
small enough in order to finish before the next packet header could reach the GPPP.

3.8 Detailed Performance Comparison Example

To get a feeling for how the performance of the GPPP differs from the performance of a generic
RISC processor, which is executing a sequential program, I here present an example comparison.
To be able to do this I have defined some Pµops (protocol micro operations) for generic execution
of protocol processing functions. The functions described with these Pµops can easily be mapped
to an actual instruction set architecture (ISA).

The example I have chosen here is the IP destination address checking. The FP for this function
was described in the previous section and there it was concluded that the operation will finish in
one clock cycle. Here, first of all the Pµops are briefly explained, then the implementation of the
destination address checking algorithm is given and finally a performance comparison is pro-
vided.

3.8.1 Protocol Micro Operations

For general protocol processing several micro operations are necessary, but for the destination
address checking 6 Pµops suffice to achieve an efficient implementation. These are:

• MOV, move data between registers and memory
• ADD, addition
• SUB, subtraction
• JMPZ, jump if zero
• JMPN, jump if negative
• JMP, unconditional jump

The micro operations ADD and SUB use three operand notation, where the operands must be
registers or absolute values, e.g. ADD Ra, Rb, Rc means Rc = Ra + Rb. MOV uses two operand
notation, where the operands can be registers, direct memory addresses, or indirect memory
addresses. For example MOV ip_da, Ra means Ra = ip_da, where ip_da specifies a memory
address where the value of the variable ip_da is stored. MOV (Rd), Rb means Rb = the value
stored at the location pointed to by Rd and is an example of the indirect memory address. JMPZ
and JMPN are conditional jumps which use the result of the last operation in order to evaluate if
they should jump or not. They only take one operand, which is a label to the code line to which

Detailed Performance Comparison Example 37

they can jump. JMP is unconditional jump and also take one operand, which is a label to the code
line to which it jumps.

3.8.2 Implementation of Destination Address Checking

The implementation of the destination address checking depends on the under laying data struc-
ture. To make this example as simple as possible I assume that all acceptable addresses are stored
in an array,addr_array . This includes broadcast and multicast addresses. The number of valid
entries in this array is also stored, in the variablevalid_addr_cnt . The received destination
address in stored in the variableip_da .

The micro code can be seen in figure 3.7.

3.8.3 Performance Comparison

The code in figure 3.7 requires 4 +8 * 6 = 52instructions in the worst case, when the total num-
ber of addresses is limited to 8. 16 of these instructions are conditional jumps, which may cause
control hazards and further increase the number of required clock cycles. The IDAFP of the GPPP
takes care of the whole destination address checking function and thus the host processor does not
have to spend any clock cycles when the GPPP is used.

From the first chapter we know that only around 10 instructions are available per minimum
sized packet in a 10 Gb/s environment. If the host processor should take care of the whole proto-
col processing it would be overloaded with just that task and no processing power would be left

Figure 3.7: Pµops code for destination address checking

MOV ip_da, Ra (Ra = ip_da)

MOV addr_array, Rd (Rd = addr_array)

MOV valid_addr_cnt, Rb (Rb = valid_addr_cnt)

ADD Rb, Rd, Rc (Rc = Rb + Rd)

loop:

MOV (Rd), Re (Re = (Rd))

SUB Ra, Re, Re (Re = Ra - Re)

JMPZ match:

ADD Rd, #1, Rd (Rd = Rd + 1)

SUB Rd, Rc, Re (Re = Rd - Rc)

JMPN loop:

no_match:

/* Discard packet */

JMP next_packet:

match:

/* Continue processing */

JMP next_packet:

38 Novel Architecture

for the applications. This holds true even if it is considered that all packets are not of minimum
size and that there is normally not a constant packet stream sent to one terminal.

This destination address checking function is typical for the broad category of extraction and
comparison functions. Other functions, such as checksum computation, load the host processor
even harder.

3.9 Further Details

The next four chapters contain one paper each. The first three papers have been presented at
conferences and the fourth is an invited submission to a journal. All four papers concern the same
protocol processing architecture, which was described here, but deal with different aspects of it.
The first paper, which is an abstract from a poster presentation introduces the protocol processor
architecture and discusses the overall aspects. The second paper gives a detailed specification on a
particular instance of the protocol processor architecture, which is intended for Ethernet, IP and
TCP processing in a network terminal. The third paper gives detailed implementation information
on one functional page in the processor, that is the functional page for cyclic redundancy check
(CRC). The fourth paper is an invited extension of the second paper. This paper introduces new
results on TCP checksum calculation as well as a more thorough discussion on the architecture.

3.10 Conclusion

I and my colleagues have designed a new architecture for protocol processing, called GPPP. The
GPPP is aimed for terminals, but could also be used in routers. The GPPP handles reception pro-
cessing on a single packet or frame. It works is parallel with the host processor and reduces the
workload on the host processor significantly. The GPPP architecture consists of several functional
pages, which operate in parallel. Therefore a GPPP instance for Ethernet and TCP/IP can handle
line speed operation up to 10 Gb/s. The most performance critical part is the CRC calculation.

References

[3.1] D. Liu, U. Nordqvist, C. Svensson, “Configuration-Based Architecture for High Speed and
General-Purpose Protocol Processing”, SIPS’99, pp. 540-547

[3.2] Tomas Henriksson, Ulf Nordqvist, and Dake Liu, “Configurable Port Processor Increases
Flexibility in the Protocol Processing Area”, In proceedings of COOLChips III An Inter-
national Symposium on Low-Power and High-Speed Chips, Kikai-Shinko-Kaikan, Tokyo,
Japan, April 24-25, 2000, pp. 275

[3.3] Tomas Henriksson, Ulf Nordqvist and Dake Liu, “Specification of a configurable General-
Purpose Protocol Processor”, In proceedings of Second International Symposium on Com-
munication systems, Networks and Digital Signal Processing, Bournemouth, UK, July 19-
20, 2000, pp. 284-289

[3.4] Tomas Henriksson, Henrik Eriksson, Ulf Nordqvist, Per Larsson-Edefors, and Dake Liu,
“VLSI Implementation of CRC-32 for 10 Gigabit Ethernet”, In proceedings of The 8th
IEEE International Conference on Electronics, Circuits and Systems, Malta, September 2-
5, 2001, vol. III, pp. 1215-1218

[3.5] Tomas Henriksson, Ulf Nordqvist, and Dake Liu, “Specification of a configurable General-
Purpose Protocol Processor”, Invited submission to a special issue of IEE Proceedings on
Circuits, Devices and Systems

39

4
4
4

4
Paper 1

Configurable Port Processor Increases Flexibility in the
Protocol Processing Area

Tomas Henriksson, Ulf Nordqvist, and Dake Liu

Dept. of Physics and Measurement Technology, Linköping University, SE-581 83 Linköping,
Sweden

Phone: +46-13-28{8956, 5816, 1256}, Email: {tomhe, ulfnor, dake}@ifm.liu.se

In proceedings of COOLChips III An International Symposium on Low-Power and High-Speed
Chips, Kikai-Shinko-Kaikan, Tokyo, Japan, April 24-25, 2000, pp. 275

40 Paper 1

Configurable Port Processor Increases Flexibility in the
Protocol Processing Area

Tomas Henriksson, Ulf Nordqvist, and Dake Liu

Dept. of Physics and Measurement Technology, Linköping University, SE-581 83 Linköping,
Sweden

Phone: +46-13-28{8956, 5816, 1256}, Email: {tomhe, ulfnor, dake}@ifm.liu.se

Abstract

The limitation in networking is no longer only the physical transmission media but also the end
equipment, which has to process the protocol control fields. In most end terminals this processing
has been performed by the main processor, but different types of co-processor have lately
appeared to relieve it from this task. These co-processors have high power consumption since they
are based on a RISC core. Instead ASIC:s can be used, but they lack flexibility and are specific for
only one single protocol. It is clear that a new approach is needed.

