
Linköping Studies in Science and Technology

Dissertation No. 813

Intra-Packet Data-Flow
Protocol Processor

Tomas Henriksson

Department of Electrical Engineering
Linköpings universitet, SE-581 83 Linköping, Sweden

Linköping 2003

Linköping Studies in Science and Technology

Dissertation No. 813

© 2003 Tomas Henriksson

ISBN: 91-7373-624-4

ISSN: 0345-7524

Printed by UniTryck, Sweden, 2003

iii

Abstract
Protocol processing is the bottleneck in high-speed computer networks. Many

network processors have been suggested for switches and routers. Protocol pro-
cessing in terminals has other characteristics than the processing in switches
and routers. Therefore a new type of processor is desirable for terminals.

I define that the protocol processing tasks in a terminal can be partitioned into
intra-packet tasks and inter-packet tasks. It is suitable to use two processors that
work in a coarse-grained pipeline to implement this partition. The partition
crosses over the protocol layers, which have previously been used for partition-
ing the protocol processing implementations.

The inter-packet tasks are irregular and can be efficiently executed by a tradi-
tional von Neuman style processor. The intra-packet tasks can be sub-parti-
tioned into regular tasks and irregular tasks. A novel processor architecture for
intra-packet tasks has been developed that makes use of the sub-partitioning by
executing the regular tasks in accelerator units and the irregular tasks in a data-
flow core unit.

Our core architecture is different from traditional processors because it does
not operate on data stored in a memory. Instead it operates in a data-flow fash-
ion directly on the data that is received on the network interface. Thereby no
load and store operations are necessary. So the packets are already processed to
a large extent when the payload is written into memory. This saves both data
memory bandwidth, program memory size, processing time and power con-
sumption. Most of the packets that should be discarded never have to be stored
in memory at all.

The data-flow processing also creates some problems since the program flow
has to be perfectly synchronized with the incoming data stream, which prevents
the use of a pipelined processor architecture. The performance requirements are
fulfilled by splitting up the program into three parts and by using a dedicated
program memory storage architecture. A standard cell implementation of the
processor indicates support of a data flow of more than 10 Gigabit/s. The imple-

iv Abstract

mentation can be used for network terminals as well as for port acceleration in
switches and routers.

The total silicon area of the processor including the program memory is small
(0.4 mm2 in 0.18 micron standard cells) and accommodates for an increased
number of ports on a real time Ethernet switching chip or the integration of the
protocol processing off-loading onto the host processor chip in terminal equip-
ment such as desktop computers.

The accelerator for cyclic redundancy check (CRC) has been implemented
with standard cells and manufactured in a 0.35 micron process technology. The
chip has measured performance of more than 5.76 Gb/s.

The most significant contribution of my research is the new data-flow proces-
sor architecture, which has been proven in a fully functional demonstrator sys-
tem. The demonstrator system is based on my novel partition of protocol
processing tasks into intra-packet tasks and inter-packet tasks. A dual processor
architecture, implemented in an FPGA, receives, synchronizes and plays back
an audio stream which is sent in UDP/IP packets over fast Ethernet.

The processor architecture will be very important for any processor operating
on a data flow. There are possible improvements to the processor, for example a
detailed analysis between data width and flexibility will support trading off the
internal width and program memory size. Future work also includes investigat-
ing in what other areas, besides networks, the processor architecture can be suc-
cessfully used.

My most important contributions are:

• The partition of protocol processing

• The data-flow processor architecture

v

Preface
The research project that is the basis for this thesis was started in 1998. In

August 1999, I joined the project and continued to work on the for the time
being proposed architecture. The work on that architecture was presented in my
licentiate thesis [1.3] in December 2001. In the beginning of year 2001, I started
simultaneously to work on a new processor architecture. That work is the focus
of this thesis. The thesis is based on the results presented in the following
papers and manuscripts:

• Tomas Henriksson, "In-Line CRC Calculation and Scheduling for 10 Giga-
bit Ethernet Transmission", in Proceedings of Swedish System-on-Chip
Conference 2002, March 18-19, 2002, Falkenberg, Sweden

• Tomas Henriksson and Ingrid Verbauwhede, "Fast IP Address Lookup
Engine for SoC Integration", in Proceedings of Design and Diganostics of
Electronics, Circuits and Systems, pp. 200-210, April 17-19, 2002, Brno,
Czeck Republic

• Tomas Henriksson, Niklas Persson and Dake Liu, "VLSI Implementation of
Internet Checksum Calculation for 10 Gigiabit Ethernet", in Proceedings of
Design and Diagnostics of Electronics, Circuits and Systems, pp. 114-121,
April 17-19, 2002, Brno, Czeck Republic

• Tomas Henriksson, Ulf Nordqvist and Dake Liu, "Embedded Protocol Pro-
cessor for Fast and Efficient Packet Reception", in Proceedings of Interna-
tional Conference on Computer Design, pp. 414-419, September 16-18,
2002, Freiburg, Germany

• Tomas Henriksson and Dake Liu, "Novel ASIP and Processor Architecture
for Packet Decoding", in Workshop of Application Specific Processors
Digest, pp. 25-31, November 19, 2002, Istanbul, Turkey

• Tomas Henriksson and Dake Liu, "Implementation of Fast CRC Calcula-
tion", in Proceedings of Asia South Pacific Design Automation Conference,
pp. 563-564, January 21-24, 2003, Kitakyushu, Japan

vi Preface

• Tomas Henriksson, Dake Liu and Harald Bergh, "Method and apparatus for
general-purpose packet reception processing", United States Patent Applica-
tion 20030039247, February 27, 2003

• Tomas Henriksson and Dake Liu, "100 Gb/s CRC Generation Circuit in 0.13
Micron Standard Cells", manuscript, submitted

• Tomas Henriksson and Dake Liu, "Off-loading the Off-loading processor: A
new way to separate protocol processing", manuscript

During the period from December 2001 to May 2003 other work has been
done that was not mentioned in the licentiate thesis and is not covered in this
thesis. Some of that work was presented in the following publications:

• Henrik Eriksson, Tomas Henriksson, and Per Larsson-Edefors, "Full Cus-
tom vs. Standard Cell Based Design - an Adder Comparison", in Proceed-
ings of Swedish System-on-Chip Conference 2002, March 18-19, 2002,
Falkenberg, Sweden

• Ulf Nordqvist, Tomas Henriksson and Dake Liu, "Configurable CRC Gener-
ator", in Proceedings of Design and Diagnostics of Electronics, Circuits and
Systems, pp. 192-199, April 17-19, 2002, Brno, Czeck Republic

• Henrik Eriksson, Tomas Henriksson, Per Larsson-Edefors and Christer
Svensson, "Full-Custom vs. Standard-Cell Design Flow - An Adder Case
Study", in Proceedings of Asia South Pacific Design Automation Confer-
ence, pp. 507-510, January 21-24, 2003, Kitakyushu, Japan

• Tomas Henriksson and Dake Liu, "Fully programmable Video Stream
Decoding", to appear in Proceedings of Swedish System-on-Chip Confer-
ence 2003, April 8-9, 2003, Eskilstuna, Sweden

• Tomas Henriksson, Daniel Wiklund and Dake Liu, "VLSI Implementation
of a Switch for On-Chip Networks", to appear in Proceedings of Design and
Diagnostics of Electronics, Circuits and Systems, April 14-16, 2003,
Poznan, Poland

vii

Acknowledgments
This thesis would not have been completed without the support from several

persons. I especially want to thank the following:

Professor Dake Liu for being a good advisor, for long and interesting discus-
sions and for giving me the opportunity to work in this interesting area.

Fellow Ph.D. student Ulf Nordqvist for almost 4 years of shared research and
interesting discussions.

Professor Ingrid Verbauwhede at UCLA for letting me work in her group for 5
months during 2001 and for the cooperation on IP address lookup architectures.

Professor Christer Svensson for being my formal advisor in the beginning of
my studies and for many interesting discussions.

Professor Per Larsson-Edefors and Ph.D. student Henrik Eriksson, now at
Chalmers University of Technology, for cooperations and interesting discus-
sions.

Niklas Persson and Kristoffer Martinsson for their hard work as master’s the-
sis students in projects closely related to my protocol processor architecture.

Fellow Ph.D. students Daniel Wiklund, Mikael Olausson, Eric Tell and
Sumant Sathe for good cooperations and valuable knowledge sharing.

Further more I would like to acknowledge past and present members of the
Electronic Devices Division and the Computer Engineering Division at
Linköpings universitet and of the IVGroup at UCLA for creating a nice an stim-
ulating working environment.

Finally I would like to thank my industry cooperators, SwitchCore Corp.
(Kenny Ranerup and Peter Tufvesson), Ericsson AB (Per Sundin and Per Holm-
berg), Ericsson Research (George Liu), and VIA Sweden (Harald Bergh).

The thesis work was sponsored by the Swedish Foundation for Strategic
Research (SSF) through the Integrated Electronic Systems Programme
(INTELECT) and through the STRINGENT center.

viii Acknowledgments

ix

Contents
Abstract ...iii

Preface.. v

Acknowledgments..vii

Contents... ix

1 Introduction ... 1
1. 1 Background ... 1
1. 2 Computer Networks .. 2
1. 3 Processors.. 3
1. 4 Thesis Organization .. 4
1. 5 Contributions... 5

2 Application Specific Processors.. 7
2. 1 Instruction Sets.. 7
2. 2 Microarchitecture .. 9
2. 3 Profiling and Benchmarking ... 11
2. 4 Optimization.. 13
2. 5 Processor Acceleration.. 15

3 Network Processors and TCP Off-load Engines 17
3. 1 Characteristics of Protocol Processing.. 17
3. 2 Parallelization of Protocol Processing .. 20

x Contents

3. 3 TCP Off-load Engines for Network Terminals21
3. 4 Network Processors for Switches and Routers..............................22

4 IP Route Lookup Implementation..................................... 25
4. 1 Route Lookup ..25
4. 2 Implementation Alternatives ...27
4. 3 Novel Architecture ..28
4. 4 Performance Evaluation ..29
4. 5 Hardware Multiplexing ...31
4. 6 Scaling ...35
4. 7 Updating and Further Extensions ..35

5 Partition of Protocol Processing.. 39
5. 1 Motivation for a New Partition Scheme..39
5. 2 Intra-Packet Tasks ...40
5. 3 Inter-Packet Tasks ...41
5. 4 Common Protocol Tasks ...41
5. 5 Dual Processor Architecture..44
5. 6 Partition of Common Protocols ...44

6 Linkoping Architecture ... 49
6. 1 Overview ...49
6. 2 Design Methodology ...51
6. 3 Intra-PP Architecture...52
6. 4 Instruction Set..56
6. 5 Example Program ..61

7 Protocol Processor Implementation 67
7. 1 Specification ..67
7. 2 Design Flow...68
7. 3 Implementation Results ...71
7. 4 Complete Chip Layout ..72

8 Checksum Accelerator Implementations 75
8. 1 Internet Checksum Accelerator ...75
8. 2 CRC Accelerator Chip...80
8. 3 Modified CRC Accelerator..87

Contents xi

9 Protocol Processor Demonstrator...................................... 95
9. 1 Demonstrator Overview.. 95
9. 2 Hardware Organization ... 98
9. 3 Implementation ... 106
9. 4 Results... 107

10 Conclusions ... 109
10. 1 Achievements.. 109
10. 2 Suggestions for Future Work .. 109

Acronyms ... 111

Glossary.. 115

xii Contents

1

1
1
1

1
Introduction

In the beginning of the 21st century computer networks are used extensively
throughout the whole society, at companies as well as in private homes. There is
a constant urge to get higher capacity and better service. This thesis discusses
the processing requirements and resources in computer networks and presents a
new processor architecture that can be used to provide efficient network termi-
nals as well as high capacity switches and routers. A list of acronyms and a
glossary of technical terms can be found at the end of the thesis in appendices A
and B.

1.1 Background
General purpose processors can execute any kind of applications. This comes

to the cost of high overhead, such as complex instruction decoding and ineffi-
cient data movement. In network terminals, for example desktop computers, the
main central processing unit (CPU) is used to process the packets for the net-
work. This has been a viable solution for 100 Mb/s Ethernet, but limits the net-
work performance when higher capacity networks, such as Gigabit Ethernet
and 10 Gigabit Ethernet are used.

By examining a set of applications it is possible to design a processor that is
better suited for the task of executing similar applications than a general pur-
pose processor. However the specially designed processor may not be able to

2 Introduction

execute all kinds of applications and if it is the performance for other types of
applications can be very poor. Flexibility and overall performance is traded for
better performance for a certain type of applications.

The processing of network protocols has proven to consist of a limited number
of processing task types and therefore it makes sense to design specialized pro-
cessors for them. The reason for doing that is that general purpose processors
do not fulfill the requirements on performance and power consumption that are
put on the systems in which protocol processing is necessary. An alternative
could be to design fixed function application specific integrated circuits
(ASICs), but those are specific for only one protocol stack and cannot accom-
modate for future protocol or service changes. That is a problem since redesign
and manufacturing of new circuits is both time-consuming and very costly.

The aim of my thesis work was to develop a new and efficient software pro-
grammable processor architecture for processing network protocols of received
packets in a network terminal.

1.2 Computer Networks
Computers are interconnected by computer networks. The languages that the

computers use to exchange information are called protocols. The communica-
tion is packet-based, that means that all information is exchanged in units of
limited size which are called packets. A computer program, normally referred
to as an application, that has some information to send to another computer (or
other equipment attached to the network) compiles a packet with the informa-
tion, by adding headers and sometimes trailers, according to the protocol that is
used. The header and trailer contain for example address information and
checksums. Figure 1.1 shows the general structure of a packet.

Each protocol has its own specific header and trailer structure. Some are of
fixed length and others are of variable length. The communication between two
computers uses several protocols on top of each other, so called protocol layers.
In the ISO-OSI description there are 7 protocol layers [1.1], but computers that
use the TCP/IP protocol stack normally use only 4 of them, [1.2].

Whenever a packet is received from the network, the receiving computer must
check that the packet has the correct destination address and if so which appli-

Figure 1.1: General structure of a packet in a computer networks

Header Payload Trailer

Introduction 3

cation it should be delivered to. To make sure that no bit errors have been intro-
duced, the checksums must also be calculated and compared to the received
checksums. In the routers and switches that the packet passes through on its
way from source to destination, a forwarding decision must be made and the
packet header must be modified, which implies checksum recalculation. An
example of a network structure is shown in figure 1.2. The term terminal refers
to any kind of equipment that is attached to a computer network and is not a
switch or a router. It may be for example a desktop or laptop computer, a net-
work attached printer, an advanced mobile telephone, a set-top-box for network
distributed TV, a backup device or an image IP telephone.

A more detailed review on computer networks is available in my licentiate
thesis [1.3]. For complete coverage on the topic [1.1] and [1.2] are suggested. It
is of importance to understand how a computer network operates for the further
reading of this thesis, but it is not further described in this thesis.

1.3 Processors
Processing of data can be handled in many ways. One way to describe the pro-

cessing elements is to categorize them dependent on their flexibility. As already
mentioned there are fixed function circuits, ASICs, which cannot change the

Figure 1.2: Example structure of a computer network

T

S/R

Terminal

Switch/Router

S S

S

T

T

T

T

T T T

T

T

T

T

TR

4 Introduction

functionality after manufacturing. For the circuits that have flexible functional-
ity, there are two types of flexibility that are common, configurability and pro-
grammability. A circuit is called configurable if the functionality can be
changed after manufacturing and more than one clock cycle is needed to recon-
figure the functionality. Common types of configurable circuits are field pro-
grammable gate arrays (FPGAs) and complex programmable logic devices
(CPLDs).

A circuit is called programmable if the functionality can be changed every
clock cycle. This is what we normally refer to as a processor. The processor is
defined by the instruction set architecture (ISA) and the register file (RF). This
is what is called the programmer’s view of a processor and that is the interface
between the hardware that constitutes the processor and the software that can be
executed on the processor, [1.4].

The development of processors has led to pipelined superscalar and very long
instruction word (VLIW) processors, that are capable of executing several
instructions every clock cycle. The number of instructions per cycle (IPC) is
limited by data dependencies and stalls due to cache misses and branch miss-
predictions. The level of abstraction that describes the clock cycle based timing
of a processor is called the microarchitecture.

General purpose processors can execute all kinds of applications. Application
specific processors on the other hand can execute a limited domain of applica-
tions. In application specific processors flexibility is traded for less complexity
or higher performance, see figure 1.3. A more detailed discussion on applica-
tion specific processors is available in chapter 2.

Traditionally processors execute programs stored in memory on data which is
also stored in memory. This is however not necessarily the only way that a pro-
cessor can work, as is described in chapter 6.

1.4 Thesis Organization
The rest of this thesis describes in more detail how processors work and how

to chose the best type of processor for a certain type of applications. A more
detailed study on common network protocols and how they are processed is
also provided. Then the new processor architecture that I have developed is
described along with prototype implementations and a system demonstrator.

In chapter 2, application specific processors are described and the impact of
accelerator units is described and discussed. Chapter 3 deals with network pro-
cessors (NPs) and describes the particular requirements that are placed on
those. In chapter 4 a detour to implementation of IP route lookup is done. In

Introduction 5

chapter 5 my novel way of partitioning protocol processing in a terminal is
described. Chapter 6 contains the description of the unique intra-packet proces-
sor (intra-PP) architecture and discusses the design methodology as well as the
ISA and the microarchitecture, which includes several accelerator units. In
chapter 7, a VLSI implementation of the intra-PP is discussed and estimations
on performance and silicon area are presented. The accelerator units are further
described in chapter 8 and implementation estimations or measured results are
provided for the checksum accelerators. Chapter 9 presents the demonstrator
system that has been built around the intra-PP. Finally in chapter 10, I conclude
the findings during this thesis work and suggest directions for future work in
this area.

1.5 Contributions
The most important contributions of the work that led to this thesis are:

• The novel and efficient protocol processor architecture, that is applicable to
all types of data flow processing

• The novel partition of protocol processing in terminals

Figure 1.3: Comparison of different types of processing elements for a certain
application domain

General purpose
processors

Flexibility

Performance

Fixed function
circuits

Application specific
processors

6 Introduction

References
[1.1] Andrew S. Tannenbaum, “Computer Networks”, Prentice-Hall, Inc.,

ISBN 0-13-349945-6, 1996.

[1.2] W. Richard Stevens, “TCP/IP Illustrated, Volume 1: The Protocols”, Add-
ison Wesley Longman, Inc., ISBN 0-201-63346-9, 1994.

[1.3] Tomas Henriksson, “Hardware Architecture for Protocol Processing”,
Licentiate Degree Thesis, Linköping Studies in Science and Technology,
Thesis No. 911, December 2001, ISBN: 91-7373-209-5.

[1.4] John L. Henessy and David A. Patterson, “Computer Architecture: A
Quantitative Approach”, Morgan Kaufman Publishers, Inc., ISBN 1-
55860-329-8, Second Edition 1996.

7

2
2
2

2
Application Specific

Processors
Application specific processors are normally characterized by a special

instruction set and are then referred to as application specific instruction set
processors (ASIPs). There are however other ways to specialize a processor
than merely changing the instruction set.

2.1 Instruction Sets
The instruction set architecture (ISA) of a processor constitutes the interface

between hardware and software. An application is mapped to a sequence of
instructions from the instruction set. The sequence may contain jumps, loops
and other program flow control mechanisms.

2.1.1 Representations

There are two common ways to describe such a sequence, which is called a
program. The binary format consists of only 1s and 0s. This is the format of the
instructions when they are stored in memory and the format that the processor
can decode and execute.

8 Application Specific Processors

In the assembly format each type of instruction has a short operation code
assigned to it, for example addition can be assigned the code ADD. The assem-
bly format provides better readability for humans than the binary format.
Together with the operation code also the operands are specified, which can be
registers, memory locations or constants carried in the instruction word. Nor-
mally not all types of instructions can use all types of operands. In assembly
format the code segments can be assigned labels, which can be used to express
jumps. Constants, registers and memory addresses can also be assign labels,
which can be used to make the code more readable. There is a one to one corre-
spondence between the assembly format of a program and the binary format of
the same program. A piece of software called assembler can convert between
the two formats.

2.1.2 Compiling

When an application is mapped to the instruction set, there are several things
to consider if high performance is requested. Normally the application is
described in a high level programming language such as C or C++. Then the
mapping to the instruction set is the task of a compiler.

An application can be modelled with a data flow graph (DFG), which
describes the computation that must take place. In a DFG, the inputs, intermedi-
ate results and outputs are described only by variables and it is not specified
where they are stored, just like in high level programming languages. Many
processors can only compute on values that are stored in the register file. There-
fore register allocation is an important task when mapping an application to an
instruction set. If there are more intermediate results than registers available at
any time some values must be stored in memory. That is called spilling values
to memory and special spill code is inserted in the program. This requires addi-
tional instructions and thereby decreases performance. So it is important to
have an adequate number of registers in the register file.

Another thing that is important when mapping the application to the instruc-
tion set is the instruction selection. A part of an application can be mapped to
more than one sequence of instructions. Normally as few instructions as possi-
ble are desirable, since that minimizes the code size. Small code size is impor-
tant especially if cache memories are used. Then small memory footprint of the
code reduces the number of cache misses and thereby increases overall perfor-
mance. Small code size can however have bad impacts on the execution time.
This is due to the fact that processors execute instructions in a pipelined fash-
ion. So several instructions are in the pipe at the same time, some executing and
others are fetched and decoded. If the code contains a small loop many

Application Specific Processors 9

instances of the same instruction can be in the pipe at the same time, but this
leads to data hazards which cause pipeline stalls and thereby decreased perfor-
mance. By using techniques such as software pipelining and loop unrolling the
performance is increased to the cost of increased code size and larger memory
footprint.

The third thing that is important when mapping an application to an instruc-
tion set is the instruction scheduling. For simple one-way in-order processors
and for very long instruction word (VLIW) processors the scheduling deter-
mines the final execution order of the instructions. For more advanced out-of-
order superscalar processors the final execution order is determined in runtime,
but the instruction scheduling still has a large impact on the execution order.
The instruction scheduling should try to avoid data dependencies, structural and
control flow hazards.

The compilers normally deal with the three tasks of register allocation,
instruction selection and instruction scheduling. Traditionally they are opti-
mized based on heuristics one at a time, but new approaches include integrating
all three tasks into an integer linear programming problem. The mapping from a
high-level programming language to an assembly description is non-trivial and
heuristics are used to find a good mapping. Optimality is however almost never
achieved. The performance is dependent not only on the ISA and the register
file of the processor, but also on the details of the interior of the processor, the
microarchitecture.

