
ABSTRACT
Packet decoding is important in terminals as well as in switches
and routers. A new instruction set architecture and a new processor
microarchitecture is needed since traditional processors cannot
keep up with the network speed. Our protocol processor works in-
line with the data flow and can execute conditional jumps in one
clock cycle since it uses a novel way to divide the program into
three parts. The processor has been synthesized and static timing
analysis based on the synthesized and placed netlist indicates that
it can support a data stream of more than 10 Gb/s.

1. INTRODUCTION
Computer networks keep increasing the transmission bandwidth at
a pace much higher than what microprocessors can keep up with
[11], [10]. The bottleneck is no longer the transmission media, but
rather the networking equipment, such as network interface cards
(NICs), switches and routers [3]. At the same time as faster
throughput is required from these devices, the protocols that are
used for the communication keep changing. This calls for pro-
grammable solutions, which can support both high throughput and
enough flexibility.

The terminals have not received as much attention as needed, but
suffer from heavy processing, which must be off-loaded from the
host processor [4], [2] and [1]. An important part off that process-
ing is the packet decoding and checksum calculation.

In this paper we present a new instruction set architecture (ISA),
which is optimized for the packet decoding task. Along with the
ISA we also present a processor architecture, the protocol proces-
sor (PP), that can execute the instruction set efficiently. The PP
architecture was outlined in [5]. In this paper the PP ISA is
described along with performance figures for the synthesized and
placed standard cell netlist. Based on the ISA a functional cover-
age analysis is done.

The basic principle for the PP is that it must be able to execute sev-
eral conditional branch instructions at once with predictable execu-
tion time no matter if a jump is taken or not. This is solved by
never letting the PP miss any clock cycles which implies that no
pipeline can be used. Since no pipeline is used, the program code
has to be self-contained within the processor core in order to allow
fast enough cycle time. This in turn implies that the program code
has to be kept very small, which actually is possible because of the
application specific nature of the PP and the way the program is
split up into extendable instructions and special lookup tables. The

architecture is protected by a pending US patent [6].

The rest of this paper is organized as follows. In section 2 an over-
view of the PP is given, then the instruction set is described in sec-
tion 3, and an example program is explained in section 4. Section 5
deals with the functional coverage of the instruction set and the
functional verification. Section 6 describes the implementation and
in section 7 the performance figures are given and discussed. In
section 8 we compare our PP to related work and finally, section 9
concludes our findings.

2. PROTOCOL PROCESSOR OVERVIEW
The PP decodes packets as they are received. It works in-line with
the data flow, that means that it processes the packet header before
it is stored in memory. The PP is directly connected to the interface
to the physical layer. For example in an Ethernet environment the
PP replaces the MAC part of the Ethernet circuit, but incorporates
more functionality, such as IP, TCP and UDP processing. Based on
the program and the content of the received packet header the PP
stores the packet payload on a predefined location in the payload
memory. Figure 1 shows how the PP fits in a system. The PP only
performs single packet operations. Other tasks, such as connection
state handling have to be supported by a simple microcontroller.
The application accesses the data directly from the payload mem-
ory and sends directives to the microcontroller when it wants to set
up or tear down connections. The microcontroller then configures
the program in the PP accordingly. The microcontroller and the
application processor can be the same processor unit, in that case
the interface is a software API.

PP

Input

micro-

controller

Payload
memory

Results

Payload

Config.

application

processorComm.
directives

Figure 1: PP system overview

Novel ASIP and Processor Architecture for Packet
Decoding

Tomas Henriksson
Dept. of Electrical Engineering

Linköpings universitet
SE-581 83 Linköping, Sweden

Phone: +46-13-288956
E-mail: tomhe@isy.liu.se

Dake Liu
Dept. of Electrical Engineering

Linköpings universitet
SE-581 83 Linköping, Sweden

Phone: +46-13-281256
E-mail: dake@isy.liu.se

The PP architecture is quite different from traditional processor
architectures. It supports one cycle compare operations and condi-
tional jumps without any penalty. These instructions occur fre-
quently in packet decoding. It is necessary to execute all
instructions in the PP in one clock cycle because the instruction
flow is aligned with the data on the input port clock cycle by clock
cycle. A penalty would imply that the PP would lose its synchroni-
zation with the data.