A new type of architecture for protocol processing has been specified. Our configurable port
processor for protocol processing (CPP) could be situated in an end terminal or as part of a switch
or router. The processor works with a non-von Neuman architecture to reduce the power con-
sumption and keeps the flexibility by being heavily software reconfigurable. The configurations
can be generated from a description language, for example SDL or C++. The CPP has the perfor-
mance and power consumption similar to an ASIC synthesized by a protocol synthesizer, but has
the observability and flexibility within the protocol processing area of a normal von Neuman pro-
cessor. This makes the CPP suitable for System-on-Chip integration.

The CPP consists of two parts, see figure 1, a deep pipeline serial processor (DPSP) and a micro
controller (µC). The protocol processing takes place in the DPSP. TheµC only handles configura-
tion and some interface functions, it never touches the main data stream. The DPSP is based on
configurable functional pages (FP), which each take care of one small task such as checksum cal-
culation or field extractions.

Data is received via the PHY Interface and is then synchronized and parallelized and passed on
to the multi byte based shift register. Data is then pipelined and each FP collects the protocol
fields that it needs to perform its task. The FP:s are activated on control signals from the controller
and counter (CC). The FP:s report to the CC by sending flags. The CC activates and shuts down

Figure 4.1: Overview of the architecture, the FP:s perform the actual protocol processing

µC
• micro controller core

• host processor interface

• configuration vectors

• program memory
Controller

and
Counter

M
ul

ti
by

te
 b

as
ed

sh
ift

 r
eg

is
te

rs

µC
 In

te
rf

ac
e

PHY Interface (e.g. MII)

DPSP
DPSP = Deep Pipeline Serial Processor
ULP = Upper Layer Protocol

Data buffer

F
P

41

FP:s according to the dataflow and configurations. In particular, when the CC receives a flag that
indicates that the packet must be discarded the CC shuts down all FP:s to save power.

The CC and the FP:s are software reconfigurable. Software reconfiguration is controlled by the
µC. Configuration can also be performed in the design phase. If the CPP is placed in a System-on-
Chip where only specific protocols are used, the CPP can be optimized for that particular environ-
ment.

The CPP can perform protocol processing on layer 2, 3, and 4 of the ISO-OSI reference model
(e.g. Ethernet MAC, IP, and TCP) at the same time. Since all three protocol layers are processed
simultaneously the latency can be kept very low and the memory access can be minimum.

42 Paper 1

43

5
5
5

5
Paper 2

Specification of a configurable General-
Purpose Protocol Processor

Tomas Henriksson, Ulf Nordqvist and Dake Liu

Dept. of Physics and Measurement Technology, Linköping University, SE-581 83 Linköping,
Sweden

Phone: +46-13-28{8956, 5816, 1256}, Email: {tomhe, ulfnor, dake}@ifm.liu.se

In proceedings of Second International Symposium on Communication systems, Networks and
Digital Signal Processing, Bournemouth, UK, July 19-20,2000, pp. 284-289

44 Paper 2

Specification of a configurable General-
Purpose Protocol Processor

Tomas Henriksson, Ulf Nordqvist and Dake Liu

Dept. of Physics and Measurement Technology, Linköping University, SE-581 83 Linköping,
Sweden

Phone: +46-13-28{8956, 5816, 1256}, Email: {tomhe, ulfnor, dake}@ifm.liu.se

Abstract

A general-purpose protocol processor is specified with a dedicated architecture for protocol pro-
cessing. This paper defines a functional coverage, analyses the control requirements, specifies
functional pages and a controller unit. The general-purpose protocol processor is aimed for net-
work terminals, therefore routing is not completely supported. However it should be possible to
use it as part of a router with some minor modifications. The general-purpose protocol processor
is partitioned into two parts, a configurable stand alone part and a program based microcontroller.
The configurable part performs the protocol processing without any running program. The pro-
cessor does not execute any cycle based program, instead execution is controlled by configuration
vectors and control vectors. The microcontroller assists with the interface to the host processor
and handles the configuration. It is concluded that by partitioning the control into three levels, the
architecture is flexible and verification is simplified. The proposed architecture also has higher
performance and lower power dissipation than other solutions.

5.1 Introduction

Networking is developing very fast and more and more protocols are emerging for different
applications. Higher processing performances are requested by the applications. Two kinds of
protocol processors are available on the market, one is the single protocol ASIC without flexibil-
ity, the other is the general purpose processor with limited performance. It is clear that a new type
of architecture for protocol processing is needed to reach the real-time processing speed for Giga-
bit/s or higher speeds with enough flexibility [1], [2], [3].

The aim of this paper is to specify a protocol processor which will lead to the implementation of
a prototype. The architecture is compared to conventional solutions to clarify the value of this
type of architecture.

5.2 Functional Coverage

To cover both the compatibility and flexibility the architecture will include the most frequently
used protocols. So that the architecture can be simple and still flexible. It means there are no prob-
lems to later include more protocols. This work is concentrated on different types of Ethernet,
with IP/TCP-UDP [4] on top. The general-purpose protocol processor (GPPP) receives frames
and processes them at real time speed, but it does not create and send frames at the same speed.
The interface to the physical layer is the MII/GMII [5] and the interface to a host processor is in
the middle of the TCP-UDP layer. As a platform for protocol processing the GPPP performs all
Ethernet processing, all IP processing and TCP-UDP processing for terminals.

To cover the protocols IP/TCP-UDP also ARP, RARP, ICMP and IGMP have to be managed.
Packets of these control oriented protocols are not that common and there is no need to design
specialized hardware for them. Instead the functions can be performed in software in the host pro-

General architecture proposal 45

cessor with a relatively small total overhead. These kinds of packets are only recognized and then
passed on to the host processor.

5.3 General architecture proposal

The proposed architecture is shown in figure 1. The GPPP consists of two parts, a deep pipeline

serial processor (DPSP) and a microcontroller (µC). The DPSP is based on software reconfig-
urable functional pages (FP) as well as a software reconfigurable controller and counter unit
(C&C). The DPSP does not perform a cycle based program execution. One instruction word is a
configuration vector for the complete execution of a FP. The data in the current data packet selects
the next control vector so this is a data driven control process. It offers high performance and low-
power operation combined with high flexibility within the protocol processing area.

The µC is used to configure the DPSP and to interface to the host processor. The DPSP runs
stand alone after initial configuration.

The actual processing is performed in software reconfigurable FPs [1]. Each of these FPs has its
own specific task. The FPs are fed with data from a parallelization/synchronization unit (PSU),
see figure 2. Data is pipelined and the FPs will produce results at different times. To evaluate the
results and take care of extracted values the C&C supports the FPs. The FPs that are needed are
specified in a later section.

Each FP is autonomous as it performs an operation after configuration on a given start signal.
The start signal is generated from the PSU and is given to the FPs by the C&C. Communication
directly between the FPs is avoided, all FPs are controlled by the C&C and send flags to the C&C
when they have something to report. In this way the verification of the FPs is greatly simplified
and the architecture is more flexible. Every FP is controlled by a counter when to be active. Since
three layers of protocols are being processed at the same time, FPs cannot be reused on different
layers.