2.2 Microarchitecture
The ISA describes the interface between the software and the hardware, but it

does not describe how the instructions are executed in hardware. That is the task
of the microarchitecture.

2.2.1 Instructions Per Clock

In a high performance processor the execution of several instructions per
clock (IPC) is supported. This is managed by having several (normally 4 or 8)
parallel execution units. Although the theoretically possible IPC is as high as
the number of execution units, it is not possible to achieve that IPC for a real
application in a general purpose processor. For an application specific processor
where the applications are known it is possible to design a processor that can
maintain a relatively higher IPC than a general purpose processor.

There are two common ways to achieve parallelism in a processor. Very long
instruction word (VLIW) processors let the compiler determine the final execu-
tion order and bundle operations together that shall be executed in parallel.

10 Application Specific Processors

Superscalar processors handle the bundling of instructions at runtime in hard-
ware.

2.2.2 Pipeline

The execution of an instruction includes the steps of fetching the instruction
from memory, decoding the instruction, fetching the operands, executing the
instruction and writing back the result. This whole procedure takes long time
and limits the maximum clock frequency for the processor. To be able to run the
processor at a higher clock frequency, a technique called pipelining is used.
That means that each step of the instruction is executed in one or more clock
cycles. The intermediate results are stored in pipeline registers and therefore the
execution of a new instruction can be started every clock cycle.

In every clock cycle only a step or a part of step has to be executed, the clock
frequency can be increased dramatically compared to that of a non-pipelined
processor. Almost all processors make use of the pipelining technique. Most
processors have only a few pipeline stages, but high performance processors
use up to 20 pipeline stages [2.1].

If a conditional branch occurs, there will be instructions that have started to
execute that really should not be executed. Then the execution of those must be
reversed. It is called flushing the pipe because all intermediate results in the
pipeline registers are simply discarded.

2.2.3 Cache Memories

By the use of pipelining, the clock frequency of the processors has increased
dramatically, but the memories that store the program code and the data have
not kept up with that performance increase. Cache memories are used to
increase the speed of the memories. Cache memories are smaller and faster than
the main memory. They contain parts of the program code and parts of the data
at a time. Whenever the processor needs program code or data that is not stored
in the cache, that will be fetched from the main memory. The cache memories
fetch a line from the main memory at a time, that implies that instructions or
data close to the requested item will also be fetched.

Cache memories are feasible because of spatial and temporal locality of a pro-
gram and data. Temporal locality of a program means that a program will use
the same instructions many times, for example in a loop. Temporal locality of
data means that the same variables will be accessed several times within a short
time frame. Spatial locality of a program means that instructions close to each
other will be used after each other. This is the case for a sequential part of a pro-
gram. Spatial locality of data means that data items close to each other will be

Application Specific Processors 11

used in the same short time frame, for example when operating on a vector or a
matrix of data.

The spatial and temporal locality of programs and data combined with the fact
that cache memories work with lines makes sure that most requested instruc-
tions and data will be in the cache memory when they are needed. The proces-
sor pipeline assumes that this is the case and the number of pipeline stages for a
fetch is adjusted for the fetch time from the cache memory. If the requested
instruction or data is not in the cache there will be a cache miss and the proces-
sor has to wait until the instruction or data has been fetched from the main
memory. A cache miss can cause up to several hundreds of clock cycles delay.

Cache memories are very complex and it is not the aim to cover the design of
them here. More information on cache memory organization and replacement
strategies can be found for example in [2.2].

2.2.4 Conditional Branches

As already mentioned, conditional branches can cause the pipeline to be
flushed. This has a negative impact on performance. A branch predictor is nor-
mally used to avoid having to flush the pipeline. For example in a loop it is
highly likely that the conditional branch will jump back to the beginning of the
loop. This will happen in every case except when the loop is done. By using a
branch predictor the most probable continuation of a program can be selected
and the pipeline does only rarely have to be flushed.

As with cache memories, branch predictors are complex and many alternative
implementations exist. It is also not the intention to cover them in detail in this
thesis. It is merely concluded that no matter how good a branch predictor is, it
will make occasional miss-predictions, with lost execution cycles as a conse-
quence. This is an important observation, which is used in chapter 6.

2.3 Profiling and Benchmarking
Obviously there are many different ways to design processors for a group of

applications and each design team would come up with different solutions if
they could start with the same design goal and the same domain of applications.
A way to measure how good a processor is at a certain application domain is
benchmarking.

2.3.1 Benchmarking Suites

There exist benchmarking suites for various types of application domains, for
example general purpose programs, digital signal processing programs, multi-

12 Application Specific Processors

media programs, and several more for other types of embedded systems. A
benchmarking suite consists of applications and input data. The most important
results of a benchmark simulation is the number of clock cycles that are used by
the simulated processor to execute the benchmarking suite. The execution time
is calculated as number of clock cycles divided by the actual clock frequency
that the processor is able to run at. A simple way to compare the performance of
two processors is to run the same benchmarking suite on the two processors.
Compute the execution times and then compare the execution times and deter-
mine which processor has the highest performance.

If the ISA has been fixed and various microarchitectures are evaluated, the
IPC count alone describes the relative performance of the processors, assuming
that they can run at the same clock frequency.

There are some things that have to be considered when running the bench-
marking simulation. For example if the same application is run twice the cache
memory will already contain most of the instructions and data in the second
run, since benchmark applications are normally small. This can influence the
performance significantly. It is also important to consider an operating system
running in the background and other applications that compete about the pro-
cessing resources. For some application specific processors only one applica-
tion runs at a time without any operating system, but most processors actually
run both operating systems and other applications simultaneously. This influ-
ences the outcome of the benchmarking.

2.3.2 Instruction Profiling

The simulators that are used for running the benchmarks normally can provide
much more information than the number of execution cycles. The instruction
profiling is one of the most interesting things when designing an ASIP. The pro-
file captures how frequently each type of instruction is executed. It can also give
information on how frequently combinations of instructions are executed. If
some combination is very frequent it is advisable to create a new instruction
that executes the combination in only one instruction if possible. This will of
course only help if the intermediate results are not consumed anywhere else in
the application.

Other interesting information includes the rate of pipeline stalls, cache miss
rate, the occupancy for each execution unit and branch miss-prediction rate. All
of these help tuning the microarchitecture. That means that the performance can
be increased without changing the instruction set.

Application Specific Processors 13

2.4 Optimization
When the performance of a processor is too low, optimizations of the proces-

sor are necessary. Even if the performance is adequate optimizations regarding
silicon area, power consumption or program code size may be necessary.

General purpose processors have total programmability and power consump-
tion as constraints and performance as the design goal. ASIPs normally have
performance and power consumption as constraints and programmability as the
design goal.

2.4.1 ISA Optimization

Changing the ISA can have huge impact on the performance of a processor. If
specialized instructions for operations that occur frequently in the program are
included in the instruction set these operations will need less code, possibly cre-
ate less intermediate results and often those operations can execute in one clock
cycle instead of needing several clock cycles. One typical example of this tech-
nique is the use of multiply and accumulate (MAC) instructions in digital signal
processors (DSPs).

Processors that have very wide data paths, for example 32 or 64 bit wide can
make use of single instruction multiple data (SIMD) instructions to increase
performance. SIMD instructions here mean that the data path is split into sev-
eral units of 8 or 16 bit width. These sub-units execute the same instruction on
one piece of the data word each. SIMD instructions are useful for example in
image and video applications where the pixels are normally specified with only
8 bits.

When the ISA of a processor is changed, both the hardware and the software,
that is the compiler, must be updated.

2.4.2 Register File Optimization

As mentioned earlier on, increasing the size of the register file can improve the
performance of a processor because more values can be stored in the register
file and less interaction with the memory is needed. If the number of registers is
increased more bits in the register address in the binary representation of the
instruction word are needed to specify the operands. If not enough bits are
available the instruction word must be prolonged, which causes the program to
need a larger memory.

Adding more registers has however bad impacts on the silicon area, power
consumption and can also increase the cycle time, which means that the maxi-
mum clock frequency is decreased. So a performance trade-off can be made on

14 Application Specific Processors

how many registers optimally to have in the register file for a set of applica-
tions.

If only some instructions have the problem that the additional bits for specify-
ing all new registers cannot fit in the instruction word, those instructions can be
restricted to use only some part of the register file. When all instructions can use
all registers the instruction set is called orthogonal. Compilers have problems
with non-orthogonal instruction sets.

Another reason for making the instruction set non-orthogonal can be that there
is a limitation of the number of ports to the register file. Principally each execu-
tion unit needs two read ports and one write port from and to the register file.
Having many ports on a register file causes the same problems as having many
register in the register file, that is increased area, power consumption and cycle
time. Therefore it is important to limit the number of ports. One way to do that
is to make use of clustered register file. The execution units are assigned to one
of the clusters and can only operate on the registers in that cluster. There are
specific move instructions available to exchange data between the clusters.
Using a clustered register file puts more constraints on the compiler.

2.4.3 Microarchitectural Optimization

The microarchitectural optimizations aim at increasing the IPC and the clock
frequency of the processor. These are the two factors that contribute to the per-
formance once the ISA and register file size have been fixed.

The IPC is increased by additional execution units, more advanced scheduler,
better branch prediction and larger cache memories. All of these changes
increase the complexity of the processor. Increased complexity almost always
means increased design time, increased silicon area and increased power con-
sumption. So there is a price to pay for the increased performance. A factor that
also has to be considered is the cycle time, which determines the maximum
clock frequency.

The clock frequency is normally increased by adding more pipeline stages, so
that the cycle time can be reduced. The clock frequency can also be increased
when moving to more modern manufacturing technologies with smaller dimen-
sions, but that is outside the scope of this study. When more pipeline stages are
added, a branch miss-prediction will have a higher cost and therefore the IPC
may be reduced. So high IPC and high clock frequency are contradictory in
some sense and a detailed trade-off analysis is necessary to reach the optimum.

The optimum is dependent on the characteristics of the applications. DSPs, for
example, execute signal processing algorithms which contain few branches.

Application Specific Processors 15

The DSPs therefore normally have deep pipelines and run at high clock fre-
quency. A branch miss-prediction is costly but occurs rarely.

Microcontrollers is another group of application specific processors. They are
intended and optimized for control applications, which do not require much
computation, but have a complex program flow and depend on many external
signals. Therefore often special registers are available, which are accessible on
the pins for inputs and outputs to and from the processor. The pipeline of this
type of processors is normally shallow since the many conditional branches in
the applications are hard to predict and therefore would cause significant cost in
pipeline stalls in a processor with a deep pipeline.

2.5 Processor Acceleration
Sometimes enough performance can not be achieved by the techniques

described in the previous sections. Then there exist a number of alternatives on
how to modify the processors.

2.5.1 Multi Processor Systems

If the application contains independent parts or parts with very little interac-
tion, a simple solution can be to split the application into two or more programs
that execute in parallel in a multi processor system. Each processor can be opti-
mized for the tasks that it has to execute.

The problem with multi processor systems is that the tasks on the processors
are not totally independent and information must be exchanged between the
processors. This can be done by message passing or shared memories. It has
proven hard to design compilers for multi processor systems.

2.5.2 Accelerator Units

Another way to increase performance is to use accelerator units. Accelerator
units can be used independently of if the program can be split into several parts
or not. Accelerator units can be tightly or loosely coupled with the processor
core. A tightly coupled accelerator unit typically has a short and predictable
execution time and it is accessed by special purpose register for inputs and out-
puts. For example the accelerator unit can be triggered by the processor loading
a value into its input register and 3 clock cycles later a result is available in its
output register, which the processor can read.

A loosely coupled accelerator unit can have data dependent execution time
and signal completion via an interrupt or let the processor poll its status. The

16 Application Specific Processors

inputs and outputs can be interchanged via memory mapped registers between
the processor core and the accelerator unit.

The accelerator units off-load regular tasks from the processor. One common
type of accelerator units are direct memory access (DMA) controllers, that
move blocks of data between different memories in a system.

I define a regular task as a task where the data path does not need to change
every clock cycle. For applications with only irregular tasks, accelerator units
cannot be used efficiently.

References
[2.1] Doug Carmean, “Pipeline Depth Tradeoffs and the Intel® Pentium® 4

Processor”, presented at Hotchips 13, 19-21 August, 2001, Palo Alto.

[2.2] Harald S. Stone, “High-Performance Computer Architecture”, Addison-
Wesley Publishing Company Inc. 1993, ISBN 0-201-52688-3

17

3
3
3

3
Network Processors and

TCP Off-load Engines
One special type of processors are the network processors (NPs). Many NPs

are actually highly integrated computing systems consisting of several process-
ing units and memory blocks. TCP off-load engines (TOEs) is another type of
processing elements for computer networks. To be able to understand the
design decisions for these kinds of processors the characteristics of protocol
processing must be well understood.

3.1 Characteristics of Protocol Processing
Protocol processing is the broad name for any type of processing that is

involved with a computer network. For example packet forwarding in routers,
packet generation in terminals, packet filtering in fire walls, packet encryption
in security equipment and so on. To understand the characteristics of the pro-
cessing it is therefore necessary to divide the protocol processing into narrower
categories. However, there is one characteristic that is common to all protocol
processing and that is that there is little or no data locality. Similarly as for sig-
nal processing each piece of information is processed once and then never used

18 Network Processors and TCP Off-load Engi-

again. Therefore data caches have little or nothing to contribute to protocol pro-
cessing systems.

In the rest of this section and in sections 3.2 and 3.3 the focus will be on pro-
tocol processing in terminals. More specifically the processing that occurs when
a packet is received from the network. Some of the processing in routers will be
further discussed in section 3.4 and a case study on IP route lookup is presented
in chapter 4.

3.1.1 Protocols in Local Area Networks

The dominating local area network (LAN) protocol is Ethernet. Ethernet
exists in many different shapes and is constantly developing. Ethernet is a layer
1 and 2 protocol, meaning that it specifies the physical layer and the data link
layer. On top of Ethernet, Internet protocol (IP) is the dominating network layer
protocol. The only competitor to IP is its own newer version 6, IPv6. It has been
discussed for many years when IPv6 will take over the dominating position of
IP, but so far all predictions have been wrong and IP continues to be the most
used protocol.

Layer 1, 2 and 3 consisting of Ethernet and IP is the common foundation for
most LANs. A LAN is connected to the rest of the Internet via one or more
routers. In the wide area networks other layer 1 and 2 protocols than Ethernet
and used, but that is not the intention of this study to cover them. On layer 3 IP
is used in all networks, IP is the language that facilitate communication
between various types of networks and systems.

Layer 1 and 2 provide point to point communication, although in early ver-
sions of Ethernet all terminals could overhear all communication. Broadcasts
and multicasts are also possible and frequently used for example by the address
resolution protocol (ARP). IP provides the ability to route packets over multiple
point to point connections and thereby provides communication between termi-
nals which are not physically directly connected.

Layers 1, 2 and 3 specify the behavior per packet. The processing of one
packet is not dependent on other packets, except from some special cases. All
information that is needed for the processing is self-contained in the headers of
each packet. Although options for segmentation and reassembly are provided in
IP they are almost always avoided. Flow control exists in Ethernet, but is
optional in implementations.

3.1.2 Processing Tasks in Ethernet and IP

The processing of Ethernet and IP upon reception of a packet consists of the
principal tasks of calculating checksums, checking addresses and demultiplex-

Network Processors and TCP Off-load Engines 19

ing the packet stream based on identifiers in the packet header. The checksums
are of two types, cyclic redundancy check (CRC) and two’s complement addi-
tion, also called the Internet checksum.

Addresses must be checked in both Ethernet and IP protocol headers. The Eth-
ernet addresses are 48 bits long and the IP addresses are 32 bits long. Special
addresses are reserved for broadcasts and multicasts. Those addresses must be
treated in all terminals.

Packet demultiplexing on the Ethernet layer consists of investigating an 16 bit
type field. The type field specifies what protocol type is used by the packet car-
ried in the Ethernet frame. Packet demultiplexing on the IP layer consists of
checking the 8 bit protocol field. The protocol field specifies which protocol is
carried in the IP packet.

3.1.3 Processing Tasks in Transport Layer Protocols

On top of layer 3, the network layer, there is the transport layer. There are two
protocols commonly used on the transport layer, transmission control protocol
(TCP) and user datagram protocol (UDP). The processing at the transport layer
is similar to the one at layers 1 to 3, except that TCP requires state handling
since it offers reliable connections which are maintained with sequence num-
bers and acknowledgments.

The processing is thus of two main kinds, the checksums which require regu-
lar computation intensive processing and the rest which requires control domi-
nated data dependent processing.

3.1.4 Protocol Processing Implementations

The traditional way of implementing the protocol processing in a computer
system is to have a network interface card (NIC) that buffers the incoming
packets and processes the Ethernet protocol. Then a direct memory access
(DMA) mechanism transfers the packet into main memory and the host proces-
sor can then handle all the other protocols. In many operating systems the net-
work and transport layer processing is done in the OS kernel and the
applications have to manage layers 5 to 7 if they exist.

In traditional implementations of protocol processing the operating system,
task handling and data movement also influence the protocol processing perfor-
mance significantly [3.1]. That is not because of fundamental properties of the
protocols, but rather it is a consequence of the implementation and can be cir-
cumvented.

20 Network Processors and TCP Off-load Engi-

3.2 Parallelization of Protocol Processing
It was realized many years ago that the protocol processing could be a bottle-

neck in a system and various approaches have been applied to speed up the pro-
tocol processing. The main idea has been to parallelize the processing on
several processors.

In [3.2] four ways to parallelize the processing are described and that is a good
survey of all approaches that have been suggested in the literature. A farm of
identical processors was used to execute the protocol processing. The key point
is how to partition the processing among the processors. Table 3.1 summarizes
the characteristics of the four partition schemes.

3.2.1 Processor-per-Message

The first partition, processor-per-message, suggests having one processor to
take care of each packet that arrives. This has the advantages of coarse-grain
parallelism and good load balancing. It also gives flexibility in the number of
processors allocated for protocol processing. If the network is not heavily used
for some period of time some processors can be allocated for other purposes
during that time.

Drawbacks are that the connection states must be shared among several pro-
cessors. Especially for protocols with a complex connection state, like TCP, this
makes the processor-per-message partition costly.

3.2.2 Processor-per-Connection

The processor-per-connection partition means that each connection is
assigned to one processor and that that processor has to handle all the tasks for
all packets that belong to that connection. The advantage over the previous

Partition scheme Shared data Drawback Advantage

Processor-per-Message Connection state Shared connection
state

Flexibility, good
load balancing

Processor-per-Connec-
tion

None Bad utilization and
saturation

No shared data

Processor-per-Protocol Packet Shared packet data Specialization is
possible

Processor-per-Task Packet and con-
nection state

Shared packet data
and connection state

Possible latency
reduction

Table 3.1: Characteristics of partition schemes

Network Processors and TCP Off-load Engines 21

approach is that the connection state does not need to be shared among several
processors. The disadvantage on the other hand is that bursty connections will
saturate one processor while other processors might be idle. They cannot off-
load the saturated processor because they cannot access the connection state. It
often occurs that connections are bursty, because that is be behavior of file
transfer.

3.2.3 Processor-per-Protocol

Processor-per-protocol is a partition where each processor is assigned to one
protocol. Advantages are that the processors could be specialized and the code
size can be small for each processor. The problem is that the packets must move
from processor to processor and the granularity is too small for protocols with
small processing needs.

3.2.4 Processor-per-Task

Finally, processor-per-task implies that each processor executes a single task
of one or more protocols. This partition has finer granularity than the previous
one and requires that both the packets and the connection states can be shared
by several processors. That turns out to be too costly in a practical implementa-
tion. The advantages come from that several tasks can be executed in parallel
and a theoretical reduction in processing latency for one packet is possible.

All approaches except processor-per-connection have overhead and lock con-
tention since the processors must use some shared resources. The processor-
per-message approach was found to be the best in the environment used in
[3.2]. Also in [3.3] a processor-per-message architecture was the favored
approach.

In chapter 5 a novel way to parallelize and partition protocol processing is pre-
sented.

3.3 TCP Off-load Engines for Network Terminals
In [3.4] a way of reducing the overhead associated with protocol processing

was suggested. By using packet accelerators, that modify the packet headers,
the headers are reduced in size and less complex to process. The processing is
partitioned into two phases, pre-processing, which does not modify the connec-
tion state and post-processing, that updates the connection state. This partition
improves the packet header processing latency. For example headers can be pre-
dicted in the pre-processing phase and some processing can thereby occur even
before the packet is received.

22 Network Processors and TCP Off-load Engi-

Because of the total dominance of IP, TCP and UDP during the last decade, it
is no longer possible to add protocol accelerators, that modify the packet head-
ers. Instead it has been realized that processing the existing protocols at effi-
ciently as possible is what matters. The partitioning into phases is applicable,
but not as efficient, also for protocol processing implementations that do not
modify the packet headers. That concept is further developed in this thesis in
chapter 5.

The main approach to do so is to off-load the protocol processing from the
host processor to the NIC. Soon the NIC will also be integrated closer with the
main memory and host processor since the peripheral component interconnect
(PCI) bus is not keeping up with the increases in network bandwidth. The two
standards that are of interest are Gigabit Ethernet and 10 Gigabit Ethernet. It
was estimated that file transfer with Gigabit Ethernet requires 20%-60% of the
processing power of a top of the line processor [3.5]. For 10 Gigabit Ethernet
the processor will be overloaded and limit the performance of the network.

This is a known problem and there exist approaches to solve it. In [3.6] a
method is shown on how to modify the logical interface between the host pro-
cessor and the NIC. The socket layer in the host processor is replaced by a sim-
ple pair of memory buffers. All the protocol processing is thereby moved to the
NIC. This allows for much less processing in the host processor. It requires
however major changes in the OS and a modified version of the Linux OS was
presented.

More pragmatic approaches have been taken by companies such as Alacritech,
Trebia and iReady, which all have presented NICs for Gigabit Ethernet with
protocol processing capabilities. These devices are referred to as TCP Off-load
Engines (TOEs).

3.4 Network Processors for Switches and Routers
In the last section of this chapter a detour from the terminals is taken and NPs

for switches and routers are described. It leads to the presentation of the novel
architecture for IP route lookup in the next chapter.

3.4.1 Basic Router Functionality

The difference between a switch and a router is that a switch handles only one
layer 2 protocol, for example Ethernet. A router on the other hand can have
ports which use different layer 2 protocols. The switch uses the layer 2
addresses (hardware addresses, MAC addresses) to do the packet forwarding. A
router on the other hand uses layer 3 addresses, that is the IP addresses. In the
rest of this section routers will be considered.