There is only one register, the input buffer, which can be used as an
input. Data is written implicitly to this input buffer from the input
port, e.g. XGMII (eXtended Gigabit Media Independent Interface).
There is no in-buffer data memory, so load and store instructions
do not exist. The result of the operations are stored in specific out-
put registers, which can be accessed by the microcontroller as
memory-mapped registers. The PP communicates with its acceler-
ators (inside the PP) by the use of internal inputs and outputs. The
outputs can be set in order to trigger an accelerator to start and the
inputs can be used for conditional jumps in the PP. Similar external
inputs and outputs are used for communication with the rest of the
system, for example the microcontroller.

3. INSTRUCTION SET ARCHITECTURE
The instruction set for the PP is different from a traditional instruc-
tion set. It consists of only six instructions which can have exten-
sions in order to allow several parameters. Three of the six
instructions can have pointers, which specify extensions to the
instructions. This can be thought of as variable length instructions,
but physically the instruction storages are also split up. Thereby
even the longest instruction can be fetched and executed in one
clock cycle.

Since the instructions can be extended, the assembly description is
fairly complex. To make it easier to understand, it is specified in
accordance with the physical storage separation. That means that
the program is specified in three parts, the instruction lookup table
(ILT), the parameter codebook (PCB) and the control codebook
(CCB). The ILT contains the main instruction flow and the PCB
and the CCB contain the extensions.

3.1. Instruction Lookup Table
The general instruction format of the 24 bit instructions in the ILT
is shown in figure 2. Four bits are used to specify the instruction
code. Since only six instructions are used, the instruction set is
sparse and future changes are accommodated for. The six instruc-
tions with their various formats are shown in figure 3. The buffer
control bit (bit 19) is used to control the dynamic input buffer, the
FIFO, which can hold either one or two words of data.

3.2. Parameter Codebook
The PCB contains the parameters, which are used for the compare
and jump operations. The parameters are organized in lines. A
maximum of 16 lines can be used, since the pointer in the ILT is
four bits wide. Each line contains four 32 bit parameters. In a com-
pare operation, the four selected parameters are fed to a an array of
four comparators. The extracted field from the input buffer is fed to
all four comparators. The width bits carried by an instruction are
used to mask the data to the desired width (4, 8, 16, or 32 bits). The
offset bit decides which part of the input buffer to extract into the
extracted field. The result of the comparators is a four bit array,
which is used as an input to the CCB.

The comparison is controlled by the new bit, which specifies if the
comparison should start from scratch or if it is a continuation of a
previous comparison. The resulting array of a comparison is
always implicitly stored within the comparator array for this pur-
pose. For example for IPv6 addresses a 128 bit comparison can
easily be accommodated for in this way.

3.3. Control Codebook
The CCB contains relative jump addresses for the compare instruc-
tions. The CCB has only 8 lines of each four values. The reason for
having more lines in the PCB than in the CCB is that the CCB is
only used for CMP and CPS instructions, with the jump bit set to
1. The PCB is also used for CMP and CPS instructions with the
jump bit set to 0 and for JMP instructions with type 10.

Inputs to the CCB are the 3 least significant bits of the pointer and
the resulting array from the comparators. The pointer selects a line
and the array from the comparators selects a value within that line.
The value, just as the relative jump offsets in the JMP instruction,
is 128 + the actual relative jump address. Thereby no negative val-
ues are needed.