Figure 5.1: Overview of the architecture, the FPs perform the actual protocol processing

µC
• µcontroller core

• host processor interface

• data buffer

• configuration vectors

• program memory

Controller
&

Counter

R
eg

is
te

r
ch

ai
n

bu
ffe

rs

M
ul

ti
by

te
 b

as
ed

 s
hi

ft
re

gi
st

er
s

µC
 In

te
rf

ac
e

MII/GMII Interface

F
P

DPSP
DPSP = Deep Pipeline Serial Processor

46 Paper 2

5.4 Control Requirements

Protocol processing is a control intensive operation with different processing tasks and heavy
data dependency, see figure 3. The control can be divided into two different types:

• configuration of the DPSP depending on the protocols used in the network
• control of the DPSP depending on the received data

5.4.1 Layer transparent control

When a frame/packet for some reason has to be discarded, all FPs should be shut down to save
power and the GPPP should wait in idle mode until the next frame arrives. This calls for enable
control of each FP.

5.4.2 Peripheral control

The payload has to be delivered to the software of the host processor in some way. The periph-
eral control consists of the payload delivery control and memory allocation assistance.

5.5 Specification of the Functional Pages

Figure 3 shows job allocation and order scheduling. As can be seen the Ethernet checksum cal-
culation FP (ECCFP) is active at the same time as the other FPs. Since the data is pipelined the
concurrency is dependent of how the FPs are placed along the pipeline. An example of the sched-
uling is shown in figure 4. FPs will be placed as to get shortest pipeline and scheduling. The inter-
face to the FPs can be seen in figure 5. All signals and flags connect to the controller unit except
the data and the clk. Below each FP is explained in somewhat more detail.

5.5.1 Ethernet checksum calculation FP (ECCFP)

The ECCFP receives a start signal and then performs CRC-32 calculation on all data passing
through. In the end of the frame the FP will receive a frame end signal and compare the calculated
value to the received frame check sequence. On non equality a discard flag is sent to the C&C.

Figure 5.2: Data is synchronized and parallelized, thereafter one pipeline register is situated
between every FP to decrease the fan-out requirements

MII/GMII

. . . FPFP

Parallelization/
synchronization

unit
(PSU)

Specification of the Functional Pages 47

Extract IP total length and header length

IPv4 or IPv6?

ARP or RARP?

Figure 5.3: Flowchart that illustrates the operation

Pass on payload to application

Reassemble

Check IP header checksum

Check IP destination address

Check Ethernet destination address

Check CRC

Parallelize

Synchronize

Determine IP version

Check TCP/UDP checksum

Extract TCP/UDP payload

Determine transport layer protocol

Extract Ethernet parameters

Send whole
Ethernet pay-
load to the soft-
ware of the
hostprocessor

Yes

ICMP or IGMP?

Send whole IP
payload to the
software of the
hostprocessor

Yes

Skip extension headers

Extract IP payload length

IPv4
IPv6

48 Paper 2

5.5.2 Ethernet destination address extraction and comparison FP (EDAFP)

The EDAFP is configured with the address of the terminal were the GPPP is situated. The FP
receives a start signal and extracts and compares the received address to the configured one and
checks if the extracted address is a multicast address. If the frame is not addressed to this network
terminal a discard flag is sent to the C&C.

5.5.3 Ethernet length/ethertype field extraction FP (ELTFP)

The ELTFP extracts the length/ethertype field. If an ethertype is given, the length is expected
from the ITLFP. The value is distributed by the C&C. A counter keeps track on how much data
that has been received. When the counter reaches the length value a frame end flag is sent. This FP
also gives the ethertype value to the C&C so that special jobs, like ARP and RARP, can be han-
dled correctly.

5.5.4 IP header checksum calculation FP (IHCFP)

The IHCFP is active if the IP version field is IPv4. It then calculates the checksum by perform-
ing 16-bit one’s complement addition of the header fields and makes sure the result is 0. If not a
discard flag is sent to the C&C.

5.5.5 IP version field extraction FP (IVFFP)

The IVFFP extracts the IP version field and sends a flag to the C&C telling which version of IP
is used.

Figure 5.4: Principle scheduling of FPs for an TCP on top of IPv4 example. The boxes show
when the FPs are active. Job abbreviations are specified later in this paper.

time

ECCFP
EDAFP

ELTFP
IVFFP

IHCFP
IDAFP

ITLFP
IPNFP

IRAFP
TUCFP

TULFP

Figure 5.5: General interface of a FP

FP

clk

enable

discard flag
optional flags start optional control signals

data

32

m n

The Controller and Counter Unit 49

5.5.6 IP destination address extraction and comparison FP (IDAFP)

The IDAFP is configured with the terminal address for the application. The FP receives a start
signal and IP version information and extracts and compares the received address to the config-
ured one, it also checks if the extracted address is a multicast address. If it is an unrecognized
address a discard flag is sent to the C&C.

5.5.7 IP header length extraction FP (IHLFP)

The IHLFP sends a flag when the IP header has been received. In IPv4 the IHL field specifies
the length. In IPv6 the header is always 40 bytes plus optional extension headers. The extension
headers, except fragmentation, in IPv6 are not processed, since they concern routers and manage-
ment protocols.

5.5.8 IP total length extraction FP (ITLFP)

The ITLFP extracts the length field to send the length value to the ELTFP.

5.5.9 IP protocol/next header extraction FP (IPNFP)

The IPNFP extracts the protocol field from the IP header and sends a flag to the TCP-UDP FPs
to tell if the present packet is TCP or UDP. If there exist extension headers in IPv6 packets these
are skipped and the extension header length field is used to find out when the next header starts.
This is done until a known header type is received. Known headers are TCP, UDP, ICMP, IGMP
and ICMPv6.

5.5.10 IP reassembly FP (IRAFP)

The IRAFP extracts the fragment fields from IPv4 header and searches for a fragment extension
header in IPv6. If fragmentation is present this FP manages payload data to be stored in memory
on the right place and controls the TUCFP to process the right data. To assist the IRAFP memory
tables and timers for reassembly are present.

5.5.11 TCP-UDP checksum calculation FP (TUCFP)

The TUCFP calculates the checksum by performing 16-bit one’s complement addition of the
whole packet, including some IP header fields. If the result is non zero a discard flag is sent to the
C&C. Multiple accumulators are used to calculate checksums of multiple packets, since frag-
ments of them may arrive nestled.

5.5.12 TCP-UDP packet length counter FP (TULFP)

The TULFP extracts the length value and provides this to the software of the host processor. The
length is also needed for reassembly and checksum calculation.

5.6 The Controller and Counter Unit

Figure 6 shows the general structure of the C&C. The C&C has to manage high-level control
only, since FP specific control is handled within each FP. It receives flags from the FPs and sched-
ules the pipeline delay it sends control signals to the FPs. The controller unit is based on a config-
urable finite state machine (FSM), which controls the discarding or delivery of packets depending
on the flags it receives from the FPs. When a flag, that tells the C&C to discard a packet is
received, all activities are switched off except for the PSU, which looks for the next frame.

50 Paper 2

If a packet is received without any problem, the C&C notifies theµC and tells it where in mem-
ory the packet can be found. The C&C also manages memory allocation and storing of payload
with help from theµC.

5.7 Discussion

The proposed architecture uses extensive parallelism and configurable control to cut down the
hardware redundancy and so the power- and time-consuming characteristics of a programmable
processor. The critical path to the real-time speed limit has been found in the ECCFP. If a data
width of 32 bits is used there should be no problem to deframe Gigabit Ethernet data and perform
the CRC check using a 31.25 MHz clock. In a conventional solution, the CRC check is performed
in the MAC controller, but all network- and transport-layer processing is performed by the host
processor. The GPPP relieves the host processor from this burden which is of great importance as
the speed increases. Other dedicated processors, but still program based, can solve the same tasks
but suffer from much higher power dissipation than the GPPP. Also other dedicated protocol pro-
cessing solutions normally make use of a layer-based pipelining technique [6], which introduces
latency. This latency is eliminated in the GPPP since all layers are processed concurrently.