Network Processors and TCP Off-load Engines 23

The requirements on routers are quite different from the ones on terminals. In
switches and routers as little interaction with the packets as possible is normally
desired. The fundamental task is only to forward each packet on the correct out-
put port. To do so there is some processing that is needed.

There is one change that must be made to all packets. The IP header must be
modified, since the time to live (TTL) field should be decreased by one at every
router. This causes the IP header checksum to be updated as well.

The other major task that a router does with all packets is to extract the desti-
nation address and look up in a table on which port the packet must be for-
warded. The next chapter deals with the problems of IP route lookup in detail
and presents a novel architecture that executes IP route lookup extremely fast.

3.4.2 Router Architectures

Router architectures have evolved over the years and two types are still exist-
ing. Most routers are constructed around a switching backplane, which is a
cross connection for moving data packets. On this backplane the line cards are
attached. Each line card can have one or more ports, for example Ethernet,
ATM, and ADSL. The processing is done on the line cards for incoming pack-
ets and when the output port is determined, by an IP address lookup, the packet
is sent over the backplane to the corresponding line card, which buffers the
packet until the output port is available. The other way to build switches or rout-
ers is to use a shared high-speed memory instead of having a switching back-
plane and local buffers at the output ports. This latter type of architecture can be
integrated onto one single chip.

The fundamental functionality of a switch or router is simple, but the high
requirements on performance make the designs complex. Another thing that
contributes to the complexity is the increasing demand for quality of service
(QoS). That means that different types of packets should be treated differently.
For example packet streams with real-time constraints, such as streaming audio
and video should get higher priority than file transfer and electronic mail pack-
ets, which do not suffer from small delays.

QoS requirements increases the processing load per packet significantly, since
the content of the packets must be inspected in order to determine which type of
packet it is. This is referred to as packet classification and normally 5 fields of
the packet headers are used to do this classification. Once the packets have been
classified they have to be treated differently, a task performed by a queue man-
agement system.

Another problem for routers and switches is the increasing demands on secu-
rity in the computer networks. This has lead to many packets being encrypted.

24 Network Processors and TCP Off-load Engi-

When the routers need to do some inspection in the packets they much first
decrypt the contents and then encrypt the packets again before forwarding
them.

Totally this multitude of tasks for switches and routers has lead to the develop-
ment of NPs, which are dedicated processors for handling the processing in
switches and routers. Most NP systems consist of one main processor with sev-
eral co-processors, for example for encryption, packet classification and queue
management. There exist standardized interfaces for how to connect the co-pro-
cessors to the main processor, [3.7]. The interfaces make the co-processors look
like memory blocks to the main processor.

The programmability of the processors is varying. The constraints on the
deigns is normally throughput and power consumption. Programmability is a
design goal, that can be sacrificed so that the constraints are fulfilled. The
switches and routers are real-time systems, where the packets must be pro-
cessed as they arrive.

References
[3.1] Peter Steenkiste, “Analyzing Communication Latency using the Netcar

Communication Processor”, ACM SIGCOMM Computer Communica-
tion Review, vol. 22, No. 4, pp. 199-209, October 1992

[3.2] Mats Björkman and Per Gunningberg, “Performance Modeling of Multi-
processor Implementations of Protocols”, IEEE/ACM Transactions on
Networking, vol. 6, No. 3, pp. 262-273, June 1998

[3.3] Niraj Jain, Mischa Schwartz and Theodore R. Bashkow, “Transport Pro-
tocol Processing at Gpbs Rates”, ACM SIGCOMM Computer Communi-
cations Review, vol. 20, No. 4, pp. 188-199, September 1990

[3.4] Robbert van Renesse, “Masking the Overhead of Protocol Layering”,
ACM SIGCOMM Computer Communication Review, vol. 26, No. 4,
pp. 96-104, August 1996

[3.5] Linley Gwennap, “Count on TCP offload engine”, EETimes, on the
www: http://www.eetimes.com/semi/c/ip/OEG20010917S0051

[3.6] Philip Buonadonna and David Culler, “Queue Pair IP: A Hybrid Archi-
tecture for System Area Networks”, International Symposium on Com-
puter Architecture 2002, pp. 247-256, June 2002, Anchorage, Alaska

[3.7] Harmeet Bhugra, “LA-1: Standardizing the Look-Aside Processor Inter-
face”, CommsDesign, on the www: http:www.commsdesign.com/story/
OEG20020917S0022

25

4
4
4

4
IP Route Lookup
Implementation

In this chapter the focus is IP route lookup and the architecture that was pre-
sented in [4.1]. First the task of IP route lookup is described. Then implementa-
tion alternatives are discussed and finally the novel architecture is presented.

4.1 Route Lookup
IP route lookup is defined as the process of finding an action pointer associ-

ated with an IP destination address. The action pointers are stored in a routing
table.

An IP address consists of 32 bits. These are organized as two parts, network
identifier and host identifier. All computers on a LAN have the same network
identifier. When Internet was designed three types of networks were allowed,
class A, class B and class C networks. Class A networks had 8 bit network iden-
tifiers, class B networks had 16 bit network identifiers and class C networks had
24 bit network identifiers. Therefore class C networks can only have a maxi-
mum of 256 hosts (actually only 254 because 2 addresses are reserved for
broadcast). This led to problems as companies and organizations grew. They

26 IP Route Lookup Implementation

then received another class C network, with a network identifier independent of
the previous they had, because the similar ones were already taken.

In a router only the network identifier part of the destination address is consid-
ered, unless the packet has reached its final LAN router. For each network iden-
tifier a new entry is needed in the lookup table. Since companies and
organizations now had several network identifiers, several entries were needed
in all routers. The class-based addressing was saturated and a new approach was
taken. The classes were removed from the Internet and instead each entry in the
routing tables has a mask that specifies how many bits are constituting the net-
work identifier, called classless interdomain routing (CIDR). This has led to a
decreased growth rate of entries in the routing tables, but still the routing tables
in core routers can contain several hundreds of thousands of entries.

So each entry in a routing table consists of three interesting fields, network
identifier, mask and action pointer. The action pointer specifies what to do with
the packets that match the corresponding entry. A simplified way of looking at
it is as the output port identifier although more information is normally con-
tained, such as next hop IP address. The lookup task is to compare the IP desti-
nation address of the incoming packet with all the network identifiers in the
routing table and find the best match. The best match is defined as the match
with the highest number of bits in the mask. For example if entryn is the tuple
<130.236.54.0, 24, action 3> and entrym is <130.236.0.0, 16, action 4> and
these are the only two matches for a packet, with destination address
130.236.54.3, then entryn is the best match since 24 is greater than 16.

A mathematical way to describe the lookup problem is to view the address
space as a continuos line, where each entry specifies an interval, see figure 4.1.
All intervals are either disjoint or one is contained in the other. Intervals that

Figure 4.1: Mathematical view of the IP address space

0.0.0.0 255.255.255.255

130.236.54.3

130.236.54.0, 24

IP Route Lookup Implementation 27

partly overlap do not exist because of the structure of the network identifiers.
The IP destination address of a packet corresponds to a single point on the con-
tinuos line. The point can be contained in one or more intervals. There is a
default entry, which has the whole line as the interval. If several intervals con-
tain the point, the shortest interval corresponds to the best match.

When looking at the processing requirements there is only one operation
which is needed and that is the compare operation. Based on the results of the
comparison, decisions must be made. Another aspect that must be considered is
that the routing tables may change rapidly, in some cases table updates as often
as every 100 ms have been reported.

4.2 Implementation Alternatives
There exist three main categories of IP route lookup implementations, soft-

ware, special hardware and ternary content addressable memories (TCAMs).
The TCAMs offer massive parallelism and execute all comparisons in parallel.
Then prioritize logic selects the best match. This is done by storing the entries
in order of mask length in the TCAM and simply selecting the match with the
lowest address. The TCAMs can be pipelined and support high performance.
One problem arises when new entries must be added to the TCAMs, but effi-
cient ways handle that have been presented [4.2]. The key idea is to sort the
entries in order of mask length and save some unused space between every
block of entries with a certain mask length. Thereby new entries independent of
mask length can easily be added in the TCAM. If there is no available space
between two blocks where a new entry must be added, one entry from the
neighboring block can be moved to the other side of that block to create an
empty space for the new entry.

The downside with TCAMs is that a TCAM cell is about twice as expensive as
an ordinary SRAM cell in terms of silicon area, power consumption and access
time.

For the software and special hardware implementations it is impossible to do a
sequential search through the table and achieve reasonable performance. It is
also not possible to have large table enough that can be directly addressed with
the destination address. The size of the table would be 232 entries. Each entry
would only need to contain the action pointer, since the network identifier and
the mask are included in the address. The action pointer could be 1 byte and
thus a memory of 4 GB would be sufficient. Although large this is certainly a
reasonable size for an off-chip memory. The problem that arises is that of table
updates. An update of an entry with a mask of 8 could lead to a maximum of
224 entries (=16 Mentries) that need to be updated. Instead a mixed compare

28 IP Route Lookup Implementation

and directly addressed table architecture is used. For software implementations
it is important to have a small enough table so that it can fit in the cache mem-
ory. Several papers have been presented for fast and efficient IP address lookup,
in [4.3] the various algorithms are surveyed.

4.3 Novel Architecture
The novel architecture, which I developed together with Professor Verbau-

whede at UCLA during the spring and summer of year 2001, is an attempt to
use an ASIP to perform the IP address lookup. Since there is only one opera-
tion, compare, there is no need for an instruction word because the operation
can be built into the architecture. The architecture consists of several processing
stages. Each stage consists of an SRAM and a processing element (PE), see fig-
ure 4.2. The processing stages work together in a pipelined fashion, see figure
4.3. Each processing stage contains a part of the routing table.W is the number
of bits in the address, 32 for IP. The number of bits that are processed in every
stage isk. Therefore there are totallyW/k stages.

Stage 0 gets the whole address (n=32) as input. In stage 0 thek most signifi-
cant bits (msbs) of the address are used to address the SRAM and the output is a
pointer that combined with the nextk bits of the address are used to address the
SRAM in stage 1. The following stages work the same way until the result is
found in an SRAM. Then the output of that SRAM is the result, that is the
action pointer, and theis_pointeris set to 0. In the remaining stages the result is
simply forwarded from the input to the output.

Figure 4.2: Processing element and SRAM in the novel architecture

SRAM

address[n-k-1..0]

address[n-1..n-k]
<is_pointer,

result/pointer>

concatenation

<is_pointer,
result/pointer>

is_pointer

data from rout-
ing engine

address from
routing engine

(result/)
pointer

IP Route Lookup Implementation 29

4.4 Performance Evaluation
Since the processing stages are pipelined, the maximum performance is very

high. The critical delay consists of one SRAM read access in series with two 2-
input multiplexer delays.

The more interesting aspect is how much memory that is required. This was
investigated by using publicly available routing tables from IPMA of May 23rd
2001 [4.4]. Five different routing tables are available, in table 4.1 the results for
the smallest table, mae-east, with 16416 routing table entries are presented. The
unit of the values are number of memory entries. A memory entry is a tuple
<is_pointer, result/pointer>. As expected the memory requirements increase
whenk increases, since the memory is used in chunks of 2k. It can also be seen
that whenk=2x the memory requirements are relatively smaller than otherwise.
This is because the bits in the address exactly matches the number of stages. For
all other values ofk the last stage will have less thank bits to process. This
increases the amount of required memory. The most promising values ofk are 2
and 4, since they give good trade-offs between number of stages and memory
requirements. Similar analysis were made for the other tables and they show
similar results.

Unfortunately the number of entries at the different stages are varying with
several orders of magnitude. It will be the stage with the largest memory
requirement that will decide the minimum clock cycle period. The size of the
largest memory,emax, will also decide how many bits,m, that are necessary for
the result/pointerfield in each entry, assuming that the result can be expressed
with less bits than the pointer. The memory address consists ofm+k bits and
thus 2m+k >= emax. For example, ifk=4, emax=298320 for mae-west (the largest
table available), andm>=15. Settingm=15 would allow for anemax of up to

Figure 4.3: The PEs work together in a pipelined fashion

Stage 0

PE

SRAM

Stage 1

PE

SRAM

Stage W/k-1

PE

SRAM

30 IP Route Lookup Implementation

215+4=524288 and thereforem=15 could handle routing tables with more
entries than mae-west. Exactly how large routing tables can be handled is
dependent of the exact distribution of entries in the routing table.

Having m=15 is certainly reasonable, since each entry in the memory would
consist of 16 bits, 1 bit for theis_pointerfield and 15 bits for theresult/pointer
field. With 215+4 entries, the largest memory requires 1 mega byte (MB). It
should also be noticed, that the memory with the most entries normally does not
have to have that many bits for the pointer since the next stage has a lot fewer
entries. However, for the sake of regularity it is reasonable to make each stage

Stage k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
0 2 4 8 16 32 64 128 256 512 1024
1 4 16 48 160 608 1728 6272 21248 76288 274432
2 8 40 216 1328 8576 52736 258048 713728 2384896 5517312
3 12 108 1192 13184 91264 298112 794496 4608 5632 1024
4 20 332 6592 44608 172416 1152 640
5 38 1072 22816 86208 320 64
6 54 3296 37264 288 32
7 98 8064 49656 80
8 166 11152 144
9 298 18632 88
10 536 21552 8
11 978 26788
12 1648 72
13 2676 36
14 4032 20
15 5704 4
16 5576
17 7440
18 9316
19 9478
20 10776
21 12414
22 13394
23 14100
24 36
25 20
26 18
27 22
28 10
29 4
30 2
31 2
Total 98882 91188 118032 145872 273248 353856 1059584 739840 2467328 5793792

Table 4.1: Memory Requirements for Mae-East, 16416 routing table entries.

IP Route Lookup Implementation 31

identical. According to [4.5], a 2 MB 4-transistor SRAM can operate at
500 MHz. In [4.6] a 4K word (16 bit) 6-transistor SRAM has an access time of
1.21 ns, a larger memory will have slightly longer access time. It is also known
that 2 input multiplexers have a propagation delay of about 0.15 ns. All these
numbers are for the 0.18µm generation of technology. It is probable that our
architecture has a cycle delay of about 2 ns and since we handle one routing
lookup request every clock cycle the maximum throughput is approximately
500MPackets/s. This seems to be an upper limit for the performance of IP
address lookup, but no formal proof has been derived. With access times of 2 ns
and minimum sized packets of 40 bytes, 160 Gb/s of worst case traffic can be
supported.

4.5 Hardware Multiplexing
In order to decrease the differences between the memory requirements of the

stages a trade-off with the throughput can be made. The idea of hardware multi-
plexing is to use each physical stage for two or more logical stages of the k-
multibit trie search algorithm. This can be done in different ways, e.g. mirror-
ing, serial stage reuse, and full loops. For the example of mirroring, see figure
4.4. Each physical stage will need an extra multiplexer in order to chose the cor-
rect input. There is also a need for a control part, which supports the select sig-

Logical
stage 0

Logical
stage 7

Result

Memory
stage 7

Figure 4.4: Hardware multiplexing by mirroring for k=4. The sizes of the boxes
are not proportional to the required memory size, since the exact size depends
of the content of the routing table, they only provide an overview of how the
memory requirements add up on each physical stage, when hardware multi-

plexing is used.

Physical
stage 0

Address

Memory
stage 0

Logical
stage 1

Logical
stage 6

Memory
stage 6

Physical
stage 1

Memory
stage 1

Logical
stage 2

Logical
stage 5

Memory
stage 5

Physical
stage 2

Memory
stage 2

Logical
stage 3

Logical
stage 4

Memory
stage 4

Physical
stage 3

Memory
stage 3

32 IP Route Lookup Implementation

nals to all multiplexers according to the multiplexing scheme selected. It is also
roughly shown how the memory requirements add up on each physical stage.

To describe the three previously mentioned multiplexing schemes we define pi
as the i:th physical stage and li as the i:th logical stage. The tuple <pi, lj> repre-
sents that logical stage j is executed on physical stage i. In tables 4.2-4.7 it can
be seen how the scheduling for the three schemes work fork=4 with 2 and 4
logical stages being executed on each physical stage respectively. Each row is
representing a task and each column represents a clock cycle.

It can easily be seen that all three schemes provide full utilization of the pro-
vided physical stages, both for double and quadruple multiplexing. The exact
scheduling determines when results will be ready. This differs dependent on

Task 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 p0,l0 p1, l1 p2,l2 p3,l3 p3,l4 p2,l5 p1,l6 p0,l7
2 p0,l0 p1,l1 p2,l2 p3,l3 p3,l4 p2,l5 p1,l6 p0,l7
3 p0,l0 p1,l1 p2,l2 p3,l3 p3,l4 p2,l5 p1,l6 p0,l7
4 p0,l0 p1,l1 p2,l2 p3,l3 p3,l4 p2,l0 p1,l6 p0,l7
5 p0,l0 p1,l1 p2,l2 p3,l3 p3,l4 p2,l5 p1,l6
6 p0,l0 p1,l1 p2,l2 p3,l3 p3,l4
7 p0,l0 p1,l1 p2,l2
8 p0,l0

Table 4.2: Scheduling for Mirroring, k=4

Task 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 p0,l0 p1, l1 p1,l2 p0,l3 p0,l4 p1,l5 p1,l6 p0,l7
2 p0,l0 p1,l1 p1,l2 p0,l3 p0,l4 p1,l5 p1,l6 p0,l7
3 p0,l0 p1,l1 p1,l2 p0,l3 p0,l4 p1,l5 p1,l6
4 p0,l0 p1,l1 p1,l2 p0,l3 p0,l4

Table 4.3: Scheduling for Double Mirroring, k=4

Task 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 p0,l0 p0,l1 p1,l2 p1,l3 p2,l4 p2,l5 p3,l6 p3,l7
2 p0,l0 p0,l1 p1,l2 p1,l3 p2,l4 p2,l5 p3,l6 p3,l7
3 p0,l0 p0,l1 p1,l2 p1,l3 p2,l4 p2,l5 p3,l6 p3,l7
4 p0,l0 p0,l1 p1,l2 p1,l3 p2,l4 p2,l5 p3,l6 p3,l7
5 p0,l0 p0,l1 p1,l2 p1,l3 p2,l4 p2,l5 p3,l6
6 p0,l0 p0,l1 p1,l2 p1,l3 p2,l4
7 p0,l0 p0,l1 p1,l2
8 p0,l0

Table 4.4: Scheduling for 2 Serial Reuses, k=4

IP Route Lookup Implementation 33

which scheme that is used and the results can be seen in the tables 4.2-4.7.
Although necessary for the exact implementation it is of less general interest.

The fact of how the memory requirements add up, on the other hand, is most
interesting, since now we have to consider the total memory on one physical
stage as the performance limiting factor. As mentioned above, an extra multi-
plexer for the input selection and some control logic for selecting the correct
input is also needed, so now the critical path will consist of 3 multiplexer delays
+ the memory access time. Table 4.8 shows the memory requirements per phys-
ical stage when the various multiplexing schemes are used on the mae-east rout-
ing table. For this routing table full loops are best when each stage is used
twice, but double mirroring is better when using each stage 4 times. The pur-
pose is obviously to minimize the maximum memory requirement per physical
stage, theemax when hardware multiplexing is used.

Task 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 p0,l0 p0,l1 p0,l2 p0,l3 p1,l4 p1,l5 p1,l6 p1,l7
2 p0,l0 p0,l1 p0,l2 p0,l3 p1,l4 p1,l5 p1,l6 p1,l7
3 p0,l0 p0,l1 p0,l2 p0,l3 p1,l4 p1,l5 p1,l6
4 p0,l0 p0,l1 p0,l2

Table 4.5: Scheduling for 4 Serial Reuses, k=4

Task 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 p0,l0 p1, l1 p2,l2 p3,l3 p0,l4 p1,l5 p2,l6 p3,l7
2 p0,l0 p1,l1 p2,l2 p3,l3 p0,l4 p1,l5 p2,l6 p3,l7
3 p0,l0 p1,l1 p2,l2 p3,l3 p0,l4 p1,l5 p2,l6 p3,l7
4 p0,l0 p1,l1 p2,l2 p3,l3 p0,l4 p1,l5 p2,l6 p3,l7
5 p0,l0 p1,l1 p2,l2 p3,l3 p0,l4 p1,l5 p2,l6
6 p0,l0 p1,l1 p2,l2 p3,l3 p0,l4 p1,l5
7 p0,l0 p1,l1 p2,l2 p3,l3 p0,l4
8 p0,l0 p1,l1 p2,l2 p3,l3

Table 4.6: Scheduling for 2 Full Loops, k=4

Task 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 p0,l0 p1, l1 p0,l2 p1,l3 p0,l4 p1,l5 p0,l6 p1,l7
2 p0,l0 p1,l1 p0,l2 p1,l3 p0,l4 p1,l5 p0,l6 p1,l7
3 p0,l0 p1,l1 p0,l2 p1,l3 p0,l4 p1,l5 p0,l6
4 p0,l0 p1,l1 p0,l2 p1,l3 p0,l4 p1,l5

Table 4.7: Scheduling for 4 Full Loops, k=4

34 IP Route Lookup Implementation

Using the right multiplexing scheme makes it possible to only slightly
increase the maximum memory requirement per stage, e.g. for double mirror-
ing, k=2 it increases from 26788 to 27300. We can approximate that the mem-
ory access time will remain the same and the addition of an extra multiplexer
will only minorly influence the minimum clock cycle period. There will also be
extra wiring needed and the output of some stages will have a higher fan-out.
Totally, however, the multiplexed solution should be able to run almost as fast
as the original configuration. It must be noticed that since each physical stage is
used 2 or 4 times for each lookup request, the throughput will be decreased with
the same factor.

Interestingly one can use the same configuration of, for example, 8 physical
stages to implement a scheme withk=2 with multiplexing (mirroring and 2 full
loops are almost equally good) and also a scheme withk=4 with no multiplex-
ing. Since the memory sizes must be determined at the time of manufacturing
this observation increases the flexibility of the architecture. A small routing
table will fit in the memory withk=4 and the throughput can be kept maximal.
When the routing table grows too large,k can be changed to 2 and multiplexing
can be used so the same hardware can support increasingly larger routing
tables, with a throughput decrease. Even larger routing tables will fit in with
k=1 and double mirroring.

Building the memory in blocks can also allow post-manufacturing memory
allocation to the stages by using configurable interconnects. This however intro-
duces more hardware overhead and increases the access time.