4. EXAMPLE: PROGRAM FOR
ETHERNET/IP/UDP DECODING
The execution in the PP is best explained by an example program.
Here we have chosen a program, which decodes Ethernet II frames
containing IP/UDP packets or ARP packets. All other packets are
discarded. Only UDP packets to port 2025 (0x07e9) are accepted.
The IP address of the node where the PP is operating, is in this
example 130.236.55.5 and the hardware address is
0x0c5a80ac4ab7. The ILT contents are shown in figure 4, where it
is also shown in assembly representation. The PCB contents are
shown in figure 6. Each line in the PCB consists of 4 32 bit param-
eters. The line number is specified to the right of the first parame-
ter. The other three parameters follow on the three rows below it in
the figure. It can be seen that line 0 contains the Ethernet codes for
IP and ARP, line 1 contains the protocol value for UDP, line 8 con-
tains the first part of the hardware address and line 9 the second.
Line 10 contains the acceptable IP destination addresses and line
11 the acceptable UDP destination ports. The other lines are not
used by the example program. The corresponding CCB content is
shown in figure 5. Line 0 contains the corresponding relative jump
addresses for the Ethernet codes and line 1 contains the corre-
sponding relative jump address to the protocol value. The protocol

23 20 19 0

Code Instruction specific information

Figure 2: Instruction format

1819

Buf ctrl

23 20 19 0

0000 000000000000000000

NOP

Buffer ctrl

18

23 20 19 0

0101 Input bitmap

WAT

Buffer ctrl

18

Wait for inputs

No operation, mostly used for aligning the data flow processing

Waits until the general purpose inputs matches the input bitmap. All 19 inputs can be used to trigger the continuation of the pro-
gram execution.

23 20 19 0

0010 Output bitmap

SET

Buffer ctrl

18

Set outputs

Sets the general purpose outputs for one clock cycle. All 10 outputs can be set by using the bitmap.

Not used

10 9

23 20 19 0

0100 Relative offset

JMP

Buffer ctrl

18

Jump

Jumps to the relative offset specified in bits 7-0. Bits 18-17 decides the type of jump. Type 00 means unconditional. Type 01 means
conditional on the general purpose inputs. The bitmap in bits 16-8 corresponds to the inputs 8-0. Type 10 means conditional on
match. Match is further described in the CMP instruction. The jump is taken if any of the parameters match the extracted field
from the input buffer.

00

17 716

Not used

0100 Relative offsetBuffer ctrl 01

0100 Relative offsetBuffer ctrl 10

Input bitmap

13 12 11 10 9 8

Pointer Width Offset New Not used

23 20 19 0

CMP

18

Compare

Compares the extracted field with the parameters. The parameters are stored in the PCB and the pointer points out the parameters
to use. The field New indicates if the comparison is the continuation of the previous comparison or not. The field Jump indicates if
a jump should be conducted at a match. The field Width determines the width of the comparison, 4, 8, 16, or 32 bits. The field Off-
set indicates how to extract the field from the input buffer.

17

0001 Buffer ctrl New

16 13 12 11 10 9

Jump Pointer Width Offset Not used

23 20 19 0

0011 As for SET

CPS

Buffer ctrl

18

Compare and set outputs

Sets the outputs and performs a comparison.

As for CMP

10 9

Figure 3: Detailed instruction format for all instructions

check could have been implemented with a JMP instead of a CMP
(instruction 9 in the ILT) but this would have made it harder to

extend the program to also handle other layer 4 protocols, TCP for
example.

From the beginning, instruction 0 waits for input 0, which indi-
cates packet start. Instruction 1 then compares the first 32 bits of
the Ethernet destination address with the acceptable parameters
from PCB line 8. The result of the comparison is only stored
locally in the comparator array since the jump bit is set to 0.
Instruction 2 continues the comparison, since the new bit is set to
0. Here only 16 bits are used and compared to PCB line 1, since
the width code is 10. If any match occurs, i.e. the Ethernet frame is
destined for the host, a jump is done to instruction 5. Instruction 5
is NOP to align the data flow processing (in this example we do not
care about the Ethernet source address). Instruction 6 compares the
Ethernet type field with PCB line 0 and uses the jump addresses
from CCB line 0. So if the type field is 0x0800 a jump is done to
instruction 8, otherwise, if it is 0x0806 a jump is done to instruc-
tion 23. If there is no match the execution continues with instruc-
tion 7. At the same time outputs 4, 1, and 0 are set. These are used
to trigger the start of accelerators for payload storage, IP header
checksum calculation, and UDP checksum calculation. The Ether-
net CRC accelerator was already triggered by input 0.