5.8 Conclusions

By using the proposed architecture and control, a configurable GPPP is accomplished. The con-
figuration-based architecture makes hardware reuse and wide functional coverage possible and
moves unnecessary hardware design to a compiler. The control is partitioned into three different
parts, FP internal control, the C&C and theµC. This partition simplifies verification and increases
the flexibility and supports future changes in the protocols. The proposed architecture has higher
performance and lower power dissipation than its competitors.

The project is under functional implementation phase, approaching to the delivery of the pay-
load to the host processor. Studies are also being made concerning problems occurring when not
buffering the whole Ethernet frame and how to solve the reassembly of IP packets in hardware.

Acknowledgments

This study was supported by the Intelect program of Swedish Foundation for Strategic Research
(SSF). Authors would like to thank Dr. George Liu, Ericsson Research, for interesting discus-
sions.

Figure 5.6: Controller and counter unit overview

clk

flags
control signals

configurable
FSM

µC
IF

counter

Conclusions 51

Appendix: List of Jobs

Ethernet/802.3 CRC check, Ethernet/802.3 destination address check, Ethernet/802.3 payload
protocol determination, IP version determination, ARP/RARP recognition, IPv4/IPv6 destination
address check, IPv4 header checksum check, IP reassembly support, IP payload protocol determi-
nation, TCP packet length determination, and TCP/UDP checksum check.

References

[5.1] Configuration-based architecture for high speed and general-purpose protocol processing,
Dake Liu, Ulf Nordqvist and Christer Svensson, proceedings of SIPS’99, Taiwan

[5.2] Scalable Protocol Engine for High-Bandwidth Communications, Chirstos J. Gerorgiou and
Chung-Sheng Li, IEEE Int. Conf. on Communications, 1997. ICC’97 Montreal, Towards
the Knowledge Millennium. pp.1121-1126 vol.2 1997

[5.3] A Design Methodology for Protocol Processors, Michael Yang and Ahmed Tantawy, Pro-
ceedings of the Fifth IEEE Computer Society Workshop on Future Trends of Distributed
Computing Systems, 1995, pp.376-381

[5.4] Computer Networks, 3rd Ed., Andrew S. Tanenbaum, Prentice Hall PTR, ISBN 0-13-
349945-6, 1996

[5.5] Gigabit Ethernet, Jayant Kadambi et al, Prentice Hall PTR, ISBN 0-13-913286-4, 1998

[5.6] The Parallel Protocol Engine, Matthias Kaiserswerth, IEEE/ACM Transactions on Net-
working, vol.1 No.6 December 1993 pp.650-663

52 Paper 2

53

6
6
6

6
Paper 3

VLSI Implementation of CRC-32 for 10 Gigabit Ethernet

Tomas Henriksson, Henrik Eriksson, Ulf Nordqvist, Per Larsson-Edefors, and Dake Liu

Department of Physics and Measurement Technology

Linköping University, SE-581 83 Linköping, Sweden

Phone: +46-13-28{8956, 2483, 8965, 1224, 1256}, Fax: +46-13-132285

E-mail: {tomhe, hener, ulfnor, perla, dake}@ifm.liu.se

In proceedings of The 8th IEEE International Conference on Electronics, Circuits and Systems,
Malta, September 2-5 2001, vol. III, pp. 1215-1218

54 Paper 3

VLSI Implementation of CRC-32 for 10 Gigabit Ethernet

Tomas Henriksson, Henrik Eriksson, Ulf Nordqvist, Per Larsson-Edefors, and Dake Liu

Department of Physics and Measurement Technology

Linköping University, SE-581 83 Linköping, Sweden

Phone: +46-13-28{8956, 2483, 8965, 1224, 1256}, Fax: +46-13-132285

E-mail: {tomhe, hener, ulfnor, perla, dake}@ifm.liu.se

Abstract

For 10 Gigabit Ethernet a CRC-32 generation is essential and timing critical. Many efficient
software algorithms have been proposed for CRC generation. In this work we use an algorithm
based on the properties of Galois fields, which gives very efficient hardware. The CRC generator
has been implemented and simulated in both standard cells and a full-custom design technique. In
standard cells from the UMC 0.18 micron library a throughput of 8.7 Gb/s has been achieved. In
the full-custom design for AMS 0.35 micron process we have achieved a throughput of 5.0 Gb/s.
The conclusion, based on extrapolation of device characteristics, is that CRC-32 generation for
10 Gb/s can be designed with standard cells in a 0.15 micron process technology, or using full-
custom design techniques in a 0.18 micron process technology.

6.1 Introduction

Digital communication is becoming more and more important and higher bit rates are constantly
required. To manage this, not only the optical fibers have to work at higher speeds, but also the
electronic equipment at the ends of these fibers. One thing that has been proven hard to speed up
is the checksum calculation and especially the type cyclic redundancy check (CRC), which is
used for example in the Ethernet and ATM protocols.

In the proposal for the new 10 Gb/s Ethernet standard it is specified that CRC will still be used
and also that the minimum data unit is a symbol of 8 bits [6.1]. It is highly beneficial to perform
the CRC calculation at wire speed, since buffering of all received data would imply high power
consumption and introduce an unnecessary delay [6.2].

The aim of this paper is to show that it is possible to perform the 32-bit CRC used in Ethernet
(CRC-32) at the speed of 10 Gb/s with process technologies available today. We look at two dif-
ferent designs and discuss their performance based on our simulations. Since we do not have
access to cutting edge process technologies, we base our conclusions on extrapolation of device
characteristics [6.9].

6.2 Mode of Operation

All modern high-speed implementations of CRC make use of parallelism. This gives an obvious
advantage over the original bit-serial implementation, since the required clock frequency can be
reduced with a factor corresponding to the level of parallelism. In previous work, we have investi-
gated some different architectures for parallel CRC generation and concluded that the fixed logic
implementation is somewhat faster than a look-up-table based architecture [6.3].

The higher the parallelism, the lower the clock frequency can be used. Hobson and Cheung [6.4]
have proposed a 32-bit parallel CRC-32 engine which could reach 5 Gb/s. For Ethernet however,
it is desirable to have only 8-bit parallelism, since the minimum symbol in an Ethernet packet is 8
bits. This is to avoid complicated handling of initial and ending 8-bit symbols.

Implementation Considerations 55

Glaise and Jacquart [6.5] have shown that the CRC-32 can be calculated efficiently by using the
properties of Galois fields. Several other optimizations to the CRC algorithm have been made
[6.6], but many of them are only suitable for software and actually make a pure hardware solution
more complicated.

The general architecture of the CRC generator is shown in figure 6.1. The middle register is the

CRC register. Since we have chosen the CRC-32 algorithm of Glaise & Jacquart, the CRC register
must be preset not to all 1’s, as in most software implementations, but to the vector, in hex,
“46AF6449” [6.5]. To achieve the correct CRC value, 4 bytes with all 0’s must also be supplied
after the actual data. The output must be inverted, which is taken care of before the output register.
The input and output registers do not have set or reset, but the register bits in the CRC register
have set or reset according to the vector mentioned above. It is assumed that the set, reset, and
clock signals can be generated to suit this architecture. That implies for example, that the clock
signal is constantly “0” when set and reset are activated.