Stage Mirr oring Dbl. mirror 2 seri ally 4 seri ally 2 full loops 4 full loops

k = 2 k=4 k=2 k=4 k=2 k=4 k=2 k=4 k=2 k=4 k=2 k=4
0 8 96 19224 57888 20 176 168 14688 11156 44624 11560 46240
1 36 448 21964 87984 148 14512 12764131184 18648 86368 19756 99632
2 76 87536 22700 1404130816 78124 21592 1616 24908
3 180 57792 27300 11360 368 132 26896 13264 34964
4 27120 29784 404
5 22624 48340 1108
6 21928 108 3316
7 19216 24 8068
Total 91188145872 91188 145872 91188 145872 91188 145872 91188 145872 91188 145872

Table 4.8: Memory requirements when multiplexing is used for mae-east, 16416
routing table entries

IP Route Lookup Implementation 35

4.6 Scaling
When talking about the scalability of an IP address lookup implementation,

two different views can be considered. First it is the scaling to more entries in
the routing table and second the scaling to longer addresses, e.g. 128 bit IPv6
addresses.

To investigate the scalability of the routing table, all five routing tables from
IPMA were used. The simulations were performed fork=1, 2, and 4. As already
noticedk=2x gives good values andk should be kept fairly small in order to
limit the size of the memories. The results can be seen in figure 4.5. The inter-
esting fact is that for growing routing tables theemaxgrows less than linearly for
k=4. Fork=2 the growth is approximately linear for the used routing tables. This
is because many routing table entries share the same entry in thek-multibit trie.
With an increasing number of routing table entries, this aggregation helps keep-
ing theemax limited. For largerk, emax grows, but one must keep in mind that
the number of stages decreases with a factor ofk, so the total memory require-
ment does not grow as rapidly asemax.

The second scalability issue is harder to investigate, since there is a lack of
accessible IPv6 routing tables of sufficient size. IPMA provides us with one,
which was used as of December 31st, 2000 23:14. It only contains 219 distinct
prefixes and the simulation gives the results of table 4.9. It is hard to tell how
well our architecture will handle large IPv6 tables. What is clear, however, is
that the same principle is applicable to IPv6 and that the delay until the result is
available will increase since more stages are needed. How the throughput is
affected is dependent of how muchemax grows.

4.7 Updating and Further Extensions

4.7.1 Updating Issues

A routing table is constantly changing its content. The implementation must
allow instant incremental changes to the routing table. Thek-multibit trie
implementation in software has an updating complexity of O(W/k + 2k) [4.3].
Our hardware implementation has the same complexity and more precisely, an
update requires at most 2k writes in the memory at each stage. By scheduling

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=16
emax 4 16 40 128 384 1280 4480 14336 7864320
Total 510 812 1424 3168 7904 20160 47488 100352 20316160

Table 4.9: Memory requirements for IPv6 routing table

36 IP Route Lookup Implementation

these writes so that they are pipelined in the same fashion as the lookup
requests, only 2k clock cycles will be lost for an update sinceW/k stages can be
accessed in parallel. This all requires that the routing update engine has a copy
of the memory structure, but since it is normally implemented on a general pur-
pose CPU this is not a problem. The C-program used for simulation is capable
of generating the necessary memory structures for configuration and updating
of the forwarding engine.

Another tempting way of managing the updating is to make use of dual-port
memories. These memories are almost as fast as single port, but require more
area and totally smaller storage capacity is supported. However, the updating
could be performed at the same time as a lookup request is serviced, which
would allow zero time overhead for updates. An issue that has to be addressed

1 2 3 4 5 6 7 8

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

5

Figure 4.5: Maximum memory entries per stage, emax, as a function of number

of routing table entries, n

+ : k=1

squares :k=2

* : k=4

IP Route Lookup Implementation 37

is that of the consistency. When a new rule is added this can require a maximum
of 2k writes in each stage as previously mentioned, therefore an update may be
partial at the time of a lookup, which could lead to an incorrect forwarding deci-
sion.

4.7.2 2-Dimensional Search

IP packet forwarding based only on the destination address limits the router
performance to best effort, since no differentiation of packets can be done. To
improve this more fields from the packet header, such as source address, trans-
port layer protocol, TCP/UDP source port and destination port are used. Each
field can be seen as a search dimension. Normally the different dimensions have
different search criteria, only IP destination address and source address can be
assumed to have longest prefix match search. Transport layer protocol typically
requires exact match and TCP/UDP ports often require range matching.

Thanks to the work done by Srinivasan et al. [4.7], it is known that thek-
multibit trie search algorithm can be used also for 2-dimensional longest prefix
match. Since our architecture is a direct implementation of this algorithm, it can
also handle the search on source address as well as destination address. Further
investigations, on how this affects the number of stages and theemax have not
been performed, since there is also a lack of such routing tables.

That concludes the study on routers. In the next chapter the focus is changed
back to terminals.

References
[4.1] Tomas Henriksson and Ingrid Verbauwhede, “Fast IP Address Lookup

Engine for SoC Integration”, Design and Diagnostics on Electronics, Cir-
cuits ans Systems 2001, pp. 200-210, April 17-19, 2002, Brno, Czeck
Republic

[4.2] Devavrat Shah and Pankaj Gupta, “Fast Updating Algorithms for
TCAMs”, IEEE Micro, vol. 21, No. 1, pp. 36-47, January/February 2001

[4.3] Miguel Á. Ruis-Sanchez, Ernst W. Biersack and Walid Dabbous, “Survey
and Taxonomy of IP Address Lookup Algorithms”, IEEE Network, vol.
15, No. 2, pp. 8-23, March/April 2001

[4.4] “Internet Performance Measurement and Analysis Project”, on the www:
http://www.merit.edu/ipma/

[4.5] Noda, K., Takeda, K., Matsui, K., Ito, S., Masuoka, S., Kawamoto, H.,
Ikezawa, N., Aimoto, Y., Nakamura, N., Iwasaki, T., Toyoshima, H.,
Horiuchi, T., “An Ultrahigh-Density High-Speed Loadless Four-Transis-

38 IP Route Lookup Implementation

tor SRAM Macro with Twisted Bitline Architecture and Triple-Well
Shield”, IEEE JSSC, Vol. 36, No. 3, March 2001, pp. 510-515

[4.6] “Embedded Memories”, http://www.umc.com/english/design/e.asp

[4.7] Srinivasan, V., Varghese, G., Suri, S., Waldvogel, M., “Fast and Scalable
Layer Four Switching”, Proceedings of ACM SIGCOMM 98, pp. 191-
202

39

5
5
5

5
Partition of Protocol

Processing
In chapter 3 some ways to parallelize the protocol processing were described.

It is important to partition the protocol processing judiciously between the pro-
cessing resources. My novel way to do that is to separate intra-packet tasks
from inter-packet tasks.

5.1 Motivation for a New Partition Scheme
All the four partition schemes for protocol processing presented in chapter 3

suffer from either unbalanced workload among the processors or problems with
shared data. The fundamental property of a good partition is little shared data.
Shared data that is accessed through shared memory or communicated via mes-
sage passing can create stall in the processing and thereby unpredictable pro-
cessing performance.

The novel partition presented here aims at predictable performance, which
accommodates for in-line processing. Thereby the packets can be at least partly
processed before they are stored in memory. This saves memory bandwidth and
power consumption.

40 Partition of Protocol Processing

The problem with unbalanced workload among the processors is harder to
solve. To be able to process worst case packets at real-time there must be head-
room over the average workload of the processors. One way to decrease the
unbalancing in the workload is to specialize each processor for the tasks that are
allocated to it.

5.2 Intra-Packet Tasks
Intra-packet tasks are the tasks that can be performed on one packet without

any information about the packet flow. The intra-packet tasks do not have any
side effects. They do not update any connection state variables, nor do they trig-
ger any transmission of acknowledgments or other types of packets.

The purpose of separating the intra-packet tasks from the inter-packet tasks is
that the intra-packet tasks can be executed without the need of any shared
resources in a multiprocessor system. The previously suggested ways to split up
the protocol processing are based on the concept of protocol layers. The layers
are good for describing the logical behavior of protocols in computer networks,
but limit the flexibility and thereby the performance of an implementation. The
intra-packet tasks have no correspondence to the protocol layers and these tasks
may reside in any of the protocol layers that are used.

Since there are no side-effect of the intra-packet tasks, these can be executed
speculatively and out of order and easily be reversed if they should not have
been executed. For example the header fields can be inspected before the check-
sum was proven correct. If later on the checksum proves to be incorrect the
intermediate results of the header field inspection can simply be discarded. A
way to look at it is that speculative execution that was miss-predicted does not
need to be rewinded, but can simply be discarded instead.

The intra-packet tasks consist of regular checksum calculations and irregular
comparisons. They are further highly predictable on a coarse task level. Princi-
pally they consist of calculating the checksum on the lowest layer. Then execut-
ing a couple of comparisons, for example checking an address and a higher
layer protocol identifier. Then calculating the checksum on the next layer and
keep doing this until all layers have been processed. Most packets have most
likely no bit errors introduced during transmission and therefore all checksums
will be correct. This means that all the comparisons can be executed in a specu-
lative manner before the checksum calculations have been completed with a
low risk of misprediction.

Partition of Protocol Processing 41

5.3 Inter-Packet Tasks
Inter-packet tasks are the tasks of protocol processing that are not intra-packet.

That means tasks that involve updating connection state variables, setting timers
and triggering transmission of packets. This also includes delivering the pay-
load to the application.

Inter-packet tasks have side effects and only some of them are reversible. For
example if a local connection state has been updated, it is possible to reverse
that change if the execution was speculative and proved to have been miss-pre-
dicted. Other tasks are not reversible, such as transmitting an acknowledgment
or delivering payload to the application. These irreversible tasks cannot be exe-
cuted speculatively and specifically important for protocol processing, the
checksums must have been proven correct before they are executed.

Inter-packet tasks are irregular. They consist of for example executing state
machines, computing congestion windows, setting timers and triggering pack-
ets to be transmitted. They are somewhat predictable, which has been proven
for TCP where most packets contain data or acknowledgments, but do not
change the state of the connection [5.1].

5.4 Common Protocol Tasks
Although each network protocol has its own set of unique features, many

mechanisms are common to most protocol stacks. In this section several of
these mechanism are described and discussed from the perspective of reception
of packets in a terminal. It is necessary to analyze and classify these tasks so
that an appropriate assembly instruction set can be developed.

The first three tasks, multiplexing, checksums, and addressing belong to the
intra-packet tasks and the last two tasks, flow control and congestion control
belong to the inter-packet tasks. Table 5.1 summarizes the kernel operations in
every task.

5.4.1 Multiplexing

In the layered protocol architecture we are used to think about, each protocol
layer specifies which protocol is used on the layer above. This is done by a cer-
tain field in the header, which contains a value specific to the protocol used on
the layer above. The processing is of course dependent on this value and we say
that the packet stream is demultiplexed to the correct upper-layer protocol pro-
cessing routine based on this value. The demultiplexing must take place for
every packet that is received from the network.

42 Partition of Protocol Processing

Muliplexing is used for example by IP to decide if the payload is using TCP,
UDP or another format. The kernel operations are compare and conditional
branches.

5.4.2 Checksums

In computer networks the transmission media is not perfect. Optical fibers
have a very small bit error rate, but it can still happen that a bit is flipped during
the transmission. Electrical cables have a little bit worse bit error rate and wire-
less channels suffer from time-varying fading that can cause very high bit error
rates. The common way to deal with the problem of erroneous bits in the
received packets is to use checksums.

The checksums are computed over the whole packet or parts of the packet at
transmission time and put in a certain field in the header or as a tailer to the
packet. The receiver has to compute the same checksum and compare to the
precomputed value. If a mismatch occurs the whole packet must be discarded
and the sender will have to retransmit the packet. For one single packet several
checksums on different layers may be present, for example a TCP packet sent
by Ethernet will have both the TCP checksum and the Ethernet frame check
sequence.

The checksum computations must take place for every packet that is received
from the network. Based on the demultiplexing it is known which protocols that
are used and thereby which checksums to compute. Various algorithms for
checksum computations exist. The most common ones are cyclic redundancy
check (CRC) and one’s complement addition.

CRC is for example used in Ethernet and normally implemented in an hard-
ware accelerator. In a software implementation shifts and logical operations are
the kernel operations. One’s complement addition is often implemented in soft-
ware, for example in IP, TCP, and UDP. The kernel operation is addition.

Task Kernel operations

Multiplexing compare, conditional branch

Checksums shift, logical operations, addition

Addressing compare, conditional branch

Flow control compare, conditional branch, assignments

Congestion control addition, subtraction, shift, compare, conditional branch

Table 5.1: Kernel operations for common protocol processing tasks

Partition of Protocol Processing 43

5.4.3 Addressing

Addresses are a common property to computer network protocols. They are
used for two purposes, the first is to route or switch the packet to the right desti-
nation terminal. This part is not discussed further here since I am concentrating
at the processing in a terminal. The second purpose of the address is identify the
destination. Each protocol layer, at least at layer 2, 3, and 4, has its own
addressing scheme. In a terminal addresses on all layers have to be checked.
Layer 2 and layer 3 addresses typically specify the terminal (e.g. Ethernet desti-
nation address and IP destination address) and layer 4 addresses typically spec-
ify the application (e.g. UDP and TCP ports). The addresses have to be
compared to certain acceptable values to make sure that the packet is destined
for an application running in the terminal that has received the packet. The
address matching has to take place for every packet that is received from the
network.

The kernel operations are compare and conditional branches.

5.4.4 Flow Control

Protocols can be either conectionless and connection based. The connection
based protocols, for example TCP, have to handle flow control. That means that
a connection has to be built up by the use of special packets before any actual
payload data can be transported. This implies that the terminals that communi-
cate must keep track of the connection state of each connection and act based
on that state. The transitions between states occur when packets are received,
packets are sent, timers time out or on commands from the application. This
means that the state machine handling is done only on some of the received
packets and involves a lot of interaction with other parts of the system. Flow
control also involves keeping track of sent, acknowledged and received data on
an open connection.

The kernel operations are compare, conditional branch, and assignments for
finite state machine handling. Timer implementation, interrupt handling and
procedure calls are also important to accelerate in a software implementation.

5.4.5 Congestion Control

In connection based protocols, a technique called sliding window is often used
for controlling how much data has been sent and how much has been acknowl-
edged. If packets are sent but do not get acknowledged, the congestion control
should decrease the size of the sliding window to reduce the congestion on the
network. The algorithms used for congestion control involve a variety of

44 Partition of Protocol Processing

instructions and is triggered by the timers timing out rather than by received
packets.

Kernel operations are addition, subtraction, shift, compare, and conditional
branches.

5.5 Dual Processor Architecture
The partition into intra-packet and inter-packet tasks gets really beneficial

when looking at a dual processor architecture, where one processor is dedicated
for each kind of tasks. They are referred to as intra-packet processor (intra-PP)
and inter-packet processor (inter-PP).

In the next three chapters the intra-PP is thoroughly described and analyzed.
The system architecture is based on the two processors communicating through
a shared memory and with some special purpose signals, see figure 5.1.

In embedded systems, the inter-PP and host can be the same processor, then
the inter-PP to host interface is a software application programming interface
(API).

In general the inter-PP is assumed to be a traditional microcontroller. It has an
irregular workload and therefore no specializations are very beneficial. An
example of the dual processor architecture is presented in chapter 9.

5.6 Partition of Common Protocols
In this section a closer look is taken on the reception part of common com-

puter network protocols and how they map to the intra-PP and the inter-PP. The
protocols that are examined are Ethernet MAC, IP, IPv6, UDP and TCP. Table
5.2 summarizes the partitions.

Figure 5.1: The dual processor architecture

Intra-packet
processor

Inter-packet
processor

Shared
memory

Host
processor

Partition of Protocol Processing 45

5.6.1 Ethernet MAC

The Ethernet MAC protocol is intra-packet task heavy. The CRC checksum
calculation, the destination address check and protocol demultiplexing are all
intra-packet tasks. New features such as flow control based on pause frames are
mapped onto the inter-PP. Figure 5.2 explains the control flow of Ethernet
MAC.

5.6.2 IP

The Internet protocol (IP) is also an intra-packet task heavy protocol. Header
checksum calculation, destination and source address matching and protocol

Protocol Intra-packet tasks Inter-packet tasks

Ethernet MAC CRC, address check, demultiplexing Flow control with pause
frames

IP header checksum, address check,
demultiplexing

fragmentation and reassembly

IPv6 header checksum, address check,
demultiplexing

fragmentation extension
header

UDP checksum, port check, demultiplexing

TCP checksum, port check, demultiplexing flow control, congestion con-
trol

Table 5.2: Task partition for common protocols

Figure 5.2: Ethernet MAC partition

Check CRC

Check destination
address

OK

wrong
discard

wrong
discard

OK

Demultiplex

IP ARP

unknown
discard

. . .

Intra-packet tasks

Handle pause frame

Inter-packet tasks

Pause frame

46 Partition of Protocol Processing

demultiplexing are mapped onto the intra-PP. The only mechanism in IP that is
mapped onto the inter-PP is fragmentation and reassembly, see figure 5.3.

5.6.3 IPv6

The new version of IP, IPv6 works similarly to IP and all tasks except from the
fragmentation extension header processing is handled by the intra-PP, see figure
5.4.

5.6.4 UDP

User datagram protocol (UDP) is a conectionless transport layer protocol. All
tasks are mapped onto the intra-PP since in UDP there is never any relation

Figure 5.3: IP partition

Check header checksum

Check destination
address

OK

wrong
discard

wrong
discard

OK

Demultiplex

TCP UDP

unknown
discard

. . .

Intra-packet tasks

Handle reassembly

Inter-packet tasks

Fragment

Figure 5.4: IPv6 partition

Check header checksum

Check destination
address

OK

wrong
discard

wrong
discard

OK

Demultiplex

TCP UDP

unknown
discard

. . .

Intra-packet tasks

Handle reassembly

Inter-packet tasks

Fragment extension header

Partition of Protocol Processing 47

between two packets. The tasks are checksum calculation, destination and
source port matching and payload demultiplexing, see figure 5.5.

5.6.5 TCP

Transport control protocol (TCP) is a connection-based transport layer proto-
col. For each connection that is built up the terminal keeps information on the
state, the window size, the sent, the received and the acknowledged data. The
checksum calculation, the destination and source port matching and the payload
demultiplexing are handled by the intra-PP. All others tasks are mapped onto
the inter-PP, see figure 5.6.

Figure 5.5: UDP partition

Check checksum

OK

wrong
discard

Demultiplex based
on port numbers

unknown
discard

. . .

Intra-packet tasks Inter-packet tasks

Figure 5.6: TCP partition

Check checksum

OK

wrong
discard

Demultiplex based
on port numbers

unknown
discard

. . .

Intra-packet tasks Inter-packet tasks

Update connection
state, handle flags

Update data flow state, trigger
ack., reorder data, confirm data
delivery, manage window size

48 Partition of Protocol Processing

References
[5.1] D.D. Clark, V. Jacobson, J. Romkey, H. Salwen, ”An analysis of TCP

processing overhead”, IEEE Communications Magazine , vol. 27 No. 6 ,
pp. 23 -29, June 1989

49

6
6
6

6
Linkoping Architecture

The intra-PP is based on a novel architecture, called the Linkoping architec-
ture. It has several differences from traditional von Neuman and Harvard archi-
tectures. In the Linkoping architecture there does not exist any general purpose
register file or any data memory. The architecture is specialized for operating at
streaming data. It is a programmable data-flow processor.

6.1 Overview
The Linkoping architecture is aimed at applications operating on a data

stream, for example the data from the network. The input data is implicitly
always loaded into the dynamic input buffer, so no load operations are neces-
sary. This puts hard real-time requirements on the execution, since a new word
of data will be available every clock cycle. This is different from traditional
input memory buffers, which stores all the data from the network in a memory
and then the processor can access the data randomly and without hard real-time
constraints from that memory. However in such a system, the processor needs
several instructions per data word, for example for explicit loads and stores, so
the processor must run at a frequency much higher than the frequency of the
data words.

In the Linkoping architecture, the program is synchronized with the input data
clock cycle by clock cycle. Therefore all instructions need to have fully predict-

50 Linkoping Architecture

able execution times and since conditional branches are common in the
intended applications, no pipeline is allowed. A pipeline would cause penalty
for some conditional branches in some cases and thereby unpredictable execu-
tion time for the conditional branch instructions, as discussed in chapter 2.

A processor with no pipeline that still should be able to use a high frequency
clock must minimize the time spent for instruction fetch and instruction decode.
In the Linkoping architecture this is done by storing the program in three
lookup tables inside the processor core. The lookup tables have short access
times and the decoding is kept minimal for the parts of the instruction word that
is used in the critical path. The program can fit into the three small lookup
tables because the instruction set is optimized for a small set of applications and
therefore the code size is very small.

The Linkoping architecture does not allow for storing any general intermedi-
ate results since no general purpose register file is used. Computations that need
intermediate results are off-loaded to accelerators. The accelerators communi-
cate with the core via synchronous control and status signals. An overview of
the core and accelerators is shown in figure 6.1. One accelerator is specialized
for the task of creating the output data stream. The output data stream can have
different format than the input data stream, for example if it should be stored in
memory it will contain not only the data but also address information. It can

Figure 6.1: Linkoping architecture overview

Accelerator

Accelerator

Accelerator

Core

...

Input data stream

Three lookup tables
for program storage

Output data stream
for storage or as
input to another data
flow processor.

Linkoping Architecture 51

also have different width of the data and some modifications on the data itself
can of course have occurred in the processor. In a network application the most
common modification is that some headers are taken away because they have
already been processed.

Because the core and the accelerator operate in parallel on the same data
word, the Linkoping architecture can be classified as a multiple instruction sin-
gle data (MISD) architecture. In the core, however, a single instruction is used
by several parallel execution paths, so the core itself can be considered to be a
single instruction multiple data (SIMD) architecture. Altogether this means that
the Linkoping architecture constitutes a multiple instruction multiple data
(MIMD) machine. There is one master instruction flow in the core, that can start
the execution of the accelerators dynamically dependent on the input data. The
accelerators thereafter execute independently of the core instruction flow until a
merge occurs when the accelerators have completed execution. This type of
machine is sometimes referred to as a loosely coupled co-processor (LCC)
machine.

An accelerator has four general communication lines, two inputs start and stop
and two outputs, ready and OK, see figure 6.2. Not all accelerators must have
all communication lines implemented, for example some accelerators do not
need an external signal to control when to stop the execution. The communica-
tion lines are connected to the core for most accelerators, but cascading acceler-
ators is also possible, so that the output of one accelerator is the input of
another.