Continuing the execution at instruction 8 (assuming that the arriv-

0 500001 WAT 0, input(0)
1 151800 CMP 0, new=1, jump=0, pointer=8, width=32, offset=0
2 453483 JMP 0, type=10, pointer=9, width=16, offset=16, new=0, jump=0x83(5)
3 200040 SET 0, output(6)
4 40007c JMP 0, type=00, jump=0x7c(0)
5 000000 NOP 0
6 361413 CPS 0, new=1, jump=1, pointer=0, width=16, offset=16, output(4, 1, 0)
7 40007c JMP 0, type=00, jump=0x7c(3)
8 200044 SET 0, output(2,6)
9 162800 CMP 0, new=1, jump=1, pointer=1, width=8, offset=0
10 400079 JMP 0, type=00, jump=0x79(3)
11 000000 NOP 0
12 080000 NOP 1
13 455e82 JMP 0, type=10, pointer=10, width=32, offset=16, new=1, jump=0x82(15)
14 400075 JMP 0, type=00, jump=0x75(3)
15 457682 JMP 0, type=10, pointer=11, width=16, offset=16, new=0, jump=0x82(17)
16 400073 JMP 0, type=00, jump=0x73(3)
17 200010 SET 0, output(4)
18 50002a WAT 0, input(5, 3, 1)
19 425482 JMP 0, type=01, input(6, 4, 2), jump=0x82(21)
20 40006f JMP 0, type=00, jump=0x6f(3)
21 200120 SET 0, output(8, 5)
22 40006a JMP 0, type=00, jump=0x6a(0)
23 200008 SET 0, output(3)
24 500002 WAT 0, input(1)
25 420482 JMP 0, type=01, input(2), jump=0x82(27)
26 400069 JMP 0, type=00, jump=0x69(3)
27 2000a0 SET 0, output(7, 5)
28 400064 JMP 0, type=00, jump=0x64(0)

Figure 4: Example program for Ethernet II, ARP and IP/UDP decoding

82 0 00 4
91 00
00 00
00 00
82 1 00 5
00 00
00 00
00 00
00 2 00 6
00 00
00 00
00 00
00 3 00 7
00 00
00 00
00 00

Figure 5: CCB contents for example program

ing packet is IP) outputs 2 and 6 are set. Output 2 triggers the
length counter accelerator for IP and output 6 stops the payload
storage. For an IP/UDP packet only the UDP payload should be
stored. For an ARP packet on the other hand, the whole Ethernet
payload is stored, since the data is needed by the microcontroller in
order to compile the ARP reply. Instruction 9 checks the protocol
field in the IP header and if it is 0x11 (UDP) a jump is done to
instruction 11. Instruction 11 is NOP and so is 12 (data flow align-
ing), but instruction 12 is the first (and only in this example) to use
the second word in the input buffer. This means that the last 64 bits
from the input will be available for instruction 13. This is also
needed, since instruction 13 is JMP with a compare of 32 bits with
an offset of 16 bits, meaning that bits 47 down to 16 are extracted
from the input buffer. In instruction 13 that is the IP destination
address, which is compared with PCB line 10. For a correct packet,
then the UDP port is checked by instruction 15 and instruction 17
triggers the payload storage to start again. After that, the header
has been processed and the PP waits for inputs 5, 3, and 1 in
instruction 18. These three inputs indicate that the IP header
checksum accelerator, the UDP checksum accelerator and the CRC
accelerator have completed their computations. In instruction 19 a
conditional jump is done on inputs 6, 4, and 2. These are all 1 if the

just mentioned accelerators have received correct checksums.
Then finally, the reception of a valid IP packet is acknowledged
through outputs 8 and 5 in instruction 21 and instruction 22 jumps
back to instruction 0 in order to wait for the next packet.