6.3 Implementation Considerations

The CRC generator has been implemented in two different ways. The target technology for a
full-custom implementation was the 3 metal layer AMS 0.35 micron process and the target tech-
nology for a synthesized standard cell implementation was the 6 metal layer UMC 0.18 micron
process.

6.3.1 Standard Cell Implementation

A key to achieve high speed is to have a flip-flop with low delay from clock to output and a high
driving capability. The setup time should also be short. When doing a standard cell implementa-
tion, some flip-flops should be parallelized. This pertains to the flip-flops, that drive critical paths.
The fan-out is shared on two flip-flops, so one is driving only the gate in the critical path and the
other one is driving all other gates, that need the same input. By doing so the delay from the flip-
flop to the first gate in the critical path is minimized. An example of this can be seen in figure 6.2.
The input to the flip-flops is not in the critical path, so loading the last gate with two parallel flip-
flops does not impact the maximum clock frequency for the design. Unfortunately the synthesis
tool could not handle the parallelization of flip-flops, therefore it had to be done manually in the
RTL code.

CL

Figure 6.1: General architecture of the CRC generator

input register CRC register output register

323232 32

32

88

56 Paper 3

The CRC generator has been described in Mentor Graphics Renoir and VHDL. Synthesis was
performed by Cadence Buildgates and timing-driven place&route was made by Cadence Silicon
Ensemble (SE).

The standard cell implementation consists of totally 432 cells, which require a chip area of
11111µm2.

6.3.2 Full-Custom Implementation

By using the equations of Glaise and Jacquart, we can limit the maximum number of inputs to
any of the bits in the CRC register to 8. This leaves us with the logic depth of 3 if we exclusively
use 2 input XOR gates for the combinational logic. In the full-custom implementation we use the
XOR gate proposed by Wang et. al. [6.7], which also was used by Hobson and Cheung.

To make the design work at the required high frequency, sizing of the logic gates is needed due
to the high fan-out of some of the gates. Load balancing and logic sharing are also two subjects
for optimization. We have generally tried to share as much logic as possible to reduce the fan-out
of the CRC register.

In the full-custom design we have not used flip-flops for the CRC register. Instead we have used
two stages of latches, with XOR gates and inverters merged into the latches, an example is shown
in figure 6.3. The inverter in the latch is used as the last stage of the XOR gate. By doing this we
reduce the logic depth and hence the total delay. The latches are the simplest possible, an inverter
followed by a transmission gate, which have proven to be fast in [6.8].

The XOR gates have one input, that is slightly faster than the other. In the critical path we have
throughout the design used the faster input.

Figure 6.2: Parallelization of flip-flops

combinational
logic on the criti-

cal path

combinational
logic not on the

critical path

combinational
logic on the criti-

cal path

combinational
logic not on the

critical path

Parallelized flip-flop

Non-parallelized flip-flop

Simulation Results and Static Timing Analysis 57

The full-custom implementation was designed in Mentor Graphics Layout Editor. The layout is
shown in figure 6.4. Totally 908 transistors have been used and the largest transistors have
Wp=17µm and Wn=9 µm respectively.

6.4 Simulation Results and Static Timing Analysis

6.4.1 Standard Cell Implementation

For the standard cell implementation, the maximum clock frequency was identified by using the
static timing analysis (STA) in Buildgates. When doing this, parasitic wire capacitances extracted
from the layout by Silicon Ensemble were used.

A maximum clock frequency of 1.09 GHz was achieved. That corresponds to 8.7 Gb/s of pro-
cessed data.

6.4.2 Full-Custom Implementation

The complete design has been simulated in switch-level mode in Mentor Graphics LSim simu-
lator to verify the functional correctness.

Parasitic wire capacitances from the complete layout were extracted and the critical path was
manually identified to be the structure, which can be seen in figure 6.5. When the simulation was
performed, the critical path was separated from the layout and the adequate parasitic capacitances
were used. This was done in order to be able to easily apply the worst-case input vector. The crit-
ical path was simulated with HSpiceTM using level 49 with mean parameters.

The critical path simulation gives a worst-case delay of 1.60 ns, which corresponds to a maxi-
mum clock frequency of 625 MHz, and thus a throughput of 5 Gb/s is achieved.

6.5 Discussion and Extrapolation of Results

With 8-bit parallelism and 10 Gb/s requirement, obviously a clock frequency of 1.25 GHz is
needed, i.e. a clock period of 800 ps. However, this high speed cannot be expected from the 0.35
micron process technology, nor could it be achieved with the synthesized standard cell implemen-
tation in a 0.18 micron process.

The synthesized standard cell implementation technique is normally preferred in industry and
therefore it is most important to be able to use that technique in order to achieve 10 Gb/s through-

Figure 6.3: XOR merged into positive latch, with active low set signal

A B
clk

clk

set

out

58 Paper 3

Figure 6.4: Layout of the CRC Generator in the full-custom implementation (width 150µm,
height 720µm). Input and output registers are not included in the full-custom design.

Conclusion 59

put. According to the SIA roadmap [6.9] the gate delay reduces with a factor of 1.27 when going
from 0.18 micron to 0.15 micron technologies. We achieved 8.7 Gb/s in a 0.18 micron process
and thus, using the scaling factor, approximately 11 Gb/s could be achieved with a 0.15 micron
process. However, the scaling factor 1.27 only considers gate delay reduction. It does not say any-
thing of what will happen with delays due to interconnects. The CRC generator is a fairly small
logic block and gate delays dominate over delays due to interconnects. That means that we have
strong indications that at least 10 Gb/s will be achieved in a 0.15 micron process.

If a full-custom implementation is made, it is possible to achieve a throughput of more than
10 Gb/s with a 0.18 micron technology, since the scaling factor when going from 0.35 micron to
0.18 micron technologies is more than 2.

6.6 Conclusion

We conclude that it is possible to handle CRC-32 calculation for data streams up to 10 Gb/s by
using a standard cell synthesized design. The requirement is to use a 0.15 micron process technol-
ogy.

A full-custom design can reach a throughput of more than 10 Gb/s in a 0.18 micron process
technology. This requires that a high-performance XOR gate is used in combination with fast
latches and that a compact layout is made.

Acknowledgment

The authors would like to acknowledge SwitchCore for interesting discussions. This study was
supported by the Swedish Foundation for Strategic Research (SSF), the Swedish Research Coun-
cil for Engineering Sciences (TFR) under contract 314-97-289, and the Center for Industrial
Information Technology at Linköping Institute of Technology (CENIIT).

References

[6.1] H. Frazier, “10Gig MII update”, onthe www, http://grouper.ieee.org/groups/802/3/
10G_study/public/nov99/index.html

[6.2] D. Liu, U. Nordqvist, and C. Svensson, “Configuration-Based Architecture for High Speed
and General-Purpose Protocol Processing”,IEEE Workshop on Signal Processing Systems,
Taipei, Taiwan, 1999, pp. 540-547.

Figure 6.5: Critical path in the full-custom implementation. The loads specify the total output
load, including output capacitance of the driving stage, wire capacitance, and input capacitance

of the driven gates.

XOR with
positive

latch

XOR with
negative

latch

72 fF

XOR

167 fF

XOR with
positive

latch

265 fF

60 Paper 3

[6.3] U. Nordqvist, T. Henriksson, and D. Liu, “CRC Generation for Protocol Processing”,Nor-
chip 2000, Turku, Finland, pp. 288-293.

[6.4] R. F. Hobson and K. L. Cheung, “A High-Performance CMOS 32-Bit Parallel CRC
Engine”,IEEE Journal of Solid-State Circuits, vol. 34, no. 2, February 1999, pp. 233-235.