6.2 Design Methodology
The Linkoping architecture was designed with protocol processing applica-

tions in mind. The main factor for designing a new processor architecture was

Figure 6.2: Accelerator overview

Acceleratorinput data stream output data stream

start stop

OKready

52 Linkoping Architecture

the desire to process the incoming packets before storing them in a memory.
This is beneficial for several reasons. If it is discovered when processing the
packet header, that the packet is not interesting for the terminal, then the packet
can be discarded before it is fully stored in memory and the further processing
can be cancelled. The processor can go into sleep mode and wake up when the
next packet arrives on the input port. This saves energy as well as memory
bandwidth. Since the processing is already taken care of when the packet is
stored in the memory it can be directly delivered to the application just by pass-
ing a pointer.

The starting point for the intra-PP architecture was a small set of computer
network protocols. An architecture was designed that could execute them and
later on minor changes were made to accommodate for other protocols. No
complete investigation of all interesting protocols has been performed.

The intra-PP is an instance of the Linkoping architecture, but it was designed
before the more general Linkoping architecture specification was developed.
The Linkoping architecture was derived by extracting the key properties of the
intra-PP. The most important design goal was to be able to execute if-then-else
and switch-case-case... statements in one clock cycle, no matter which branch
that was taken. These are used for example in protocol demultiplexing and
address resolution protocol (ARP) handling, see figure 6.3.

6.3 Intra-PP Architecture
The intra-PP is an instance of the Linkoping architecture, that is used for Eth-

ernet, IP, ARP and UDP processing. A word length of 32 bits is used in the
intra-PP.

Figure 6.3: C code examples of typical protocol processing tasks

switch (ethType) {
case 0x0800:

processIP();
break;

case 0x0806:
processARP();
break;

case 0x8035:
processRARP();
break;

default:
handleException();
break;

}

if (ARP_targetAddr == MyAddr) {
if (merge_flag == false) {

add_to_table();
}
if (op_code == request) {

generate_reply();
}

}
else {

discardPacket();
}

Linkoping Architecture 53

There are eight important blocks in the intra-PP core, as can be seen in figure
6.4. These are the blocks used for executing the switch-case-case... statements
and the if-then-else statements. There are also other blocks in the core, used for
communication with the accelerators and external inputs and outputs.

The intra-PP has five accelerators, for CRC calculation, IP header checksum
calculation, UDP checksum calculation, packet length counting and memory
management.

6.3.1 Dynamic Input Buffer

The dynamic input buffer with field extraction unit captures the new data on
the input port every clock cycle. There are two control signals from the instruc-
tion decoder (ID). One for controlling how many words to keep in the buffer
and one for controlling the extraction. In the intra-PP they are only one bit each,
meaning that the buffer can keep 1 or 2 words of data and that the extraction can
start from the latest bit or from bit number 16. The structure of the dynamic
input buffer can be seen in figure 6.5.

6.3.2 Compare Units

The dynamic buffer and field extraction unit provides input data to the com-
pare units. The reference input comes from the parameter code book (PCB). In

Figure 6.4: Intra-PP architecture

Program Counter (PC)

Instruction Table (IT)

Instruction Decoder (ID)

Parameter Code Book (PCB)

Compare Units

Control Code Book
(CCB)

Dynamic Buffer with
Field Extraction Unit

Next Program Counter
Generation (NPCG)

Input Port

54 Linkoping Architecture

the intra-PP there are 4 parallel compare units. This means that switch-case-
case... statements with up to 4 cases and one additional default case are possi-
ble. The control signals from the ID are threefold. First there is the mask control
signal, which controls the width of the comparisons. There are 4 different
widths possible, 32 bit, 16 bit, 8 bit and 4 bit. The second control signal controls
whether to use the result of the comparison immediately or only to store it for
future use. The third control signal decides if the new result should be com-
bined with the previously stored result or if it should start a new comparison.
This feature is important for very wide comparison, for example for Ethernet
MAC addresses which are 48 bits wide the intra-PP compares first 32 bits and
then 16 additional bit the next clock cycle. Comparisons of any length are pos-
sible, so IPv6 addresses of 128 bits can also be handled by the intra-PP. Figure
6.6 shows the compare units.

6.3.3 Parameter Code Book

The parameter code book (PCB) is a lookup table that contains the parameters
for the program. These parameters are used for comparisons with data from
fields in the packets. The PCB has 16 entries, which contain 4 parameters of 32
bits each. Totally there are 2 kbits of memory required for the PCB. The input is
a pointer to one of the lines and the output is the 4 parameters on that line in
parallel. By using the PCB the instruction word can be short and the values for
the comparisons can be flexible and still carried by the instructions. The PCB is
one of the special features of the Linkoping architecture.

6.3.4 Instruction Decoder

The instruction decoder (ID) decodes the instruction word and creates all the
control signals for the other blocks in the intra-PP. The pointer to the PCB is in

>>16

concatenate

Figure 6.5: The dynamic buffer and field extraction unit

Linkoping Architecture 55

the critical path of the intra-PP and therefore stored directly in the instruction
word, so the ID does not influence the maximum clock frequency of the intra-
PP.

6.3.5 Instruction Table

The instruction table (IT) stores the main program. Each instruction is 24 bits
wide and the IT can hold up to 256 instructions. So the IT requires 6 kbits of
memory. The input to the IT is the address, which is the value of the program
counter. The output is the instruction stored at that address.

6.3.6 Control Code Book

The control code book (CCB) stores relative jump addresses. The CCB con-
sists of 8 lines, which correspond to the 8 first lines in the PCB. Each line in the
CCB contains 4 relative jump addresses of each 8 bits. So the CCB requires 256
bit of memory. The inputs to the CCB are the 3 least significant bits of the PCB
pointer and the four outputs from the compare units. If any of the outputs from
the compare units is 1, the value stored at the corresponding position of the line
to which the pointer points will be the output. If all outputs from the compare
units are 0, the output of the CCB will be 0.

Figure 6.6: The compare units

= = = =

56 Linkoping Architecture

The CCB allows for the execution of multiple conditional branches in one
instruction. This is one of the unique features in the Linkoping architecture. In
combination, the PCB and the CCB accommodate the instruction extensions.

6.3.7 Program Counter

The program counter (PC) stores the current address to the IT. The value is
updated every clock cycle.

6.3.8 Next Program Counter Generation

The next program counter generation (NPCG) unit calculates the next value
for the PC. The inputs are the current PC, the CCB output and control signals
from the ID based on which type of instruction is being executed.

6.3.9 Inputs and Outputs

The intra-PP has 19 general-purpose inputs and 10 general-purpose outputs.
The outputs are set by special instructions and only valid for one clock cycle,
after that they return to “0”. Three of the outputs have special hold circuits, so
that they keep their value until it is explicitly reset. The inputs are used for two
purposes, jumps and waits. The program execution can be conditionally halted
until a certain input pattern occurs. Likewise a jump can be conditionally exe-
cuted dependent on the inputs. For the conditional jumps only 9 of the 19 inputs
can be used.

6.4 Instruction Set
The intra-PP instance of the Linkoping architecture only has 6 instructions.

These instructions are optimized for processing of Ethernet, IP, UDP and TCP.
For other or more general protocol stacks small modifications in the instruction
set are to be expected. The instruction set has not been optimized for minimal
code size. We have focused on demonstrating the functionality and architecture
of the processor architecture instead of compressed code size. Because of lim-
ited design time all optimizations could not be carried out.

6.4.1 Instruction Format

The instructions are 24 bits wide, with possible extensions. The base instruc-
tions are stored in the IT and the extensions are stored in the PCB and in the
CCB. There are four bits to specify the instruction code, giving a total of 16
possible instruction codes. Only 6 of these are used so the instruction set is eas-
ily extendable. The basic format of the instructions is shown in figure 6.7. The
bit next to the instruction code is common for all instructions. It is the

Linkoping Architecture 57

Buffer control, that specifies the function of the dynamic input buffer. A “1” in
position 19 implies that two words of data will be stored in the dynamic input
buffer. A “0” on the other hand implies that only one word of data is stored.

6.4.2 Compare Instruction (CMP)

The compare instruction (CMP) is the instruction that uses the most advanced
feature of the intra-PP. The CMP makes it possible to execute a complete
switch-case-case... statement in one clock cycle. Since there are 4 comparators
in the compare unit, the statement can have up to 4 cases and one additional
default case. The CMP instruction makes use of the values in the PCB and in
the CCB.

The format of CMP is shown in figure 6.8. Position 18,New, specifies if the
intermediate results in the compare should be used or not. A “1” in position 18
implies that the intermediate result is discarded. A “0” implies that the interme-
diate result is used as a precondition in addition to the current comparison.

Position 17,Jump, specifies if a jump should be taken. A “1” in position 17
implies that a jump will be taken based on the results of the comparisons and
the relative jump addresses in the CCB. A “0” implies that the results of the
comparisons will only be stored in the compare unit.

Position 16 through 13,Pointer, specifies the pointer to the PCB. The posi-
tions 15 through 13 are used as the pointer to the CCB.

Positions 12 and 11,Width, specifies the width of the comparisons. The possi-
ble values are shown in table 6.1. Position 10,Offset, specifies the offset for the
extraction from the dynamic input buffer. A “1” in position 10 implies that the
extraction starts from the 16th latest arrived bit. A “0” implies that the extrac-
tion starts from the latest arrived bit.

Figure 6.7: Basic instruction format

23 20 19 0
Code Instruction specific information

18
Buffer control

Figure 6.8: Compare instruction format

23 20 19 0

0001

18

Buffer control New

17

Jump

16

Pointer

13 12

Width

11 10

Offset Not used

9

58 Linkoping Architecture

6.4.3 Jump Instruction (JMP)

There are three types of jumps possible in the intra-PP, all covered by the
jump instruction, JMP. The general format of JMP can be seen in figure 6.9.
Positions 18 through 17,Type, specify the type of the jump. The three available
types are shown in table 6.2. The positions 7 through 0,Jump offset, specify the
relative jump offset from the current instruction. The jump offset is coded in
offset code with an offset of 128. So the next instruction after a jump is calcu-
lated as<current instruction> + <jump offset> - 128. That implies that jumps
up to 127 instruction forward and up to 128 instructions backward in the pro-
gram are possible.

For the unconditional jump positions 16 through 8 are not used. For the jump
type conditional dependent on the inputs, positions 16 through 8 specify the
required input bit pattern. For every “1” in the instruction word a corresponding
“1” on the inputs is required for taking the jump. Inputs 8 through 0 are used by
the jump instruction.

Width code (Positions 12 through 11) Width of comparison

00 4

01 8

10 16

11 32

Table 6.1: Possible widths in the comparisons and their corresponding codes

Figure 6.9: Jump instruction format

23 20 19 8

0100 Type specific information

18

Buffer control

17 16

Type

7 0

Jump offset

Type code (positions 18 through 17) Jump type

00 Unconditional

01 Conditional, dependent on the inputs

10 Conditional, dependent on the comparison results

Table 6.2: Possible types of the JMP

Linkoping Architecture 59

For the last type,jump conditional dependent on the results of the comparison,
figure 6.10 shows the format of the type specific bit positions. Positions 16
through 13,Pointer, positions 12 through 11,Width, and position 10,Offset,
have the same functionality as for the CMP instruction. Although the CCB is
not used in case of a JMP instruction. The jump is taken if any of the parameters
in the PCB match the extracted field from the dynamic input buffer.

Position 9,New, has the same functionality as position 17,New, in the CMP
instruction. The three major differences between a CMP and a JMP dependent
on the comparison results is that the JMP cannot be used only to set the inter-
mediate results in the compare units, that the JMP jumps if any of the parame-
ters match the extracted field and that the relative jump address is contained in
the instruction word instead of being taken from the CCB.

6.4.4 Wait Instruction (WAT)

The wait instruction (WAT) is used for synchronizing the program flow with
external events, for example the arrival of a packet or the completion of an
accelerator task. The format of WAT is shown in figure 6.11.

The wait instruction works in the way that it will defer the updating of the pro-
gram counter until the inputs match positions 18 through 0,Input bitmap, in the
instruction word. For every “1” in theInput bitmapof the instruction word the
corresponding inputs must also be “1” until the program counter is advanced to
the next instruction.

6.4.5 Set Instruction (SET)

The set instruction (SET) is used to set the outputs of the intra-PP core. The
outputs are used for triggering accelerators or communicating events to other

Figure 6.10: Jump conditional dependent on the results of the comparisons

11 8

Pointer

16

Width Offset

13

New

12 10

Not used

9

Figure 6.11: Wait instruction format

23 20 19

0101

18

Buffer control Input bitmap

0

60 Linkoping Architecture

units in the system. The format of SET is shown in figure 6.12. Positions 9
through 0,Output bitmap, specify the outputs that should be set to “1”. As men-
tioned earlier, the set instruction only holds the outputs for one clock cycle, but
on outputs 7, 8, and 9 there are hold circuits which hold their value until they
are explicitly reset by external events.

6.4.6 Compare and Set Instruction (CPS)

For efficient program execution, it is necessary to execute compare and set at
the same time. This is done by the compare and set instruction (CPS). The for-
mat of CPS is shown in figure 6.13.

6.4.7 No Operation Instruction (NOP)

The program flow always has to stay synchronized with the incoming data. If
some fields in the packet headers are not included in the processing, the pro-
gram should ignore that data. This is managed by the no operation instruction
(NOP). The format of the NOP is shown in figure 6.14.

Figure 6.12: Set instruction format

23 20 19

0010

18

Buffer control Output bitmap

010 9

Not used

Figure 6.13: Compare and set instruction format

23 20 19

0011

18

Buffer control As for SET

010 9

As for CMP

Figure 6.14: No operation instruction format

23 20 19

0000

18

Buffer control

0

Not used

Linkoping Architecture 61

6.5 Example Program
The best way of describing the intra-PP operation is through an example pro-

gram. Here I have chosen a program, which decodes Ethernet II frames contain-
ing IP/UDP packets or ARP packets. All other packets are discarded. Only UDP
packets to port 2025 (0x07e9) are accepted. The IP address of the node where
the intra-PP is operating in this example, is 130.236.55.5 and the hardware
address is 0c:5a:80:ac:4a:b7.

6.5.1 Program Code

The IT contents are shown in figure 6.15, where it is also shown in assembly
representation. The PCB contents are shown in figure 6.16. Each line in the
PCB consists of 4 parameters of 32 bits each. The line number is specified to
the right of the first parameter. The other three parameters follow on the three
rows below it in the figure. It can be seen that line 0 contains the Ethernet codes
for IP and ARP, line 1 contains the protocol value for UDP, line 8 contains the
first part of the hardware address and line 9 the second. Line 10 contains the
acceptable IP destination addresses and line 11 the acceptable UDP destination
ports. The other lines are not used by the example program.

The corresponding CCB content is shown in figure 6.17. Line 0 contains the
corresponding relative jump addresses for the Ethernet codes and line 1 con-
tains the corresponding relative jump address to the protocol value. The proto-
col check could have been implemented with a JMP instead of a CMP
(instruction 9 in the ILT) but this would have made it harder to extend the pro-
gram to also handle other layer 4 protocols, TCP for example.

6.5.2 Program Execution

From the beginning, instruction 0 waits for input 0, which indicates packet
start. Instruction 1 then compares the first 32 bits of the Ethernet destination
address with the acceptable parameters from PCB line 8. The result of the com-
parison is only stored locally in the comparator array since the jump bit is set to
0. Instruction 2 continues the comparison, since the new bit is set to 0. Here
only 16 bits are used and compared to PCB line 1, since the width code is 10. If
any match occurs, i.e. the Ethernet frame is destined for the host, a jump is done
to instruction 5. Instruction 5 is NOP to align the data flow processing (in this
example we do not care about the Ethernet source address). Instruction 6 com-
pares the Ethernet type field with PCB line 0 and uses the jump addresses from
CCB line 0. So if the type field is 0x0800 a jump is done to instruction 8, other-
wise, if it is 0x0806 a jump is done to instruction 23. If there is no match the
execution continues with instruction 7. At the same time outputs 4, 1, and 0 are

62 Linkoping Architecture

set. These are used to trigger the start of accelerators for payload storage, IP
header checksum calculation, and UDP checksum calculation. The Ethernet
CRC accelerator was already triggered by input 0.

Continuing the execution at instruction 8 (assuming that the arriving packet is
IP) outputs 2 and 6 are set. Output 2 triggers the length counter accelerator for
IP and output 6 stops the payload storage. For an IP/UDP packet only the UDP
payload should be stored. For an ARP packet on the other hand, the whole Eth-
ernet payload is stored, since the data is needed by the microcontroller in order
to compile the ARP reply. Instruction 9 checks the protocol field in the IP
header and if it is 0x11 (UDP) a jump is done to instruction 11. Instruction 11 is

0 500001 WAT 0, input(0)
1 151800 CMP 0, new=1, jump=0, pointer=8, width=32, offset=0
2 453483 JMP 0, type=10, pointer=9, width=16, offset=16,

new=0, jump=0x83(5)
3 200040 SET 0, output(6)
4 40007c JMP 0, type=00, jump=0x7c(0)
5 000000 NOP 0
6 361413 CPS 0, new=1, jump=1, pointer=0, width=16, offset=16,

output(4, 1, 0)
7 40007c JMP 0, type=00, jump=0x7c(3)
8 200044 SET 0, output(2,6)
9 162800 CMP 0, new=1, jump=1, pointer=1, width=8, offset=0
10 400079 JMP 0, type=00, jump=0x79(3)
11 000000 NOP 0
12 080000 NOP 1
13 455e82 JMP 0, type=10, pointer=10, width=32, offset=16,

new=1, jump=0x82(15)
14 400075 JMP 0, type=00, jump=0x75(3)
15 457682 JMP 0, type=10, pointer=11, width=16, offset=16,

new=0, jump=0x82(17)
16 400073 JMP 0, type=00, jump=0x73(3)
17 200010 SET 0, output(4)
18 50002a WAT 0, input(5, 3, 1)
19 425482 JMP 0, type=01, input(6, 4, 2), jump=0x82(21)
20 40006f JMP 0, type=00, jump=0x6f(3)
21 200120 SET 0, output(8, 5)
22 40006a JMP 0, type=00, jump=0x6a(0)
23 200008 SET 0, output(3)
24 500002 WAT 0, input(1)
25 420482 JMP 0, type=01, input(2), jump=0x82(27)
26 400069 JMP 0, type=00, jump=0x69(3)
27 2000a0 SET 0, output(7, 5)
28 400064 JMP 0, type=00, jump=0x64(0)

Figure 6.15: Example program for Ethernet II, ARP and IP/UDP decoding

Linkoping Architecture 63

NOP and so is 12 (data flow aligning), but instruction 12 is the first (and only in
this example) to use the second word in the input buffer. This means that the last
64 bits from the input will be available for instruction 13. This is also needed,
since instruction 13 is JMP with a compare of 32 bits with an offset of 16 bits,
meaning that bits 47 down to 16 are extracted from the input buffer. In instruc-
tion 13 that is the IP destination address, which is compared with PCB line 10.
For a correct packet, then the UDP port is checked by instruction 15 and
instruction 17 triggers the payload storage to start again. After that, the header
has been processed and the PP waits for inputs 5, 3, and 1 in instruction 18.
These three inputs indicate that the IP header checksum accelerator, the UDP
checksum accelerator and the CRC accelerator have completed their computa-

00000800 0 ffffffff 8
00000806 0c5a80ac
00000000 00000000
00000000 00000000
00000011 1 0000ffff 9
00000000 00004ab7
00000000 00000000
00000000 00000000
00000000 2 82ec3705 10
00000000 82ecffff
00000000 ffffffff
00000000 00000000
00000000 3 000007e9 11
00000000 00000000
00000000 00000000
00000000 00000000
00000000 4 00000000 12
00000000 00000000
00000000 00000000
00000000 00000000
00000000 5 00000000 13
00000000 00000000
00000000 00000000
00000000 00000000
00000000 6 00000000 14
00000000 00000000
00000000 00000000
00000000 00000000
00000000 7 00000000 15
00000000 00000000
00000000 00000000
00000000 00000000

Figure 6.16: PCB contents for example program

64 Linkoping Architecture

tions. In instruction 19 a conditional jump is done on inputs 6, 4, and 2. These
are all 1 if the just mentioned accelerators have received correct checksums.
Then finally, the reception of a valid IP packet is acknowledged through outputs
8 and 5 in instruction 21 and instruction 22 jumps back to instruction 0 in order
to wait for the next packet.

If the Ethernet code was ARP, instructions 23 to 28 would have executed in a
similar manner. Whenever the received packet does not match the requirements
the packet is discarded and the PP waits for the next packet. This is done by a
jump to instruction 3, which set output 6, discard payload, and then instruction
4 jumps back to instruction 0.

6.5.3 Comparison to RISC Implementation

The above described execution on the intra-PP required 18 instructions to be
executed and decoded. Similar functionality on a traditional RISC machine,
where it is assumed that the packet header is stored in memory already, for
example by a DMA engine, requires many more instructions. The intra-PP ben-
efits from having the program code split up into three parts. The program for the
intra-PP covers more than the program code of a RISC machine. The content of
the PCB and partly the content of the CCB are stored in complex data structures
in a RISC implementation. Therefore the access to those values is much more
efficient in the intra-PP.

For a comparison to the traditional implementation it is assumed that the Eth-
ernet address has already been checked. This is normally performed by a sepa-
rate ASIC, that takes care of the Ethernet processing. The implementation style
82 0 00 4
91 00
00 00
00 00
82 1 00 5
00 00
00 00
00 00
00 2 00 6
00 00
00 00
00 00
00 3 00 7
00 00
00 00
00 00

Figure 6.17: CCB contents for example program

Linkoping Architecture 65

in the comparison is taken from [6.1]. The RISC implementation starts with
demultiplexing the packet dependent on the type field in the Ethernet header.
Then a software interrupt is scheduled, again assuming an IP packet, the inter-
rupt is scheduled for a IP interrupt handler.

The interrupt handler takes care of a lot of things, including gathering statis-
tics. Here only the processing that is also performed by the intra-PP is
accounted for. Out of this the first thing that happens is a header checksum com-
putation. Then, the IP destination address is checked. This is done by sequen-
tially checking the acceptable addresses, which are stored in a linked list.

Then the packet is demultiplexed and the appropriate transport layer function
is called. This is done by finding a pointer to the function in a lookup table. The
lookup is based on a conversion of the payload identifier in the IP header.

Assuming that the packet is of UDP type, the UDP input function is called. It
starts with taking away the IP options from the packet and then calculates the
UDP checksum. Finally, the UDP port is looked up in a sequential list contain-
ing all applications that accept data on any ports and if a matching application is
found, the payload is delivered to that application.