If the Ethernet code was ARP, instructions 23 to 28 would have
executed in a similar manner. Whenever the received packet does
not match the requirements the packet is discarded and the PP
waits for the next packet. This is done by a jump to instruction 3,
which set output 6, discard payload, and then instruction 4 jumps
back to instruction 0.

5. FUNCTIONAL COVERAGE
As mentioned earlier, the PP operates on a frame in-line, as it is
received on the input port. Therefore the PP operates, as planned,
on one frame only and does not handle any inter packet operations.
The PP can handle layer 2 protocols, like various Ethernet packet
formats, layer 3 protocols, like IP and layer 4 protocols, like UDP.
For connection based protocols, like TCP and some wireless layer
2 protocols, the PP supports the microcontroller by decoding the
incoming packets. The microcontroller handles the updating of the
connection state variables and the sending of packets. The PP can
also be used to decode any other packet stream, for example
decoding MPEG control layer. The PP can be used in terminals as
explained in figure 1, but can also be used as a port accelerator in a
switch or a router. In these devices it is specially important with
programmability, since system companies want to use their own
proprietary protocols to communicate between the switches and
routers within a system. Although we have not been able to receive
a specification for such a protocol, we cannot see any obstacle for
using the PP to decode it.

The PP has four parameters in each line of the PCB and CCB. This
limits the number of ports etc. that can be handled. If there is a
need for more parameters, the PCB and CCB can be made wider
following the trade off of performance and silicon area.

The functional verification of the PP, was divided into three kinds
of test cases, single instruction based, formal functions and error
injections.

5.1. Single Instruction Based Verification
The single instruction based verification for the PP differs from
that of a traditional processor. Since there are no target registers for
the instructions, there is only the program counter and the outputs,
that can prove the correctness of the implementation. The WAT,
JMP, CMP, and CPS instructions all influence the program counter.
The CPS and SET instructions influence the outputs. All instruc-
tions can influence the buffer content.

The coverage of the verification is dependent on two parts, the con-
trol signals and the data pattern. The control signals are decided by
the instruction in the ILT and the CCB content. The data pattern is
decided by the content in the PCB and the received packet. For
each instruction all possible correlated control signal combinations
were listed and for them where the data pattern influences the out-
come of the execution corner cases were selected.

The VHDL model of the PP was extended with a non-synthesiz-

00000800 0 ffffffff 8
00000806 0c5a80ac
00000000 00000000
00000000 00000000
00000011 1 0000ffff 9
00000000 00004ab7
00000000 00000000
00000000 00000000
00000000 2 82ec3705 10
00000000 82ecffff
00000000 ffffffff
00000000 00000000
00000000 3 000007e9 11
00000000 00000000
00000000 00000000
00000000 00000000
00000000 4 00000000 12
00000000 00000000
00000000 00000000
00000000 00000000
00000000 5 00000000 13
00000000 00000000
00000000 00000000
00000000 00000000
00000000 6 00000000 14
00000000 00000000
00000000 00000000
00000000 00000000
00000000 7 00000000 15
00000000 00000000
00000000 00000000
00000000 00000000

Figure 6: PCB contents for example program

able part which writes the PC and the outputs and the input buffer
to a file every clock cycle for verification purposes only. For all
input combinations, corresponding reference files were manually
created in order to simplify the verification task.

This covers most of the RTL code, but of course the coverage is
not 100%. Control signals that do not interfere were not tested in
all combinations and all data patterns were not used, since that
would have required too much time.

5.2. Formal Functions Verification
For the verification of the formal functions, the example program
from section 4 was used. It covers the following functions as basic
and kernel functions for a general purpose protocol processor:

• Synchronize the processing based on information from the
physical interface

• Match packet header field to several acceptable values
• Demultiplex packet processing based on upper layer protocol
• Use checksums to assure that no transmission errors have

occurred
• Hand over a correct packet payload to the application pro-

cessing
The reception processing was first modelled in C++ at a behavioral
level. Then a structural C++ model was developed, which executes
the instruction set in a cycle true manner. The simulation needs
four inputs, the ILT content, the PCB content, the CCB content and
the received packet. The structural model was then manually trans-
ferred into a VHDL model, which is used for implementation. The
testbench for the VHDL model use the same stimuli files as the
C++ model and thereby the VHDL was verified efficiently.