[6.5] R. J. Glaise and X. Jacquart, “FAST CRC CALCULATION”,IEEE International Confer-
ence on Computer Design: VLSI in Computers and Processors, Cambridge, MA, USA,
1993, pp. 602-605.

[6.6] R. N. Williams, “A Painless Guide to CRC Error Detection Algorithms”, onthe www,
http://www.ross.net/crc/ version 3.00, 19 Aug. 1993.

[6.7] J.-M. Wang, S.-C. Fang, and W.-S. Feng, “New efficient designs for XOR and XNOR
functions on the transistor level”,IEEE Journal of Solid-State Circuits, vol. 29, July 1994,
pp. 780-786.

[6.8] C. Svensson and J. Yuan, “Latches and Flip-flops for Low Power Systems”,Low-Power
CMOS Design, New York: IEEE Press, 1998, part IV, pp. 233-238.

[6.9] Semiconductor Industry Association,International Technology Roadmap for Semiconduc-
tors: 1999 edition, Austin, TX:International SEMATECH, 1999.

61

7
7
7

7
Paper 4

Specification of a configurable General-
Purpose Protocol Processor

Tomas Henriksson, Ulf Nordqvist, and Dake Liu

Dept. of Electrical Engineering, Linköping University, SE-581 83 Linköping, Sweden

Phone: +46-13-28{8956, 5816, 1256}, Email: {tomhe, ulfnor, dake}@isy.liu.se

Invited submission to a special issue of IEE Proceedings on Circuits, Devices and Systems as an
extended version of Paper 2. The manuscript is under the process of review at the time of writing.

62 Paper 4

Specification of a configurable General-
Purpose Protocol Processor

Tomas Henriksson, Ulf Nordqvist, and Dake Liu

Dept. of Electrical Engineering, Linköping University, SE-581 83 Linköping, Sweden

Phone: +46-13-28{8956, 5816, 1256}, Email: {tomhe, ulfnor, dake}@isy.liu.se

Abstract

A general-purpose protocol processor is specified with a dedicated architecture for protocol pro-
cessing. This paper defines a functional coverage, analyses the control requirements, specifies
functional pages and a controller unit. The general-purpose protocol processor is aimed for net-
work terminals, therefore routing is not completely supported. However it should be possible to
use it as part of a router with some minor modifications. The general-purpose protocol processor
is partitioned into two parts, a configurable stand alone part and a program based microcontroller.
The configurable part performs the protocol processing without any running program. The pro-
cessor does not execute any cycle based program, instead execution is controlled by configuration
vectors and control vectors. The microcontroller assists with the interface to the host processor
and handles the configuration. It is concluded that by partitioning the control into three levels, the
architecture is flexible and verification is simplified. The proposed architecture also has higher
performance and lower power dissipation than other solutions.

7.1 Introduction

Computer networks are developing very fast and more and more protocols are emerging for dif-
ferent applications. At the same time as the protocols are becoming more complex the transmis-
sion speeds also increase. This leads to a situation where the electronic equipment has a hard task
to keep up with the speeds of the optical links and the complexity of the new protocol standards.
Many companies and universities are working on new types of architectures for switches and
routers.

For network terminals the scene is different, very few projects aim at dealing with the terminal,
which is connected to a high speed network. The processing in the terminal also includes the data
transformation from high bandwidth network to low bandwidth applications. For terminals, two
kinds of protocol processors are available on the market, one is the single protocol ASIC without
flexibility, the other is the general purpose processor with limited performance. It is clear that a
new type of architecture for protocol processing in network terminals is needed to reach the real-
time processing speed for Gigabit/s or higher speeds with enough flexibility [7.1], [7.2], [7.3].

The aim of this paper is to extend the specification of a protocol processor [7.4] which is based
on configurable functional pages. The critical parts of the processor have been implemented and
simulated. The results of these simulations are provided and the architecture is compared to con-
ventional solutions to clarify the value of this type of architecture.

The rest of this paper is divided into 9 sections. In section 2 the functional coverage of the pro-
tocol processor is discussed. In section 3 the general architecture is defined and then the control
requirements are discussed in section 4. Section 5 specifies the key components in the architecture
and sections 6 and 7 present the results of implementations of the two most critical parts for high
speed operation. In section 8 the hierarchical control architecture is described. Section 9 discusses

Functional Coverage 63

the protocol processors advantages and disadvantages and finally some conclusions are drawn in
section 10.

7.2 Functional Coverage

To cover both the compatibility and flexibility the architecture will include the most frequently
used protocols. So that the architecture can be simple and still flexible. It means there are no prob-
lems to later include more protocols. This work is concentrated on different types of Ethernet,
with IP/TCP-UDP [7.5] on top. This can be seen as an instance of the general-purpose protocol
processor (GPPP). The same main architecture with other functional pages (FPs) can be used for
totally different protocol stacks. Deciding which FPs to include is the first level of configuration
and has to be done before manufacturing the GPPP. The GPPP receives frames and processes
them at real time speed, but it does not create and send frames at the same speed. The interface to
the physical layer is the MII/GMII [7.6] and the interface to a host processor is in the middle of
the TCP-UDP layer. As a platform for protocol processing the GPPP performs all Ethernet pro-
cessing, all IP processing and TCP-UDP processing for terminals.

To cover the protocols IP/TCP-UDP also ARP, RARP, ICMP and IGMP have to be managed.
Packets of these control oriented protocols are not that common and there is no need to design
specialized hardware for them. Instead the functions can be performed in software in the host pro-
cessor with a relatively small total overhead. These kinds of packets are only recognized and then
passed on to the host processor. The complete list of jobs can be found in appendix .

7.3 General architecture proposal

The proposed architecture is shown in figure 7.1. The GPPP consists of two parts, a deep pipe-

line serial processor (DPSP) and a microcontroller (µC). The DPSP is based on software reconfig-
urable functional pages as well as a software reconfigurable controller and counter unit (C&C).
The DPSP does not perform a cycle based program execution. One instruction word is a configu-

Figure 7.1: Overview of the architecture, the FPs perform the actual protocol processing

µC
• µcontroller core

• host processor interface

• data buffer

• configuration vectors

• program memory

Controller
&

Counter

R
eg

is
te

r
ch

ai
n

bu
ffe

rs

M
ul

ti
by

te
 b

as
ed

 s
hi

ft
re

gi
st

er
s

µC
 In

te
rf

ac
e

MII/GMII Interface

F
P

DPSP
DPSP = Deep Pipeline Serial Processor

64 Paper 4

ration vector for the complete execution of a FP. The data in the current data packet selects the
next control vector so this is a data driven control process. It offers high performance and low-
power operation combined with high flexibility within the protocol processing area.

The µC is used to configure the DPSP and to interface to the host processor. The DPSP runs
stand alone after initial configuration.

The actual processing is performed in software reconfigurable FPs [7.1]. Each of these FPs has
its own specific task. The FPs are fed with data from a parallelization/synchronization unit (PSU),
see figure 7.2. Data is pipelined and the FPs will produce results at different times. To evaluate the

results and take care of extracted values the C&C supports the FPs. The FPs that are needed are
specified in a later section.

Each FP is autonomous as it performs an operation after configuration on a given start signal.
The start signal is generated from the PSU and is given to the FPs by the C&C. Communication
directly between the FPs is mostly avoided, all FPs are controlled by the C&C and send flags to
the C&C when they have something to report. In this way the verification of the FPs is greatly
simplified and the architecture is more flexible. Every FP is controlled by a counter when to be
active. Since three layers of protocols are being processed at the same time, FPs cannot be reused
on different layers.