The first observation is that the execution time is dependent on how the
sequential lists are organized and thereby also unpredictable. Even the mini-
mum execution time is hard to predict, since it is dependent on the length of the
IP header as well as the length of the UDP payload, because of the checksum
calculations. In the intra-PP, the checksums are calculated in the accelerators, so
the instructions for the checksum calculations are not included in the compari-
son from here on. The interrupt overhead is also not included, because in a sep-
arate RISC processor for protocol processing, a jump to the correct function can
be used instead of software interrupts. It must, however, be noticed that if the
RISC processor is also used for applications, or if accelerators for Ethernet and
for the IP and UDP checksums are not available then the instruction count for
the RISC processor will increase dramatically.

A detailed look at the remaining tasks yield the instruction counts shown in
table 6.3. The instructions that are used are generic RISC instructions and the
data path of the processor is assumed to be 32 bits wide. The packet header is
assumed to already be stored in memory. The instruction counts are best case,
that is, a match is always assumed on the first comparison in a linked list. The
average case will be worse and the worst case will be considerably much worse.
Totally 54 instructions are used in the best case. This must be compared to 14
instructions in the intra-PP, on the same functionality, the count for the Ethernet
destination address match has been deducted from the previously mentioned 18
instructions. So even in the best case, the RISC processor must run more than

66 Linkoping Architecture

three times as fast as the intra-PP to keep up with the line rate. The penalty for
one missed iteration in the UDP port search is 17 instructions. The UDP demul-
tiplexing is likely to require several iterations for most of the packets, so in
practice the RISC processor has to run a lot more than three times as fast as the
intra-PP.

References
[6.1] Gary R. Wright and W. Richard Stevens, “TCP/IP Illustrated, Volume 2:

The Implementation”, Addison Wesley Longman, Inc., ISBN 0-201-
63354-X, 1995

Task
Executed instructions

(best case)
Instructions
(code size)

Ethernet type demultiplexing 10 14

IP address check 18 25

IP demultiplexing 11 11

UDP demultiplexing 15 22

Total 54 72

Table 6.3: Instruction count for reception tasks

67

7
7
7

7
Protocol Processor

Implementation
The intra-PP core was synthesized to a 0.18 micron library. The estimated per-

formance after synthesis and placement of the standard cells is 281 MHz. A
complete chip layout for the whole intra-PP including all accelerators has also
been made. That design is based on a 0.35 micron library.

7.1 Specification
The intra-PP described in the previous chapter has been implemented in a

standard cell design flow. The first three sections describe the implementation
of the core and then the last section presents the complete chip layout of the
core and the accelerators.

7.1.1 Implementation Purpose

The purpose of the implementation was to derive the maximum clock
frequency for the intra-PP as well as the silicon area consumption. The maxi-
mum clock frequency in combination with the word length gives the absolute
performance of the intra-PP. Benchmarking and instruction profiling are not
applicable to the intra-PP since the architecture operates in a real-time environ-

68 Protocol Processor Implementation

ment and the only interesting performance targets are the standard network
transmission speeds. The intra-PP is aimed at 10 Gigabit Ethernet, so support-
ing 10 Gb/s is the design goal. If the performance is lower than that the intra-PP
can only support Gigabit Ethernet, which runs 10 times slower. Likewise if the
maximum performance is higher than 10 Gb/s there is no benefit from that,
except that the processor does not have to run at the maximum of its perfor-
mance and therefore the supply voltage could be decreased in order to save
energy consumption.

7.1.2 Intra-PP Parameters

The intra-PP in the implementation has an IT of 64 entries, a PCB of 16
entries and a CCB of 8 entries. The word length is 32 bits and the parallelism of
the processor is 3, meaning that there are 3 comparators in the compare unit.
The dynamic input buffer consists of maximally 2 words.

All of these parameters can be modified and optimized for a certain applica-
tion. For the example program that was described in the previous chapter, a
much smaller architecture would have been sufficient.

There are 5 accelerators in the intra-PP. Those are not included in the first
standard cell implementation. The accelerators have been implemented individ-
ually. Those implementations are described in the next chapter. The complete
chip implementation, which is described in section 7.4, includes the accelera-
tors.

7.1.3 Configuration Interface

The intra-PP has a configuration interface, which can be used by the inter-PP
or the host processor to configure the IT, the PCB and the CCB. The configura-
tion interface works in the same way as the interface to a synchronous SRAM.
That is, each location in the IT, the PCB and the CCB is associated with an
address and the content of a location can be changed by writing data to the cor-
responding address. The configuration interface data bus is 16 bits wide, so the
instructions in the IT have two address associated with them, one for the high 8
bits and one for the low 16 bits. Also the parameters in the PCB have two
addresses for each parameter in a similar way.

7.2 Design Flow
The design of the intra-PP was based on a C++ high level behavioral descrip-

tion. This description does not contain any information about the intra-PP archi-
tecture. Instead it is a generic algorithm for processing packets.

Protocol Processor Implementation 69

7.2.1 Structural Model

The behavioral model was used to create reference behaviors of packets.
Packets were generated with a small piece of software and sent to the behav-
ioral model, which processed the packets and created reference outputs.

A structural model was developed in C++. The structural model is cycle true
and bit true. The structural model operates on the packets in the same fashion as
the intra-PP itself. It uses the same program code for the IT, the PCB and the
CCB and stores the same information. The purpose of making a C++ structural
model was that it was easy to make architectural changes and fast to check the
functional correctness. The outputs of the structural model were compared to
those of the behavioral model.

The next step on the way to implementation was to transfer the structural
model from the C++ description to a VHDL description. This was done manu-
ally and was a straight forward process, since almost all architectural details
were contained in the C++ structural model.

7.2.2 Verification of the VHDL Code

The functional verification of the VHDL code, was divided into three kinds of
test cases, single instruction based, formal functions and error injections. In the
verification the accelerators were included for full functionality.

Single Instruction Based Verification

The single instruction based verification for the intra-PP differs from that of a
traditional processor. Since there are no target registers for the instructions,
there is only the program counter (PC) and the outputs, that can prove the cor-
rectness of the implementation. The NOP, WAT, JMP, CMP, and CPS instruc-
tions all influence the program counter. The CPS and SET instructions influence
the outputs. All instructions can influence the buffer content.

The coverage of the verification is dependent on two parts, the control signals
and the data pattern. The control signals are decided by the instruction in the
ILT and the CCB content. The data pattern is decided by the content in the PCB
and the received packet. For each instruction all possible correlated control sig-
nal combinations were listed and for them where the data pattern influences the
outcome of the execution, corner cases were selected.

The VHDL model of the intra-PP was extended with a non-synthesizable part
which writes the PC and the outputs and the input buffer to a file every clock
cycle for verification purposes only. For all input combinations, corresponding
reference files were manually created in order to simplify the verification task.

70 Protocol Processor Implementation

This covers most of the RTL code, but of course the coverage is not 100%.
Control signals that do not interfere were not tested in all combinations and all
data patterns were not used, since that would have required too much time.

Formal Functions Verification

For the verification of the formal functions, the example program from
chapter 6 was used. It covers the following functions as basic and kernel func-
tions for a general purpose protocol processor:

• Synchronize the processing based on information from the physical inter-
face

• Match packet header field to several acceptable values

• Demultiplex packet processing based on upper layer protocol

• Use checksums to assure that no transmission errors have occurred

• Hand over a correct packet payload to the application processing

The reception processing was first modelled in C++ at a behavioral level.
Then a structural C++ model was developed, which executes the instruction set
in a cycle true manner. The simulation needs four inputs, the ILT content, the
PCB content, the CCB content and the received packet. The testbench for the
VHDL model use the same stimuli files as the C++ structural model and
thereby the VHDL code was verified efficiently.

Error Injection

To make sure that the intra-PP executes all program branches correctly, pack-
ets with various errors were injected into the simulation. These faulty packets
cover the following errors:

• Ethernet destination address that is not for the host

• IP destination address that is not for the host

• Ethernet code which is not IP or ARP

• IP protocol which is not UDP

• UDP port which is not 2025

• Wrong IP header checksum

• Wrong UDP checksum

• Wrong Ethernet CRC

The resulting operation was checked in the graphical user interface (GUI) of
the simulator.

Protocol Processor Implementation 71

7.2.3 Synthesis and Placement

The VHDL model described in the previous subsection was used for the
implementation. The model contains the part of the intra-PP that executes the
instructions, the configuration interface and 5 accelerators. The accelerators that
were used were an Ethernet CRC accelerator, an IP header checksum accelera-
tor, a UDP checksum accelerator, a packet length counter and a memory inter-
face unit. The accelerators were not included in the synthesis and placement.

The intra-PP was synthesized to a 6 metal layer 0.18 micron library from
UMC in order to get an accurate estimate of the performance. Cadence Envisia
PKS was used for the synthesis and placement of the standard cells.

The memory blocks, IT, PCB, and CCB, were implemented with regular flip-
flops from the standard cell library. This may not be optimal, but still gives a
reasonably good estimation of the performance and the area consumption.

7.3 Implementation Results
All results are estimations after synthesis and placement. The intra-PP uses an

area of 0.4 mm2 without the accelerators. The accelerators have been imple-
mented separately and are described in the next chapter. The ILT and the PCB,
that together contain 3072 flip-flops use more than half of the total intra-PP
area. The lookup tables can be implemented with memory macro blocks instead
of standard cell flip-flops, which would decrease the area consumption even fur-
ther.

The delay in the critical path is 3.43 ns and with a setup time of 0.12 ns, a
minimum cycle time of 3.55 ns can be used. This corresponds to a maximum
clock frequency of 281 MHz and the intra-PP can thus support a data stream at
more than 9 Gb/s, since 32 bits are processed every clock cycle. Therefore,
when implementing the PP in a 0.13 micron process, there are strong indica-
tions that the intra-PP will support a data stream of more than 10 Gb/s.

The critical path is from the PC, through the IT, the PCB, the compare units,
the CCB and an adder in the NPCG back to the PC. The delay from the parts
can be seen in table 7.1.

Techniques in order to reduce the delay of the critical path, such as flip-flop
cloning, have not been used since there is only a need to support standard net-
work speeds such as 10 Gb/s and that will be managed by using a 0.13 micron
technology.

72 Protocol Processor Implementation

7.4 Complete Chip Layout
A complete chip layout of a test chip has also been produced. The chip has not

yet been sent for manufacturing, but the layout is ready to send in its current
state. All the steps in back-end design have been performed.

7.4.1 Chip Purpose

The chip was designed so that the functionality and performance of the intra-
PP can be tested in a real environment. The chip is designed for being tested in
a lab environment, but can also be built into a system. There are, however, no
concrete plans to do that.

The chip was implemented with a 0.35 micron standard cell library from AMS
because that is a proven process and because I was already familiar with the
design flow for that process. Since a 0.35 micron process was chosen, 10 Gb/s
performance cannot be expected. The chip was optimized for as high perfor-
mance as possible to be able to extrapolate a predicted performance for the
same design in a modern manufacturing process.

7.4.2 Chip Specification

The core in this implementation was incorporating larger lookup tables than
the core implementation described in the previous sections. The ILT has 256
entries, so more complex programs can be used. The parallelism is 4, so the
PCB and the CCB have four values in each line and there are 4 comparators.
The accelerators that were implemented, were CRC accelerator, UDP check-
sum accelerator, IP header checksum accelerator, packet length counter acceler-
ator, and memory management unit accelerator.

Part Delay [ns]

PC (Clk to Q) 0.21

ILT 0.74

PCB 0.86

compare and CCB 1.16

Adder (NextPC) 0.46

Setup 0.12

Total cycle time 3.55

Table 7.1: Delays in the critical path

Protocol Processor Implementation 73

Further more the interfaces have been modified so that the number of pins on
the chip could be decreased. The configuration interface is 8 bits wide, so the
configuration requires 3 accesses for each instruction in the ILT and 4 accesses
for every parameters in the PCB.

There is a special test mode implemented on the chip. By asserting a test
input, the two bit test mode input will select what internal state to make observ-
able on the outputs. There are 4 test modes and 48 physical outputs, so totally
192 internal nodes can be observed. The nodes that were chosen to be observ-
able were the core program counter, comparison results in the core, the state
machines in the accelerators, the accelerator intermediate results, and the inputs
and outputs of the core.

7.4.3 Implementation and Results

The layout of the chip can be seen in figure 7.1. The chip was synthesized and
placed by Cadence Envisia PKS, floorplanning, pad placement and power rout-
ing were done in Cadence Silicon Ensemble. The final verification was done in
Cadence design framework II.

The chip area is pad limited and is 21.9 mm2. The standard cells use a total
cell area of 5.3 mm2. The performance is estimated to 90 MHz by static timing
analysis.

74 Protocol Processor Implementation

Figure 7.1: Chip layout

75

8
8
8

8
Checksum Accelerator

Implementations
The accelerators for CRC calculation and Internet checksum have been imple-

mented as standalone units for performance estimations. This is important
because the checksums are the most computationally intensive parts of the pro-
tocol processing. One version of the CRC calculation accelerator has also been
manufactured and measured results are available.

8.1 Internet Checksum Accelerator
The Internet checksum is used for error detection in IP headers, in TCP and in

UDP. It is therefore a very common checksum that must be calculated for
almost all packets in modern computer networks.

8.1.1 Internet Checksum Specification

In the intra-PP two separate accelerators for Internet checksums are used. One
is used for UDP and TCP checksums and the other for IP header checksums.
The reason for having two accelerators is that they have to operate simulta-
neously and therefore a single accelerator would not have been sufficient. In
this section only the accelerator for UDP a TCP is discussed.

76 Checksum Accelerator Implementations

The Internet checksum is calculated as the one’s complement sum [8.1]. For
the IP header checksum, all the fields in the header are included in the computa-
tions. For UDP and TCP some fields from the IP header are included in the
checksums, together with the whole UDP or TCP packet. This is a violation
against the layered protocol stack definition and complicates a truly layered
implementation.

The collection of fields from the IP header that are included in the UDP and
TCP checksums is called the pseudoheader. The pseudoheaders for IP and IPv6
can be seen in figures 8.1 and 8.2 respectively.

The checksums are 16 bits wide and are calculated by splitting up the data into
16 bit words. If the packet size is not a multiple of 16 bits, it is padded with
zeros for the checksum calculation. The 16 bit words are added by one’s com-
plement addition. The one’s complement addition is associative, so it does not
matter in which order the words are added. More important, the words can be

Figure 8.1: IP pseudoheader

Zeros (8) Protocol (8) Payload length (16)

IP destination address (32)

IP source address (32)

31 0

Figure 8.2: IPv6 pseudoheader

Zeros (24) Next header (8)

Payload length (32)

IP source address (128)

31 0

IP destination address (128)

Checksum Accelerator Implementations 77

added in parallel for efficient implementation. This technique is commonly
used in software implementations.

The sender initially sets the checksum value in the header to zero and then
pads the packet with zeros to a length which is a multiple of 16 bits. Thereafter
the packet is split into 16 bit words, which are added by one’s complement
addition. The result is inverted and placed in the header field for the checksum
value.

The receiver also pads the packet with zeros to a length which is a multiple of
16 bits. Then it splits the packet into 16 bit words and adds all the words with
one’s complement addition. The resulting checksum value must be zero if no
transmission errors have occurred.

The accelerator described here handles UDP and TCP checksums. The accel-
erator for IP header checksums is simpler and therefore not discussed in detail.
For the UDP and TCP checksum calculation a problem arises if the IP packet
has been fragmented. The problem is due to the processing paradigm, where the
checksums are processed in the intra-PP and the reassembly takes place later on
in the inter-PP. The way to solve that problem is to let the accelerator communi-
cate with the inter-PP. The accelerator stores the intermediate checksum calcu-
lation results and recognizes when another fragment of the same packet arrives.
The inter-PP can order the accelerator to discard intermediate results if the reas-
sembly timer expires.

The Internet checksum accelerator is general and can handle both UDP and
TCP and both IP and IPv6. It includes a Length calculation unit because the
TCP header does not specify the packet length and it must be calculated from
the IP packet total length and the IP packet header length. The implementation
that is described here is based on the results from [8.2] and has some differ-
ences from the ones that are used in the intra-PP and the demonstrator.

8.1.2 Hardware Implementation

The accelerator consists of four units. A calculation unit, a memory unit, the
length calculation unit and a control unit, see figure 8.3. For the calculation
unit, three different one’s complement adder structures were evaluated. Two of
these are based on combinations of two’s complement adders. Figure 8.4 shows
adder structureA and figure 8.5 shows adder structureB, which is a pipelined
version of structureA. The last structure,C, is based on the logic equations for
directly describing one’s complement addition. In [8.3] a 4-bit version is pre-
sented, that adder was converted into a 16-bit adder, which is adder structureC.

The calculation unit contains two one’s complement adders because three 16-
bit numbers must be added every clock cycle.

78 Checksum Accelerator Implementations

The length calculation unit handles the calculation of the packet length. It is
also used for calculating the total length of fragmented packets and calculating

Control

Calculation unit

Length counter

control signals

Memory
control signals

Result

control signals Data

control signals

ID

control signals

control signals

Figure 8.3: Overview of the Internet checksum accelerator

2’s complement
adder

16-bit

2’s complement
adder

16-bit sum

16-bit16-bit

carry out

Figure 8.4: Adder structure A

Checksum Accelerator Implementations 79

the accumulated number of bytes that have arrived from one packet that has
been fragmented.

The memory unit stores the intermediate results for fragmented packets along
with the identification data that is needed to recognize to which packet a frag-
ment belongs. The memory unit also implements the communication interface
with the inter-PP for discarding intermediate results to packets which have
timed out.

Finally the control unit generates all control signals that are needed for select-
ing the correct input to the calculation unit and controlling all the other activity
in the accelerator. The control unit also handles the communication with the
intra-PP core inputs and outputs.

8.1.3 Implementation Results

The Internet checksum accelerator has been synthesized to a 0.18 micron 6
metal layer standard cell library from UMC. The synthesis was done by
cadence Ambit Buildgates and placement and routing was done by Cadence Sil-
icon Ensemble. Static timing analysis has been used to derive the performance
estimations.

2’s complement
adder

16-bit sum

2’s complement
adder

carry out
16-bit plus

17-bit register

16-bit1-bit

16-bit 16-bit

Figure 8.5: Adder structure B

80 Checksum Accelerator Implementations

The results of the three adder structure implementations are shown in table
8.1. Structure C was chosen for the final implementation, because all three
structures are sufficiently fast and structure C occupies the smallest silicon area.

The performance of the whole Internet checksum accelerator was not satisfac-
tory as can be seen in table 8.2. However the critical path was found to be in the
control unit which had not been optimized for high speed. So the result for only
the data path of the accelerator was extracted and that is sufficiently fast, as also
is shown in table 8.2.

An interesting observation is that the memory unit occupies 61% of the total
silicon area. All results are obtained from typical process and typical operating
conditions.

8.2 CRC Accelerator Chip
Cyclic redundancy check (CRC) codes are used in many communication pro-

tocols. The CRC codes are used for error detection. The CRC codes come in
many fashions, which are described by the length and a generator polynomial.
The most common is CRC-32 which is a 32 bit CRC described by a specific
polynomial. CRC-32 is used in for example Ethernet and asynchronous transfer
mode (ATM) adaption layer 5 (AAL5).

Structure Propagation delay Silicon area

A 1.34 ns 0.0041 mm2

B 0.93 ns 0.0105 mm2

C 1.19 ns 0.0025 mm2

Table 8.1: Adder implementation results

Unit Delay Max frequency Throughput Silicon area

Data path 2.77 ns 361 MHz 11.55 Gb/s 0.199 mm2

Accelerator 3.59 ns 278 MHz 8.91 Gb/s 0.232 mm2

Table 8.2: Implementation results

Checksum Accelerator Implementations 81

8.2.1 CRC Specification

The CRC calculation is specified as the calculation of the remainder of a poly-
nomial division. The dividend is built up from the data packet and the divisor is
the generator polynomial. The generator polynomial for CRC-32 is specified as:

g(x) =x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x1+1

The data packets can be up to 1500 bytes in Ethernet (or 9000 bytes if jumbo-
grams are allowed) so the dividend is a polynomial of order up to
1500 * 8 =12000. The division of such a polynomial with the generator poly-
nomial certainly does not look simple.

The dividend is not only the data packet, to the data packet 32 zeros must be
added and then the polynomial division can be performed. These 32 zeros cor-
respond to a frame check sequence (FCS) that is zero.

In Ethernet, the sender inverts the 32 first bits of the packet and appends 32
zeros to the end of the data packet and performs the polynomial division. Then
the remainder of the division is inverted and appended to the packet as the
frame check sequence (FCS).

The receiver performs the same polynomial division, including the received
FCS instead of 32 zeros at the end of the packet. After the division, the remain-
der must be zero if the packet is correctly transferred.

The computation of the remainder of the polynomial division can be per-
formed by a linear feedback shift register (LFSR). The LFSR processes one bit
of data every clock cycle.

8.2.2 CRC Parallelization

The performance of a CRC implementation can be improved by processing
several bits every clock cycle. This requires the logic to change from an LFSR
to more complex combinational logic. The combinational logic is based on
XOR-gates, just as the LFSR, but contains several XOR-gates in series in the
critical path. The total speedup is therefore limited by the complexity in the
logic and processingn bits every clock cycle gives a speedup of roughlyn/2
over the LFSR implementation [8.4]. The principle for parallelization is shown
in figure 8.6.

The packet data is U[n], where U[0] is the bit which is transmitted last and
also least significant in the dividend. The generator polynomial is described in a
vector [gk gk-1 gk-2 ... g0], where gk and g0 are always 1. The indexk is the order
of the polynomial, so for the CRC-32,k=32. The LFSR (a) can be split up into a
combinational part (CL1) and a state register (b). Furthermore, two of these
combinational blocks, CL1, can be connected in series (c) and thereby two

82 Checksum Accelerator Implementations

input bits can be processed every clock cycle. Finally the two CL1 blocks can
be merged into one CL2 block. By using this technique repeatedly paralleliza-
tions of arbitrary width can be constructed.

One problem with implementing the CRC calculation in parallel is that the
packet size is not necessarily a multiple ofn bits. For Ethernet the packet size is
a multiple of 8 bits, because the size is specified in number of bytes, but forn
greater than 8 special considerations must be made. Parallelization withn=32 or
n=64 are desirable to reduce the clock frequency and achieve high performance.

There are several ways to cope with the last part of the packet, which is not a
multiple of n bits. One way is to have a special unit that takes care of the last
bytes one by one. It starts after the main unit has completed the calculation on
the greater part of the packet and uses a calculation unit with an 8 bit wide
input. Another approach was chosen in a chip implementation, described in the
next sub-section.