5.3. Error Injection
To make sure that the PP executes all program branches correctly,
packets with various errors were injected into the simulation.
These faulty packets cover the following errors:

• Ethernet destination address that is not for the host
• IP destination address that is not for the host
• Ethernet code which is not IP or ARP
• IP protocol which is not UDP
• UDP port which is not 2025
• Wrong IP header checksum
• Wrong UDP checksum
• Wrong Ethernet CRC

The resulting operation was checked in the GUI of the simulator.

6. IMPLEMENTATION
The VHDL model described in the previous section was used for
the implementation. The model contains the part of the PP that
executes the instructions, the configuration interface and 5 acceler-
ators. The microcontroller can access the ILT, the PCB, and the
CCB via an SRAM interface. The lookup tables are implemented
by flip-flops. The microcontroller finishes the configuration of the
PP by writing data to the first position in the ILT, which triggers
the start of program execution in the PP. Figure 7 provides a block
diagram of the PP. PC is the program counter, ID is the instruction
decoder, NextPC is the unit that calculates the next PC value based

on the control signals from the ID, the output from the CCB and
the inputs to the PP. The configuration interface and the accelera-
tors are not shown in the figure.

The accelerators that were used were an Ethernet CRC accelerator,
an IP header checksum accelerator, a UDP checksum accelerator, a
packet length counter and a memory interface unit.

The PP was synthesized to a 6 metal layer 0.18 micron library
from UMC in order to get an accurate estimate of the performance.
Cadence Envisia PKS was used for the synthesis and placement of
the standard cells.

7. RESULTS AND DISCUSSION
All results are estimations after synthesis and placement. The PP
uses an area of 0.4 mm2 without the accelerators. The accelerators
have previously been implemented [7], [8], [9]. The three lookup
tables, that totally contain 3072 flip-flops use more than half of the
total PP area. The lookup tables can be implemented with memory
macro blocks instead of standard cell flip-flops, which would
decrease the area consumption even further.

The delay in the critical path is 3.43 ns and with a setup time of
0.12 ns, a minimum cycle time of 3.55 ns can be used. This corre-
sponds to a maximum clock frequency of 281 MHz and the PP can
thus support a data stream at more than 9 Gb/s, since 32 bits are
processed every clock cycle. Therefore, when implementing the
PP in a 0.13 micron process we have clear indications that the PP
will support a data stream of more than 10 Gb/s.

The critical path is from the PC, through the ILT, the PCB, the

Figure 7: PP block diagram

PC

ILT

ID

CCB

NextPC

PCB Compare Unit

Input Buffer

Data Input

Inputs

Outputs

compare units, the CCB and an adder back to the PC. The delay
from the parts can be seen in table 1.

Techniques in order to reduce the delay of the critical path, such as
flip-flop cloning, have not been used since there is only a need to
support standard network speeds such as 10 Gb/s and that will be
managed by using a 0.13 micron technology.

8. RELATED WORK
Several publications exist which address the topic of off-loading
the protocol processing from the host processor, for example [4],
[2] and [1]. There are also many companies working in this area,
iReady, Alacritech, Intel, Agilent, Silverback, Trebia are some
examples. From the companies limited information on the detailed
implementation is available.

Typical for all published work is that it uses traditional RISC-like
processors for the protocol processing off-loading. For example, in
[2] a 133 MHz general purpose RISC processor was used. We have
designed a completely new processor architecture and ISA, which
is dedicated for protocol decoding and therefore can reach perfor-
mance as high as 10 Gigabit/s. The other solutions aim at Gigabit
Ethernet and with the RISC-like processor it will be hard to
increase the performance 10 times, although some of the start-ups
promise scalable designs. On the other hand some other solutions
manage the complete TCP protocol for example, our PP handles
only the decoding of received packets. Therefore our processor can
be seen as a part of a TCP off-loading engine. Combined with
other specialized processors it can constitute a complete off-load-
ing engine for 10 Gigabit Ethernet.