7.4 Control Requirements

Protocol processing is a control intensive operation with different processing tasks and heavy
data dependency, see figure 7.3. The control of the FPs can be divided into two different types:

• configuration of the DPSP depending on the protocols used in the network
• control of the DPSP depending on the received data

The first part, the configuration, is handled by theµC, and has to be finished before the packets
arrive at the terminal. The second part is conducted by the C&C on a high level and by the FPs
internally on a low level. When the packet arrives at the terminal the control signals are dynami-
cally decided and different for each arriving packet, dependent of the contents of that packet.

7.4.1 Layer transparent and dependent control

When a frame/packet for some reason has to be discarded, all FPs should be shut down to save
power and the GPPP should wait in idle mode until the next frame arrives. This calls for enable

Figure 7.2: Data is synchronized and parallelized, thereafter one pipeline register is
situated between every FP to decrease the fan-out requirements

MII/GMII

. . . FPFP

Parallelization/
synchronization

unit
(PSU)

32

Control Requirements 65

Extract IP total length and header length

IPv4 or IPv6?

ARP or RARP?

Figure 7.3: Flowchart that illustrates the operation

Pass on payload to application

Reassemble

Check IP header checksum

Check IP destination address

Check Ethernet destination address

Check CRC

Parallelize

Synchronize

Determine IP version

Check TCP/UDP checksum

Extract TCP/UDP payload

Determine transport layer protocol

Extract Ethernet parameters

Send whole
Ethernet pay-

load to the
software of
the host pro-

cessor

Yes

ICMP or IGMP?

Send whole
IP payload
to the soft-
ware of the
host proces-

sor

Yes

Skip extension headers

Extract IP payload length

IPv4
IPv6

66 Paper 4

control of each FP. This kind of control, that applies to all layers in the protocol stack is called
layer transparent control and affects the whole GPPP. In the case of, for example, an ICMP
packet, the FPs that deal with TCP and UDP tasks can be disabled, but not the rest of the GPPP,
this would be the opposite case, the so called layer dependent control. So each FP will be assigned
to a set and each such set will be associated with the processing of a certain layer in the protocol
stack.

7.4.2 Peripheral control

The payload has to be delivered to the application software of the host processor in some way.
This is taken care of by the peripheral control. The peripheral control consists of the payload
delivery control and memory allocation assistance. These are both implemented in theµC.

7.5 Specification of the Functional Pages

Figure 7.3 shows job allocation and order scheduling. As can be seen the Ethernet checksum
calculation FP (ECCFP) is active at the same time as the other FPs. Since the data is pipelined the
concurrency is dependent of how the FPs are placed along the pipeline. An example of the sched-
uling is shown in figure 7.4. FPs will be placed as to get shortest pipeline and scheduling. The

interface to the FPs can be seen in figure 7.5. All signals and flags connect to the controller unit
except the data and the clk. Below each FP is explained in somewhat more detail.

Figure 7.4: Principle scheduling of FPs for an TCP on top of IPv4 example. The boxes
show when the FPs are active. Job abbreviations are specified later in this paper.

time

ECCFP
EDAFP

ELTFP
IVFFP
IHCFP

IDAFP
ITLFP

IPNFP
IRAFP

TUCFP
TULFP

Figure 7.5: General interface of a FP

FP

clk

enable

discard flag optional flags start optional control signals

data

32

m n

Specification of the Functional Pages 67

7.5.1 Ethernet checksum calculation FP (ECCFP)

The ECCFP receives a start signal and then performs CRC-32 calculation on all data passing
through. In the end of the frame the FP will receive a frame end signal and compare the calculated
value to the received frame check sequence. On non equality a discard flag is sent to the C&C.

7.5.2 Ethernet destination address extraction and comparison FP (EDAFP)

The EDAFP is configured with the address of the terminal were the GPPP is situated. The FP
receives a start signal and extracts and compares the received address to the configured one and
checks if the extracted address is a multicast address. If the frame is not addressed to this network
terminal a discard flag is sent to the C&C.

7.5.3 Ethernet length/ethertype field extraction FP (ELTFP)

The ELTFP extracts the length/ethertype field. If an ethertype is given, the length is expected
from the ITLFP. The value is distributed by the C&C. A counter keeps track on how much data
that has been received. When the counter reaches the length value a frame end flag is sent. This FP
also gives the ethertype value to the C&C so that special jobs, like ARP and RARP, can be han-
dled correctly.

7.5.4 IP header checksum calculation FP (IHCFP)

The IHCFP is active if the IP version field is IPv4. It then calculates the checksum by perform-
ing 16-bit one’s complement addition of the header fields and makes sure the result is 0. If not a
discard flag is sent to the C&C.

7.5.5 IP version field extraction FP (IVFFP)

The IVFFP extracts the IP version field and sends a flag to the C&C telling which version of IP
is used.

7.5.6 IP destination address extraction and comparison FP (IDAFP)

The IDAFP is configured with the terminal address for the application. The FP receives a start
signal and IP version information and extracts and compares the received address to the config-
ured one, it also checks if the extracted address is a multicast address. If it is an unrecognized
address a discard flag is sent to the C&C.

7.5.7 IP header length extraction FP (IHLFP)

The IHLFP sends a flag when the IP header has been received. In IPv4 the IHL field specifies
the length. In IPv6 the header is always 40 bytes plus optional extension headers. The extension
headers, except fragmentation, in IPv6 are not processed, since they concern routers and manage-
ment protocols.

7.5.8 IP total length extraction FP (ITLFP)

The ITLFP extracts the length field to send the length value to the ELTFP.

7.5.9 IP protocol/next header extraction FP (IPNFP)

The IPNFP extracts the protocol field from the IP header and sends a flag to the TCP-UDP FPs
to tell if the present packet is TCP or UDP. If there exist extension headers in IPv6 packets these
are skipped and the extension header length field is used to find out when the next header starts.
This is done until a known header type is received. Known headers are TCP, UDP, ICMP, IGMP
and ICMPv6.

68 Paper 4

7.5.10 IP reassembly FP (IRAFP)

The IRAFP extracts the fragment fields from IPv4 header and searches for a fragment extension
header in IPv6. If fragmentation is present this FP manages payload data to be stored in memory
on the right place and controls the TUCFP to process the right data. To assist the IRAFP memory
tables and timers for reassembly are present.

7.5.11 TCP-UDP checksum calculation FP (TUCFP)

The TUCFP calculates the checksum by performing 16-bit one’s complement addition of the
whole packet, including some IP header fields. If the result is non zero a discard flag is sent to the
C&C. Multiple back-up accumulator registers are used in order to be able to calculate checksums
of multiple packets, since fragments of them may arrive nestled.

7.5.12 TCP-UDP packet length counter FP (TULFP)

The TULFP extracts the length value and provides this to the software of the host processor. The
length is also needed for reassembly and checksum calculation.

7.6 The Ethernet Checksum Calculation Functional Page

This section provides a more detailed description of the ECCFP and describes the issues with an
high-speed implementation. The ECCFP manages the cyclic redundancy check (CRC) of the Eth-
ernet frame. The CRC is computed on the whole Ethernet frame and after that the frame check
sequence (FCS) has been received, the result must be all zeros. The FCS has been calculated by
the sender and is the remainder of the data divided by the CRC polynomial.