The standards specify that the implementation must start by resetting the state
register and then perform the polynomial division. That requires complex com-
binational logic in the critical loop and in [8.5] it was shown that the implemen-
tation can be made simpler and thus faster by setting the state register to a
modified start value and then use simpler combinational logic in the critical
loop. This way also requires that 32 zeros are fed to the calculator after the

Figure 8.6: Principle for CRC parallelization

gk-1

. . .

. . .

gk-2 gk-3

U[x]

Combinational
logic 1 bit input

(CL1)

U[x]

(a)

(b) (c)

CL1

U[x]

CL1

U[x-1]

Combinational
logic 2 bits
input (CL2)

U[x .. x-1]

(d)

Checksum Accelerator Implementations 83

actual data in order to get the correct value. The major change that is achieved
compared to the parallelizations described in figure 8.6 is that the inputs are
only used once in the equations.

8.2.3 Chip Implementation

In this sub-section an implementation of the algorithm in [8.5] using 32 bit
and 64 bit parallel input is described. Chips have been manufactured and mea-
sured results are presented in the next sub-section.

The circuit was implemented by using RTL descriptions in VHDL and synthe-
sis by Cadence Ambit Buildgates. Place and Route was done in Cadence Sili-
con Ensemble and physical verification was performed by the Cadence DIVA
tool. The manufacturing process was AMS 0.35 micron process with 3 metal
layers. The standard cell library was supplied by Europractice.

The VHDL code consists of 5 parts, as shown in figure 8.7. The input registers
capture the 36 input signals every positive clock edge. There are 4 lanes each
consisting of one control bit and 8 data bits, so the interface is similar to the
XGMII (extended gigabit media independent interface) of the 10 Gigabit Ether-
net. The implementation can handle any number of bytes in the packet.

The input8_2 unit splits the data to 64 data bits in parallel and generates an
enable signal for the crc8 unit. The crc4 unit calculates the CRC by adding 4
new bytes every clock cycle and the crc8 unit calculates the same CRC by add-
ing 8 new bytes every second clock cycle. The purpose of making two imple-
mentations on the same chip is just to be able to compare them.

The output multiplexer selects the output from crc4 or crc8, so only one of
them can be observed at a time.

Both calculation units can handle a last word of data that contains any number
of bytes. This is managed by actually having several computation units in paral-

input registers

input8_2

crc4

crc8
output multiplexer

Figure 8.7: Block diagram that shows the structure of the implementation.

84 Checksum Accelerator Implementations

lel and selecting the correct value based on the input control signals and by hav-
ing a finite state machine, that controls the computations.

There is another possible solution to this problem, which is to use several 8 bit
input computation units that are connected in series. Both alternatives were
considered and synthesis has been made for both of them, but only the prior one
was selected for chip fabrication. The alternatives for crc4 are explained in fig-
ure 8.8 and figure 8.9. For crc8 the same principle is used. The second alterna-
tive (figure 8.9) has longer critical path than the prior one and therefore cannot
handle as high throughput, on the other hand it consumes smaller silicon area.
For this chip throughput was more important than silicon area and therefore the
architecture in figure 8.8 was selected.

Figure 8.8: The architecture selected for implementation

8 bit CRC 32 bit CRC24 bit CRC16 bit CRC

Finite
state

machine

lane 0 lane 1 lane 2 lane 3 ctrl

Figure 8.9: The alternative architecture, not selected for implementation

8 bit CRC

8 bit CRC

8 bit CRC

8 bit CRC

lane 0 lane 1 lane 2 lane 3

Finite
state

machine

ctrl

Checksum Accelerator Implementations 85

The equations for the CRC calculation with different input widths were gener-
ated by a C-program, which takes only a polynomial as the input. This was nec-
essary since there are 128 equations required for the crc8 unit. Actually units
with up to 20 bytes input in parallel were also generated, but these were too
complex to be implemented efficiently.

In order to improve the throughput of the circuit, some techniques were used.
First, flip-flops in the state register that have high fanout were cloned. Second,
the most critical paths were identified and logic was pushed over the register
boundary to relax the critical paths. This, of course, had to be compensated for
at the output.

The observability of the circuit is further improved by having the possibility to
select internal states with the output multiplexer. This is not shown in figure 8.7,
but the output multiplexer has actually 4 inputs of 32 bits each, 2 of those are
the CRC values from crc4 and crc8 respectively. The other 2 are built up by
internal states which can be used for testing purposes.

8.2.4 Implementation Results

The total chip implemented in 0.35 micron technology uses 7.73 mm2 silicon
area, see figure 8.10. It has 84 pads and is pad limited. The area of the core is
2.87 mm2.

3 chips have been mounted on specially designed test boards, see figure 8.11.
Measurements were conducted with Agilent 16700 logic analysis system. The
limitation in the testing was the testing equipment, which can only supply
180 MVectors/s. The results at supply voltage of 2.5 V are shown in table 8.3.
Because 32 bits are processed every clock cycle a throughput of 5.76 Gb/s is
managed. All three chips operated at 180 MHz for supply voltage from 2.2 V to
2.7 V. The crc8 circuit on chip #1 did, however, not work correctly.

Why the chips did not work as fast at supply voltages above 2.7 V is hard to
explain. The crc4 on chip #1 operated correctly at 130 MVectors/s at 3.3 V sup-
ply voltage, which is the nominal supply voltage for the process.

Chip # crc4 throughput crc8 throughput

1 >5.76 Gb/s Failure

2 >5.76 Gb/s >5.76 Gb/s

3 >5.76 Gb/s >5.76 Gb/s

Table 8.3: Measurement results

86 Checksum Accelerator Implementations

Overall the manufactured chips worked better than expected. Static timing
analysis on post layout data estimated a maximum throughput of 5.5 Gb/s for
crc4 and 5.2 Gb/s for crc8, using typical process parameters in typical operating
conditions.

The reason why crc8 is estimated to support less throughput than crc4 is that it
uses an enable signal to control the operation and therefore has to use more
complex flip-flops.

Figure 8.10: Chip photo. The chip area is 7.73 mm2.

Figure 8.11: Photo of test board for chip measurements.

Checksum Accelerator Implementations 87

8.3 Modified CRC Accelerator
By the use of state-space transformations, the logic in the critical loop of the

CRC accelerator implementation can be significantly reduced [8.6]. The trade-
off is that pre-processing and post-processing logic of considerable complexity
is needed. These blocks can, however, be pipelined unlike the critical loop and
very high performance is possible.

8.3.1 State-Space Transformations

By using state-space transformations it is possible to reduce the logic depth in
the critical loop of the CRC computation to just 1 level of 3-input EXOR gates.
That is the same complexity as an LFSR has. This comes to the cost of required
pre-processing of the input and post-processing of the state to calculate the
CRC value. The complexity of the logic in the critical loop is not dependent of
how many bits that are processed in parallel.

The pre- and post-processing can be pipelined since it is not part of the loop.
In the loop, pipelining cannot be used because of data dependencies. For each
CRC length and polynomial, there exist several different state-space transfor-
mations, that result in these nice properties. The complexity of the pre- and
post-processing logic is dependent of the transformation that is used. The trans-
formation is described by a matrixT in Galois Field 2 (GF2).

The CRC calculation before any state-space transformation has taken place, is
described as:

x(m+1)=AMx(m)+BMuM(m);

y(m)=x(m)

Here,x(m) is the current state,x(m+1) is the next state and M is the number of
bits processed per clock cycle. Here the CRC valuey(m) is used as the internal
state in the computations. This is what introduces the complexity in the critical
loop. The matrixA is derived from the CRC polynomial and so is the vectorb.
BM is derived fromb andA asBM = [b Ab A2b ... AMb]. The vectoruM con-
tains the M input bits to be processed, andy(m) is the output.

After the transformation the calculation is described as:

xt(m+1)=AMtxt(m)+BMtuM(m);

y(m)=CMtxt(m)

Here

AMt=T -1AMT;

BMt=T -1BM;

88 Checksum Accelerator Implementations

CMt=T

The transformation matrixT can be derived from a vectorb1. The matrixT
has M number of rows and as many columns as the degree of the generator
polynomial. In this study the CRC-32 polynomial is used, thusT has 32 col-
umns and is calculated as:

T = [b1 AMb1 A2Mb1 ...A
31Mb1]

The b1 has to chosen with the criteria that all the columns inT are linearly
independent.

8.3.2 Automatic VHDL Code Generation

A C-program was constructed in order to rapidly be able to create many dif-
ferent implementations of the CRC circuit. The input to the C-program is the
matrix, A, and the vector,b, describing the M bit parallel CRC calculation
before any state-space transformation has taken place and the vector,b1,
describing the state-space transformation, see figure 8.12.

The program starts by generating the transformation matrix,T, which is then
used to create the matrices describing the combinational logic,AMt, BMt and

Figure 8.12: Description of the state-space transformation

AM

uM

AMt

BMt

uM

y=x xt

CMt

y

State-space trans-
formationx=Txt

Circuit before transfor-

mation.AM requires
complex combinational
logic, which cannot be
pipelined because it is in
a loop.

Circuit after transforma-
tion. AMt requires only
one logic level of 3-input
EXOR gates.BMt and
CMt require complex
combinational logic,
which can be pipelined.

BM

Checksum Accelerator Implementations 89

CMt. In this stepT has to be inverted as well. The inversion of matrices in GF2
is straight forward and implemented by solving the equation systemTX=1.

After having performed the transformation, the C-program generates VHDL
code for the critical loop based onAMt and VHDL code with pipelining flip-
flops for the pre- and post-processing based onBMt andCMt. The program flow
is shown in figure 8.13.

8.3.3 Hardware Implementation

The automatically generated VHDL code describes an architecture as the one
shown in figure 8.14. I have studied implementations with M=32 and M=64 bits
input width respectively. For M=32, the pre- and post-processing logic blocks
each have been pipelined into 3 stages. Because the same length of the critical
path in all parts of the circuit is desired, each stage consists of either a 3-input
EXOR gate or a 2-input EXOR gate. This implies that maximally 27 terms
(input bits) can be used in a transformation to compute each modified input bit.

Program Start

DefineA, b andb1

CalculateT

InvertT to getT -1

CalculateAMt, BMt andCMt

Pipeline the combinational logic
described byBMt andCMt, use logic

sharing

Generate VHDL code

Figure 8.13: Program flow for the C-program that generates the VHDL descrip-
tions of the architectures

90 Checksum Accelerator Implementations

In the transformations that we have considered, no transformation requires
more than 21 terms. If a transformation, that requires more than 27 terms is
used, another pipeline stage has to be introduced. In reality as few terms as pos-
sible are desired, because that reduces the silicon area and the power consump-
tion. So the maximum of 27 terms is not limiting the interesting design space
exploration.

For M=64, the pre-processing was pipelined into 4 stages, since more than 27
terms are used. 4 stages of 3-input EXOR gates allow 81 terms and since M=64
is less than 81 all transformations are possible by using 4 stages. The post-pro-
cessing logic on the other hand has similar complexity independent of the input
width M.

pipeline register

enable input data [M-1:0]

crc value [31:0]

pipeline register

pipeline register

pipeline register

Figure 8.14: General architecture of the CRC circuit after state-space transfor-
mation and pipelining

AMt

BMt

CMt

register cloned

bit 0 cloned

post-processing logic,
defined byCMt

pre-process-
ing logic,
defined byBMt

critical loop

register cloned

Checksum Accelerator Implementations 91

The register between the state register and the post-processing logic block was
cloned in order to avoid large fanouts on those flip-flops. The input register was
also cloned, because the first stage of the pre-processing similarly created a
large fanout otherwise. Without these clones the critical path was situated in the
pre- or post-processing logic instead of in the loop. The increased load on the
state register was negligible. The least significant bit in the state register was
also cloned, because it is used in the computation of several bits in the loop
logic and therefore has high fanout. All other bits in the state register are only
used in the computation of one bit in the loop logic. This is a property that the
selected state-space transformations have. This is also the reason why the loop
logic for each bit maximally consists of a 3-input EXOR gate (and a 2-input
multiplexer for enable control). All of the implementation details were man-
aged by the C-program, described in the previous section.

The most promising designs, those with the least number of pipeline flip-
flops, were chosen for implementation. The VHDL code was simulated in Mod-
elsim for functional verification. The synthesis and placement of standard cells
was done in Cadence Envisia PKS for a 0.13 micron standard cell library from
UMC. The row utilization was initially set to 0.8.

8.3.4 Implementation Results

32 implementations were generated for both M=32 and M=64. The designs
with the least number of pipeline flip-flops were selected for implementation.
The number of pipeline flip-flops is a measure of the complexity of the pre- and
post-processing logic. The critical path is logically the same in all implementa-
tions, that is a 3-input EXOR gate. Therefore it is only interesting to minimize
the overall complexity. By doing that it is probable that also the maximum
fanout is limited, which is interesting because that will influence the delay in
the critical path and thereby the throughput.

A reference design, like the one presented in [8.5] but with 32 bit parallel
input, has also been implemented in the same process technology for compari-
son. Table 8.4 shows the silicon area, the critical path delay, the throughput and
the latency for the 3 implemented designs. All values are post-placement val-
ues.

After pipelining the pre- and post-processing logic, totally 6 pipeline stages
have been introduced in the M=32 case and 7 in the M=64 case. This means that
the latency of the circuit is 6 or 7 clock cycles longer than that of a traditional
CRC implementation. The reference architecture has one additional clock cycle
latency compared to a traditional implementation because of the required 32

92 Checksum Accelerator Implementations

zero bits that have to be appended to the input data compared to a traditional
design.

The state-space transformation technique improves the performance signifi-
cantly. This comes to the cost of larger silicon area. The scaling properties are
excellent, since the performance scales almost linearly with the input width and
the area consumption increases less than linearly. This is because only the pre-
processing logic becomes more complex when the input width is increased, the
other parts of the design have the same complexity independent of the input
width.

8.3.5 Further Discussion

All the implementations discussed above do not consider the fact that an Eth-
ernet frame can consist of any number of bytes. CRC calculation has the prop-
erty that adding extra bytes of for example zeros to a packet (to fill out the input
word of the CRC calculation unit) would change the CRC value. This means
that the computation must be capable of handling variable number of bytes. In
[8.7] we made an implementation that takes one byte as input every clock cycle
in order to avoid that problem. If future network protocols allow packet sizes
that are not a multiple of 4 or 8 bytes, a combination of the two architectures
can be used where the major part of the packet is managed by the architecture
presented here and the last bytes are managed by an architecture that handles
one byte at every clock cycle. A small controller is needed to conduct the calcu-
lations. That controller has to be designed carefully so that the critical path of
the circuit does not appear in the control path.

The circuit that I have designed can handle CRC calculation for the next gen-
eration of network protocols at more than 100 Gb/s. This satisfies the needs for
near-term future computer networks.

The pre- and post-processing logic consume most of the silicon area. In a full-
duplex system two CRC calculation circuits are necessary, one for transmission

Design
Area

[mm2]

Critical
path delay

[ns]

Throughput
[Gb/s]

Latency
[clock cycles]

32-bit 0.030 0.45 71 8

64-bit 0.047 0.47 136 9

Reference 0.017 0.93 34 3

Table 8.4: Results of the implementations

Checksum Accelerator Implementations 93

and one for reception. The circuit for reception can be simplified by removing
the post-processing logic and instead using a comparator to compare the state
value directly toT -1ycorrect. This would also reduce the latency with 3 clock
cycles.

However, low latency is more important in the transmission part, where the
CRC value must be appended at the end of the Ethernet frame. If the CRC cal-
culation is done in-line at the same time as the data is transmitted, the data must
be delayed by the same number of clock cycles as the CRC calculation requires
to complete. This can be managed by pipeline flip-flops or a small FIFO.

The power consumption of the CRC calculation can be reduced by creating an
enable signal for the register after the state register. Disabling that register until
the state computation is finished will avoid unnecessary toggling in the post-
processing logic and thereby save power.

References
[8.1] R. Braden, D. Borman and C. Patridge, “Computing the Internet Check-

sum”, RFC 1071, September 1998

[8.2] N. Persson, “Specification and Implementation of a Functional Page for
Internet Checksum Calculation”, master’s thesis at Linköpings univer-
sitet, LiTH-IFM-EX-959, March 2001

[8.3] J. Touch and J. Postel, “Assigned Numbers”, RFC 1700, October 1994

[8.4] T.-B. Pei and C. Zukowski, “High-speed parallel CRC circuits in VLSI”,
IEEE Transactions on Communications, Vol. 40, pp. 653-657, April 1992

[8.5] R. J. Glaise and X. Jacquart, “Fast CRC Calculation”, Proceedings of
IEEE International Conference on Computer Design: VLSI in Comput-
ers, pp. 602-605, 1993

[8.6] J. H. Derby, “High-Speed CRC Computation Using State-Space Trans-
formations”, pages 166-170, Global Telecommunications Conference,
2001.

[8.7] T. Henriksson, H. Eriksson, U. Nordqvist, P. Larsson-Edefors, D. Liu,
“VLSI Implementation of CRC-32 for 10 Gigabit Ethernet”, Proceedings
of ICECS 2001, vol III, pages 1215-1218, Malta, Sep 2001.

94 Checksum Accelerator Implementations

95

9
9
9

9
Protocol Processor

Demonstrator
A demonstrator system was constructed around the intra-PP from chapter 6.

The protocol processing partition principle and dual processor architecture
described in chapter 5 was used. The demonstrator system receives an audio
stream over the university research network and replays the audio on a set of
stereo speakers.

9.1 Demonstrator Overview
The demonstrator is implemented on a XSV-300 experimental board from

XESS Corp. Except from the board also a piece of software on a Sun worksta-
tion, the university fast Ethernet network and a pair of loudspeakers are used for
the demonstrator, see figure 9.1.

9.1.1 Demonstrator Purpose

The purpose of the demonstrator is to prove the applicability of the intra-PP in
a real system. The intended use for the intra-PP is as a network accelerator in
file servers and back-up equipment connected to high-speed networks. Because
of the complexity of such a system, the demonstrator was built around audio

96 Protocol Processor Demonstrator

reception instead. The functionality of the intra-PP and its capability to operate
in a real system environment is proven also by this simpler demonstrator imple-
mentation and a lot of design time is saved.

It would be interesting to build a another demonstrator, where the intra-PP is
integrated in a network interface card (NIC) of a file server, for example in com-
bination with the modified host CPU-NIC communication scheme which was
suggested in [9.1]. Unfortunately time has not allowed for such an implementa-
tion.

9.1.2 Packet Flow

Three types of packets exist in the demonstrator system. An ARP request
packet is sent from the Sun workstation to the demonstrator board to find out
the hardware (MAC) address of the demonstrator. The demonstrator replies
with an ARP reply packet, which tells the Sun workstation how to address the
demonstrator. During audio transmission, audio packets are sent from the Sun
workstation to the demonstrator. The packet flow is shown in figure 9.2. Audio
packets are transmitted in chunks of 256 packets, with only small delay
between each of them. The software in the Sun workstation then synchronizes
with its real time clock before it transmits the next chunk of 256 packets.

The demonstrator has capability to buffer a little more than 900 audio packets
and starts playing back the audio stream when 600 packets have arrived. Each
packet contains 9.999424 ms of audio. The audio is sent in raw 16 bit stereo
format.

Figure 9.1: Demonstrator system overview

Sun workstation

Fast Ethernet
switch

Demonstrator
board

Stereo speakers

Ethernet frames

Analog audio
signal

Protocol Processor Demonstrator 97

9.1.3 Packet Format

The format of the ARP request packet is shown in figure 9.3. The destination
Ethernet address is the broadcast address FF:FF:FF:FF:FF:FF. The source
address and the sender addresses are those of the Sun workstation. The target IP
address is the IP address of the demonstrator, 130.236.55.05. The operation is
0x1, which specifies request in ARP.

The format of the ARP reply is the same as that of the request, but most of the
parameters are different. In the reply, the destination Ethernet address is the
hardware address of the Sun workstation and the source address and the sender
addresses are those of the demonstrator. The demonstrator has the hardware
address 12:23:45:67:89:AB on the university network at Linköpings universitet.
This is a local hardware address, so it could be assigned by the network admin-
istrator.

The audio packets are transmitted with the user datagram protocol (UDP) on
top of IP and Ethernet. The format is shown in figure 9.4. Each packet carries
244 stereo samples, consisting of 16 bits for the left channel and 16 bits for the
right channel. The 16 bit sequence number is incremented with one for each
consecutive packet and is used in the demonstrator to synchronize the play back
of the audio.

The audio packets are created by the Sun workstation by reading a raw audio
file. The sample frequency is 24.414 kHz. Coding techniques for the audio have

Figure 9.2: General Packet Flow

Sun work-
station

Demonstrator

ARP request

ARP reply

Audio packet 0

Audio packet 1

98 Protocol Processor Demonstrator

not been introduced since that would complicate the demonstrator implementa-
tion and not benefit the demonstration of the intra-PP functionality.

9.2 Hardware Organization
Figure 9.5 gives an overview of the demonstrator. The Ethernet PHY, the

memories, the Stereo codec, the amplifier and the connectors are available on
the experimental board as separate components. Everything else (inside the
dashed line) is integrated in the Xilinx Virtex 300 FPGA. I have designed and
implemented all the virtual components in the FPGA. The Fast Ethernet media
independent interface (MII) delivers data 4 bits at 25 MHz. That is converted to
32 bits at 3.125 MHz for the intra-PP.

The main operation of the demonstrator is that the intra-PP decodes the pack-
ets that are received on the network and if an ARP packet or an audio packet is
received the payload is written in the payload memory in a large circular buffer.
The microcontroller handles the replies to ARP requests and the sorting and
synchronization of the audio packets. It also sends the audio samples to the ste-
reo codec.

Figure 9.3: Demonstrator ARP Packet Format

Ethernet Destination Address 47-16

Ethernet Destination Address 15-0 Ethernet Source Address 47-32

Ethernet Source Address 31-0

Ethernet Type (ARP)

Protocol Type (IP)

Operation

Hardware Size Protocol Size

Sender Ethernet Address 31-0

Sender IP Address

Target Ethernet Address 47-16

Target Ethernet Address 15-0 Target IP Address 31-16

Target IP Address 15-0

Padding

Padding

Hardware Type (Ethernet)

Sender Ethernet Address 47-32

Padding

Padding

Padding

CRC

Protocol Processor Demonstrator 99

9.2.1 Intra Packet Processor

The purpose of the demonstrator is to prove the functionality of the intra-PP
architecture in a real environment. Therefore it could be said that the intra-PP is
the core of the demonstrator. The intra-PP in the demonstrator is a scaled down
version of the intra-PP described in chapter 7. The reason for scaling it down is
that the FPGA has limited capacity and a usage of more than 80% of the slices
of the FPGA is not desirable because that creates routing congestion and possi-
bly timing issues.