The RISC processor based implementations assume that the packet
is stored in a memory. Our processor on the other hand operates at
the packet before it is stored in memory. If it can be decoded from
the packet header that the packet should not be processed further,
the packet payload is never stored in the memory at all. This saves
memory bandwidth and power consumption.

9. CONCLUSIONS
A protocol processor for in-line packet decoding has been
designed and implemented. The instruction set consists of only 6
instructions, but they support many variations which allows
enough flexibility. The processor has been implemented in a 0.18
micron technology and static timing analysis performance estima-
tion indicates that the processor can support 9 Gb/s data streams.

Future work includes the integration of the processor into an
FPGA-based demonstrator for audio reception and implementation
in a 0.13 micron technology for more accurate performance analy-
sis. Evaluations and optimizations of processor word length, pro-
gram memory size and processor internal parallelism in the
comparator array are also planned. Further on a compiler will be
developed.

10. REFERENCES
[1] Alacritech, Delivering High-Performance Storage Network-

ing, Alacritech whitepaper, on the www: http://www.alac-
ritech.com/

[2] P. Buonadonna, D. Culler, Queue Pair IP: A Hybrid Archi-
tecture for System Area Networks,International Symposium
on Computer Architecture 2002, pp. 247-256, June 2002,
Anchorage, Alaska

[3] W. Bux, W. E. Denzel, T. Engbersen, A. Herkersdorf, and R.
P. Luijten, Technologies and Building Blocks for Fast Pack-
et Forwarding,IEEE Communications Magazine, Vol. 31,
No. 1, Jan 2001, pp. 70-77

[4] L. Gwennap, Count on TCP offload engine, EETimes, on the
www: http://www.eetimes.com/semi/c/ip/
OEG20010917S0051

[5] T. Henriksson, U. Nordqvist, and D. Liu, Embedded Proto-
col Processor for Fast and Efficient Packet Reception, inIn-
ternational Conference on Computer Design2002, pp. 414-
419, September 16-18, 2002, Freiburg, Germany

[6] T. Henriksson, D. Liu and H. Bergh, METHOD AND AP-
PARATUS FOR GENRAL-PURPOSE PACKET RECEP-
TION PROCESSING, US Patent application no. 09/934372

[7] T. Henriksson, H. Eriksson, U. Nordqvist, P. Larsson-Ede-
fors, D. Liu, VLSI IMPLEMENTATION OF CRC-32 FOR
10 GIGABIT ETHERNET, in Proceedings ofInternational
Conference on Electronics, Circuits and Systems 2001, vol
III, pp. 1215-1218, September 2-5, 2001, Malta

[8] T. Henriksson, N. Persson, D. Liu, VLSI IMPLEMENTA-
TION OF INTERNET CHECKSUM CALCULATION
FOR 10 GIGABIT ETHERNET, in Proceedings ofDesign
and Diganostics of Electronics, Cricuits and Systems, pp.
114-121, April 17-19, 2002, Brno, Czeck Republic

[9] T. Henriksson, U. Nordqvist, D. Liu, Specification of a con-
figurable General-Purpose Protocol Processor,IEE Pro-
ceedings on Circuits, Devices and Systems, Vol 149, No. 3,
2002, pp. 198-202

[10] J. Williams, Architectures for Network Processing,Interna-
tional Symposium on VLSI Technology, Systems, and Appli-
cations 2001, pp. 61-64

[11] T. Wolf and J. S. Turner, Design Issues for High-Perfor-
mance Active Routers,IEEE Journal on Selected Areas in
Communications, Vol. 19, No. 3, March 2001, pp. 404-409

Table 1. Delays

Part Delay [ns]

PC (Clk to Q) 0.21

ILT 0.74

PCB 0.86

compare and CCB 1.16

Adder (NextPC) 0.46

Setup 0.12

Total cycle time 3.55