Various types of CRC implementations have been investigated [7.9], but for this instance of the
GPPP only one type of CRC, with fixed polynomial, is needed. The fastest way to do this is to use
a parallel implementation. The wider words that are used, the lower the clock frequency can be,
but the complexity also grows with the word width. However, the complexity and thereby the crit-
ical path delay does not grow as fast as the word width increases so in general an architecture
which calculates more bits in parallel will support higher throughput [7.10]. It has to be consid-
ered that data in Ethernet frames can be of any number of bytes and if more than 8 bits are com-
puted in parallel the initial and final words may not be of the same width. We use a 32-bit parallel
implementation, which is a good trade-off between complexity and performance. Like in [7.11]
the register elements that are starting points of critical paths have been duplicated. This is done in
a way so that the driving strength can be adjusted to minimize the delay. Combinational logic in
the most critical paths has been pushed over the clock cycle boundary defined by the registers to a
path with less latency. Before the output this has to be compensated for. In a 0.18 micron process
technology implementation, the static timing analysis (STA) provide the result of 10.53 Gbit/s
throughput operation for the ECCFP. The STA was done with extracted parasitics form the layout.

7.7 The TCP-UDP Checksum Calculation Functional Page

The other FP that possibly can limit the performance of the GPPP is the TUCFP. This FP has a
relatively straight forward task for most packets. When the IP header arrives, the pseudo header
must be extracted and the 1’s complement addition is used to add up 16-bit words of the pseudo
header and the IP payload.

The first observation, that complicates the operation a little bit, is that the required upper layer
payload length is not present in the TCP header, so it must be calculated as the IP total length - IP
header length. The IP header length is specified in units of 4 bytes, so it must first be left shifted
two bit positions.

The Controller and Counter Unit 69

The second observation, that complicates the operation a whole lot more, is that fragmented IP
packets must be dealt with. The fundamental problem is that the GPPP does layer 2-4 processing
at each fragment when it arrives, i.e. some layer 4 tasks are performed before the IP packets are
reassembled. For the TCP UDP checksum computation this means that the checksums for each
fragment is calculated individually and when more fragments arrive they are combined with the
already existing partial checksum. It has to be taken care of that the pseudo header is included
exactly once in the computation and duplicated fragments must be discarded before computed.
There is also a need for a time-out if all fragments do not arrive within a certain time limit. The
TUCFP makes use of the IRAFP for some of this functionality.

The TUCFP has been implemented in VHDL and the result is that the operation in an 0.18
micron process technology can support transmission speeds of up to 11.55 Gbit/s [7.8]. The STA
was done in the same manner as for the ECCFP.

7.8 The Controller and Counter Unit

Figure 7.6 shows the general structure of the C&C. The C&C has to manage high-level control

only, since FP specific control is handled within each FP. It receives flags from the FPs, schedules
the pipeline delay, and sends control signals to the FPs. The controller unit is based on a config-
urable finite state machine (FSM), which controls the discarding or delivery of packets depending
on the flags it receives from the FPs. When a flag, that tells the C&C to discard a packet is
received, all activities are switched off except for the PSU, which looks for the next frame.

If a packet is received without any problem, the C&C notifies theµC and tells it where in mem-
ory the packet can be found. The C&C also manages memory allocation and storing of payload
with help from theµC.

7.9 Discussion

The proposed architecture uses extensive parallelism and configurable control to cut down the
hardware redundancy and so the power- and time-consuming characteristics of a programmable
processor. The critical path to the real-time speed limit has been found in the ECCFP. If a data
width of 32 bits is used it is possible to support 10 Gigabit Ethernet. In a conventional solution,
the CRC check is performed in the MAC controller, but all network- and transport-layer process-
ing is performed by the host processor. The GPPP relieves the host processor from this burden
which is of great importance as the network transmission speed increases. Other dedicated pro-
cessors, but still program based, can solve the same tasks but suffer from much higher power dis-

Figure 7.6: Controller and counter unit overview

clk

flags
control signals

configurable
FSM

µC
IF

counter

70 Paper 4

sipation than the GPPP. Also other dedicated protocol processing solutions normally make use of
a layer-based pipelining technique [7.7], which introduces latency. This latency is eliminated in
the GPPP since all layers are processed concurrently.

7.10 Conclusions

By using the proposed architecture and control, a configurable GPPP is accomplished. The con-
figuration-based architecture makes hardware reuse and wide functional coverage possible and
moves unnecessary hardware design to a compiler. The control is partitioned into three different
parts, FP internal control, the C&C and theµC. This partition simplifies verification and increases
the flexibility and supports future changes in the protocols. The proposed architecture has higher
performance and lower power dissipation than its competitors.

The project is under functional implementation phase, approaching to the delivery of the pay-
load to the host processor. Studies are also being made concerning problems occurring when not
buffering the whole Ethernet frame and how to solve the reassembly of IP packets in hardware.

Acknowledgments

This study was supported by the Intelect program of Swedish Foundation for Strategic Research
(SSF). Authors would like to thank Dr. George Liu, Ericsson Research, for interesting discus-
sions.

References

[7.1] LIU, D., NORDQVIST, U., SVENSSON, C.: ‘Configuration-based architecture for high
speed and general-purpose protocol processing’, SIPS’99, Taiwan, pp. 540-547

[7.2] GERORGIOU, C. J., LI, C.-S.: ‘Scalable Protocol Engine for High-Bandwidth Communi-
cations’, IEEE Int. Conf. on Communications, 1997, Montreal, Towards the Knowledge
Millennium. pp.1121-1126 vol.2 1997

[7.3] YANG, M., TANTAWY, A.: ‘A Design Methodology for Protocol Processors’, Fifth IEEE
Computer Society Workshop on Future Trends of Distributed Computing Systems, 1995,
pp.376-381

[7.4] HENRIKSSON, T., NORDQVIST, U., LIU, D.: ‘Specification of a configurable General-
Purpose Protocol Processor’, CSNDSP 2000, Bournemouth, U.K., pp. 284-289

[7.5] TANENBAUM, A. S.: ‘Computer Networks’, 3rd Ed., Prentice Hall PTR, ISBN 0-13-
349945-6, 1996

[7.6] KADAMBI, J., CRAYFORD, I., KALKUNTE, M.: ‘Gigabit Ethernet’, Prentice Hall PTR,
ISBN 0-13-913286-4, 1998

[7.7] KAISERWERTH, M.: ‘The Parallel Protocol Engine’, IEEE/ACM Transactions on Net-
working, vol.1 No.6 December 1993 pp. 650-663

[7.8] PERSSON, N.: ‘Specification and Implementation of a Functional Page for Internet
Checksum Calculation’, Master’s thesis, Linköping University, March 2001, No.: LiTH-
IFM-EX-959

[7.9] NORDQVIST, U., HENRIKSSON, T., LIU, D.: ‘CRC Generation for Protocol Process-
ing’, Norchip 2000, Turku, Finland, pp. 288-293

[7.10] PEI, T.-B., ZUKOWSKI, C.: ‘High-speed parallel CRC circuits in VLSI’, IEEE Transac-
tions on Communications, vol. 40 Issue 4 April 1992, pp. 653-657

Conclusions 71

[7.11] HENRIKSSON, T., ERIKSSON, H., NORDQVIST, U., LARSSON-EDEFORS, P., LIU,
D.: ‘VLSI Implementation of CRC-32 for 10 Gigabit Ethernet’, ICECS 2001, Malta, pp.
1215-1218

Appendix: List of Jobs

Ethernet/802.3 CRC check, Ethernet/802.3 destination address check, Ethernet/802.3 payload
protocol determination, IP version determination, ARP/RARP recognition, IPv4/IPv6 destination
address check, IPv4 header checksum check, IP reassembly support, IP payload protocol determi-
nation, TCP packet length determination, and TCP/UDP checksum check.