The intra-PP has 3-way parallelism, that means that there are three compara-
tors, each line in the PCB has three parameters and each line in the CCB has
three values. The ILT has been reduced to 64 words. The demonstrator program

Figure 9.4: Demonstrator Audio Packet Format

Ethernet Destination Address 47-16

Ethernet Destination Address 15-0 Ethernet Source Address 47-32

Ethernet Source Address 31-0

Ethernet Type (IP) IP ver IP HL IP ToS

IP Length IP Identification

IP Fragmentation Information IP TTL IP Protocol (UDP)

IP Header Checksum IP Source Address 31-16

IP Source Address 15-0 IP Destination Address 31-16

IP Destination Address 15-0 UDP Source Port

UDP Destination Port UDP Length

UDP Checksum Sequence Number

Sample 0 Left

Sample 1 Left

Sample 2 Left

Sample 3 Left

Sample 0 Right

Sample 1 Right

Sample 2 Right

Sample 3 Right

Sample 242 Right

Sample 243 Right

Sample 242 Left

Sample 243 Left

Ethernet Frame Check Sequence (CRC)

... ...

100 Protocol Processor Demonstrator

requires only 39 instructions, so that is no limitation for the implementation.
The program counter is reduced to 7 bits and so are the values in the CCB.
Actually only 6 bits would have been necessary to address the 64 instructions in
the ILT. The PCB has 8 lines and the CCB has two lines. That is exactly what is
required for the demonstrator program.

The ILT, PCB and CCB are configured via the FPGA configuration instead of
by the inter-PP. By doing so they can be mapped to ROM structures in the
FPGA. There is also a version of the demonstrator with the ILT, the PCB and
the CCB as RAMs, using the configuration interface from the inter-PP. There,
the ILT is mapped to a synchronous RAM so that the PC value (the ILT address)
is stored internally in the RAM. The PCB and CCB are mapped to asynchro-
nous RAMs. The benefit of mapping the ILT to a synchronous RAM is that the
block RAM structure of the FPGA can be utilized. The PCB and CCB have to
use distributed RAM structures, that consume logic resources of the FPGA.
That is the reason to keep them at minimum size. However, in the final imple-

Figure 9.5: Demonstrator Overview

Ethernet
PHY

LXT970A

100 Base-TX
RJ-45 Connector

MII->
XGMII

converter

Intra Packet

Processor

(intra-PP)

Microcontroller

(µC)

(Inter Packet
Processor)

Reception

Payload

and data

Memory
Stereo Jack

AK4520A

Codec

Stereo Codec

Controller

Ethernet
MAC Trans-

mission

Program
Memory

Arbiter

Protocol Processor Demonstrator 101

mentation, where the ILT, the PCB and the CCB are mapped to ROM struc-
tures, the FPGA allows for larger sizes of the lookup tables than the ones that
were actually used.

The accelerators in the intra-PP also have some differences from the ones
described in chapter 8. This is because the demonstrator system only uses pack-
ets with sizes that are multiples of 32 bits. Therefore the CRC accelerator can
be substantially simplified. The UDP checksum accelerator also benefits from
this restriction in packet sizes. For the IP header checksum and UDP checksum
accelerators, the major difference is the implementation of the one’s comple-
ment adders. The logic equations, that describe the direct implementation of an
ones complement adder, that where used in the implementation in chapter 8, do
not synthesize well onto the FPGA. Instead much better implementation results
where obtained by using two serially connected two’s complement adders.

The memory management unit (MMU) accelerator also had to be modified to
fit the demonstrator experimental board. The internal data width of the intra-PP
is 32 bits, but the memory interfaces available on the board are only 16 bits.
There are two such memory modules available, but only one of them can be
used for the circular data buffer, the other is required for the inter-PP program.
So the MMU accelerator has to convert from 32 bit data to 16 bit data. This is
possible because there is the faster clock available from the MII. So the MMU
accelerator runs at 25 MHz and for each 32 bit data word it writes two 16 bit
subwords to the payload memory on consecutive positive clock edges.

All the accelerators are controlled from the intra-PP core. The core inputs and
outputs are shown in table 9.1 and table 9.2. In some cases direct communica-
tion between the accelerators is also allowed, for example for the end of packet
signalling.

9.2.2 Microcontroller

A specially designed microcontroller is used as the inter-PP in the demonstra-
tor. The microcontroller is an enhanced version of the microcontroller described
in [9.2], which I designed in cooperation with one of my master’s students. I
decided to design the microcontroller from scratch because it needs some spe-
cial functionality. The interfaces of the microcontroller are shown in figure 9.6.

The microcontroller has 16 bit wide instructions, because the program mem-
ory has a 16 bit wide interface. The data memory is also 16 bits wide, but has a
20 bit wide address, so internally the microcontroller can work on 16 or 20 bit
wide data. The 20 bit wide registers are loaded and stored by separate instruc-
tion for the 16 least significant bits (lsbs) and the 4 most significant bits (msbs).

102 Protocol Processor Demonstrator

The microcontroller runs on the same 25 MHz clock as the MMU accelerator of
the intra-PP.

The microcontroller makes use of a Harvard architecture, where the program
and data are stored in different memories and use different buses. The micro-
controller has a general 2 stage pipeline, with the first stage for instruction fetch

Flag Purpose From To

Input 0 Start MII->XGMII converter PP core, CRC accelerator

Input 1 CRC ready CRC accelerator PP core

Input 2 CRC OK CRC accelerator PP core

Input 3 IP header
checksum
ready

IP header checksum
accelerator

PP core

Input 4 IP header
checksum
OK

IP header checksum
accelerator

PP core

Input 5 UDP check-
sum ready

UDP checksum acceler-
ator

PP core

Input 6 UDP check-
sum OK

UDP checksum acceler-
ator

PP core

Input 7 End of
Packet

Length Counter Accel-
erator

PP core, CRC accelerator, UDP
checksum accelerator, MMU

Input 8 not used PP core

Input 9 not used PP core

Input 10 not used PP core

Input 11 not used PP core

Input 12 not used PP core

Input 13 not used PP core

Input 14 not used PP core

Input 15 not used PP core

Input 16 not used PP core

Input 17 not used PP core

Input 18 not used PP core

Table 9.1: PP core input signals

Protocol Processor Demonstrator 103

and decode and the second stage for operand fetch, execution and write-back.
The load instructions have a variable latency dependent on the memory arbitra-
tion, described in the next subsection. Therefore the microcontroller has a halt

Figure 9.6: Microcontroller interfaces

Microcontroller

Program memory address

Program memory data

A
dd

re
ss

 to
 M

A

D
at

a
to

 M
A

W
rit

e
en

ab
le

 to
 M

A

R
ea

d
en

ab
le

 to
 M

A

D
at

a
fr

om
 M

A

H
al

t f
ro

m
 M

A

Reg 14 data

Reg 14 enable

Reg 15 data

Reg 15 enable

Flags

Flag Purpose From To

Output 0 IP header check-
sum start

PP core IP header checksum accelerator

Output 1 UDP checksum
start

PP core UDP checksum accelerator

Output 2 Start IP PP core Length counter accelerator

Output 3 Start ARP PP core Length counter accelerator

Output 4 Start payload PP core MMU

Output 5 Confirm payload PP core MMU

Output 6 Discard payload PP core MMU

Output 7 ARP packet ready PP core External output unit (toµC)

Output 8 Audio packet ready PP core External output unit (toµC)

Output 9 not used PP core External output unit

Table 9.2: Core output signals

104 Protocol Processor Demonstrator

input, that forces the microcontroller to stall when a halt is asserted. The store
instructions also have variable latency, which is managed in the same way, by
the halt signal. However, the store instructions normally finish in one clock
cycle since there is a small write buffer that interfaces between the microcon-
troller and the memory. Only when the write buffer is full, the microcontroller
is forced to stall.

One special feature with the microcontroller is that it has 5 general purpose
input flags, that can be used for conditional branches. Two of those are used for
the indications on arrived packets from the intra-PP. One of the others is used to
indicate that the stereo codec controller needs a new sample.

The data memory address space of the microcontroller is shown in figure 9.7.
As can be seen, there are addresses assigned to the intra-PP ILT, PCB and CCB
although those are configured as ROMs in the FPGA. So those addresses are
not used in the final implementation of the demonstrator. Likewise, only
addresses 80010-80011 in the intra-PP are used for parameters. They contain
the pointer in the circular buffer to the latest received packet. The SRAM part of
the data memory is split up into two areas, the main part is used for the circular
buffer and the small upper part is used for the microcontroller to store variables
and data structures.

The microcontroller has two special purpose register in the register file of
totally 16 registers. The two special purpose registers are used for interfacing to
the stereo codec interface and to the Ethernet transmission unit.

9.2.3 Memory Arbitration

The intra-PP and the microcontroller access the same data memory. Therefore
there is a need for arbitration. This is handled by the memory arbiter. Because
the intra-PP is operating in a real-time environment the memory arbiter gives
static priority to it. The microcontroller on the other hand has no hard time lim-
its and does not suffer from a few clock cycles latency.

When there are concurrent memory requests from the intra-PP and the micro-
controller, the microcontroller is stalled by asserting the halt signal, discussed
in the previous subsection. The halt signal is actually asserted for at least two
clock cycles for every load instruction, since a memory access is time consum-
ing and both the address and data have to be pipelined.

A small finite state machine in the memory arbiter conducts the actual arbitra-
tion and asserts the halt signal whenever necessary. The memory arbiter runs on
the same clock as the microcontroller and the MMU accelerator of the intra-PP
so it operates in a fully synchronous environment.

Protocol Processor Demonstrator 105

9.2.4 Stereo Codec Interface

The stereo codec controller converts the 16 bit stereo samples to serial 32 bit
sample format that is required by the stereo codec. The sample frequency is
24.414 kHz. The play back frequency is derived from the 25 MHz Ethernet
clock, that is used for the microcontroller. Since there are two samples (left
channel and right channel) that must be supplied to the stereo codec with

Figure 9.7: Microcontroller data memory organization

Circular buffer for
packet payload

00000

6FFFF

Data memory for
variables

70000

7FFFF

SRAM

Memory-mapped
registers in intra-PP

80000

80011

intra-PP Instruction
lookup table

90000

9007F

intra-PP PCB

A0000

A007F

intra-PP CCB

B0000

B001F

FPGA-
based in
intra-PP

Uses the on board memory
chips, two chips of 512K x
8 bits, that are connected in
parallel

Uses flip-flops in the FPGA
logic cells.

Memory arbiter con-
trol register

C0000

C0000

FPGA-based in
memory arbiter

106 Protocol Processor Demonstrator

24.414 kHz, there are 512 clock cycles in the microcontroller between every
sample.

To reduce the real-time requirements on the microcontroller, a 2-register
buffer is used in the stereo codec interface. This implies that the microcontroller
has a window of 1024 clock cycles to input a new sample whenever the stereo
codec interface indicates that the buffer is not full.

The stereo codec is used in a mode where it takes 20 bit samples as inputs. In
the demonstrator, the stereo codec interface inputs zeros on the lsbs for every
sample.

9.2.5 Ethernet Transmission

The Ethernet transmission is asynchronous to the rest of the demonstrator.
That is inevitable because the transmission is based on the local oscillator that
generates the transmission clock tx_clk and the reception is based on the
received clock rx_clk. Therefore the Ethernet transmission part is split into two
parts and interconnected with an asynchronous FIFO (first in first out) memory.
The first part runs on rx_clk and writes data from one of the special purpose
registers in the microcontroller to the FIFO. When a complete packet (60 bytes)
has been written into the FIFO an asynchronous strobe signal is asserted.

The second part is triggered by the strobe signal. It runs on the tx_clk and
sends an acknowledgment signal back to the first part, which can de-assert the
strobe signal. The second part reads data from the FIFO and sends it through a
CRC calculation unit to the Ethernet PHY. After the 60 bytes of data, the 4
bytes of CRC are appended to the packet.

The Ethernet transmission is limited to 64 byte Ethernet frames, but that is all
that is required for the ARP reply. The interface is easily extendable to other
packet sizes, but that was not necessary to implement for the demonstrator.

9.3 Implementation
For the demonstrator, three major parts are necessary. The FPGA configura-

tion, the intra-PP software and the microcontroller software.

9.3.1 FPGA Configuration

The whole FPGA-part of the demonstrator is described in VHDL with appro-
priate instantiations of Virtex specific units, such as ROMs, FIFO and buffers.
These unit where also modelled in VHDL for the purpose of system simulation
in a general event-driven VHDL simulator.

Protocol Processor Demonstrator 107

The VHDL-code was synthesized and mapped onto the FPGA by Xilinx tools,
which also generated the configuration file. The demonstrator utilizes 71% of
the available logic resources in the Virtex 300 FPGA.

The configuration file is transferred to the FPGA via the parallel cable from a
PC.

9.3.2 Intra-PP Software

As described earlier, the intra-PP software is part of the FPGA configuration
file, but nevertheless a separate implementation flow was needed to create that
software. There does not exist any compiler for the intra-PP, so the software
must be coded in assembly language. Then a manual conversion to binary code,
described in hexadecimal format in a text file is necessary.

The text file is automatically converted to binary format by a special piece of
software on the Sun workstation. Finally that binary description is incorporated
in the VHDL description for synthesis into a ROM structure in the FPGA.

9.3.3 Microcontroller Software

The microcontroller software resides in the program memory, which is of the
same type as the data memory. It is transferred to the memory via the parallel
cable from a PC. Then the software is in binary format.

There is no compiler available for the microcontroller, so its software must be
written in assembly language. The assembly program is automatically con-
verted into binary format by an assembler.

There is an instruction set simulator, that can simulate the execution of the
microcontroller software and produce detailed register content reports for every
clock cycle. That simulator is important for the software verification as well as
for the verification of the VHDL description of the microcontroller.

9.4 Results
The demonstrator that was designed around the intra-PP works well. Several

audio files have been sent over the network and have been correctly received,
decoded and played back by the demonstrator.

The successful implementation of the demonstrator has proven the applicabil-
ity of the Linkoping architecture in the shape of the intra-PP in a real system
environment.

108 Protocol Processor Demonstrator

References
[9.1] Philip Buonadonna and David Culler, “Queue Pair IP: A Hybrid Archi-

tecture for System Area Networks”, International Symposium on Com-
puter Architecture 2002, pp. 247-256, June 2002, Anchorage, Alaska

[9.2] K. Martinsson, “Design of Application Specific Microcontroller”, mas-
ter’s thesis at Linköpings universitet, LiTH-ISY-EX-3283-2002, Novem-
ber 2002

109

10
10
10

10
Conclusions

There are very many conclusions drawn during the work with this thesis.
Many of them can be found in the publications that are the basis for this thesis.
Only the major achievements are mentioned here.

10.1 Achievements
Partitioning protocol processing into two groups of tasks, intra-packet tasks

and inter-packet tasks, allows for an efficient dual processor implementation. A
protocol processor that operates directly on the received data stream has been
implemented and proved to be able to execute the intra-packet tasks.

The intra-packet tasks of protocol processing consists of regular and irregular
tasks. The regular tasks can be efficiently executed on accelerator units, that
operate in parallel with the core of the protocol processor.

10.2 Suggestions for Future Work
The work on programmable data stream processors is in its infancy. There is

still much to be done. The protocol processor should be investigated with more
protocol stacks, varied parallelism, varied data word width and dynamic input
buffer size for example. The possibility to use similar architectures for other
data stream application than networking should be thoroughly investigated.

110 Conclusions

111

A
Acronyms

The following generally accepted acronyms are used in the thesis and pro-
vided here to make the reading of the thesis easier.

AAL ATM Adaption Layer

ADSL Asynchronous Digital Subscriber Line

ATM Asynchronous Transfer Mode

ARP Address Resolution Protocol

ASIC Application Specific Integrated Circuit

ASIP Application Specific Instruction set Processor

CIDR Classless Interdomain Routing

CPLD Complex Programmable Logic Device

CPU Central Processing Unit

CRC Cyclic Redundacy Check

DFG Data Flow Graph

DMA Direct Memory Access

DSP Digital Signal Processor

FIFO First In First Out

FPGA Field Programmable Gate Array

GB Gigabyte

112 Acronyms

Gb/s Gigabit/second

GF2 Galois Field 2

ID Instruction Decoder

IP Internet Protocol

IPv6 Internet Protocol version 6

IPC Instructions Per Clock

IPMA Internet Performance Measurement and Analysis Project

ISA Instruction Set Architecture

ISO International Organization for Standardization

kbits kilobits

LAN Local Area Network

LFSR Linear Feedback Shift Register

lsb least significant bit

MAC Medium Access Control

MAC Multiply and Accumulate

MB Megabyte

MHz Mega hertz

MII Media Independent Interface

µm micro meter

MMU Memory Management Unit

MPackets/s mega packets/second

ms milisecond

msb most significant bit

NIC Network Interface Card

NP Network Processor

ns nanosecond

OS Operating System

OSI Open Systems Interconnect

PC Program Counter

PHY Physcial Layer

QoS Quality of Service

Acronyms 113

PE Processing Element

RF Register File

ROM Read Only Memory

RTL Register Transfer Level

SIMD Single Instruction Multiple Data

SRAM Static Random Access Memory

TCAM Ternary Content Addressable Memory

TCP Transmission Control Protocol

TOE TCP Offload Engine

TTL Time To Live

UDP User Datagram Protocol

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuits

VLIW Very Long Instruction Word

XGMII eXtended Gigabit Media Independent Interface

114 Acronyms

115

B
Glossary

The following technical terms and expressions from the areas of communica-
tion, computer networks, digital circuit design and computer architecture are
used in the thesis and explanations are provided here to make the reading of the
thesis easier. Some of the explanations are inspired from [B.1] and [B.2].

AAL ATM Adaption Layer

ATM formats that specify constant or variable bit rate and connection oriented
or connection-less mode.

ATM Asynchronous Transfer Mode

A protocol for transmitting flows with variable bandwidth requirements. The
data is divided into 48 byte cells, which are combined with a header to form the
53 byte cells which are transferred by ATM.

ARP Address Resolution Protocol

A protocol that is used to derive the hardware (MAC) address starting from
the IP address. ARP uses broadcast packets.

ASIC Application Specific Integrated Circuit

Integrated Circuits (ICs) customized to perform a specific task - as opposed to
general purpose microprocessors or DSPs.

ASIP Application Specific Instruction set Processor

A processor that has an instruction set which is optimized for a certian domain
of applications.

116 Glossary

BIT

Binary character consisting of one of two possible values, 0 or 1.

BROADCAST

A service with one transmitter and many receivers, where all receivers con-
nected to the network receive the message, often by use of a broadcast address.
(Compare to Multicast, where a subset of the receivers are addressed.)

BYTE

A group of eight bits that is processed as a single logical unit.

CIDR Classless Interdomain Routing

The routing scheme that is used in the Internet. It took over after the class
based routing scheme failed to supply addresses to all medium-sized companies
and organization in an efficient way.

CPU Central Processing Unit

The core part of a computer that executes the programs. Also referred to as
processor.

CRC Cyclic Redundacy Check

A type of block check character that is very effective in detecting communica-
tions errors. CRC characters are usually 12, 16, 24 or 32 bits long.

DMA Direct Memory Access

A way to offload block memory transfers from the CPU to an accelerator.

DSP Digital Signal Processor

A type of processors specifically targeted to signal processing applications.

GB Gigabyte

1 GB=1024 MB (megabyte)=10242 kB (kilobyte)=10243 byte. A unit for
measuring data storage capacity.

Gb/s Gigabit/second

109 bit/second, a unit for measuring network capacity.

ID Instruction Decoder

The part of the processor that decodes the instructions into control signals.
The control signals are used to control the operation in detail.

IP Internet Protocol

The by far most important protocol on the network layer.

Glossary 117

IPv6 Internet Protocol version 6

The successor of IP. IPv6 provides more addresses when all IP addresses are
taken.

IPC Instructions Per Clock

A measure on how efficient a microarchitecture can execute a certain instruc-
tion stream.

ISA Instruction Set Architecture

The programmer’s view of a processor. The ISA is the interface between the
hardware that constitutes the processor and the software that can be executed on
it.

FIFO First In First Out

A type of storage element (memory) where the address is implicit in a way
that the oldest data will be read next.

LAN Local Area Network

As defined by IEEE Committee 802.6: A non-public data network in which
serial transmission is used without store and forward techniques for direct com-
munication among data stations on a user’s premises. Examples are ethernet
(802.3) and token ring (802.5).

lsb least significant bit

Lowest order bit in the binary representation of a numerical value. The lsb has
the least impact on the value of the number which is digitally represented.

MAC Medium Access Control

Part of the data link link layer (layer 2) that interface to the physical layer.

MAC Multiply and Accumulate

A common operation in digital signal processing, which has its own instruc-
tion in many DSPs and also its own execution unit, all with the same name.

MB Megabyte

1 MB= 1024 kB(kilobyte)=10242 byte. A unit for measuring data storage
capacity.

MHz Mega hertz

1 MHz = 106 Hz. A unit for measuring frequency.

MII Media Independent Interface

The interface between the PHY and the MAC in Ethernet and fast Ethernet.

118 Glossary

µm micro meter

1 µm = 10-6 m. A unit for measuring distance.

msb most significant bit

Highest order bit in the binary representation of a numerical value. The msb
has the most impact on the value of the number which is digitally represented.

MULTICAST

A service with one transmitter and more than one addressed receiver. (Com-
pare to broadcast - With broadcast, all receivers on the network are addressed.
With multicast, a subset of the receivers are addressed.)

NETWORK

A set of terminals, the communications links that joint them, and the protocols
that allow them to function together and communicate with each other.

NETWORK LAYER

Layer 3 of the OSI model. It defines how data packets are switched and routed
through the network.

NIC Network Interface Card (Controller)

An interface that is usually located within a terminal and which connects a
LAN to the terminals address, data and control buses.

NP Network Processors

A type of processors specifically targeted to network applications.

ns nano second

1 ns = 10-9 s (seconds). A unit for measuring time.

OS Operating System

The program that manages the execution of the applications in a computer.

OSI Open Systems Interconnect

International Standards Organization (ISO) model of how data communica-
tions systems can be interconnected. Communication is partitioned into seven
functional layers. Each layer builds on the service provided by those under it.

PACKET

A grouping of data, typically from 1 to 1500 characters in size, which usually
represents on transaction. A packet is always associated with an address header
and control information.

Glossary 119

PHY Physcial Layer

The lowest layer (layer 1) of the OSI Model that defines the physical medium
for data communications.

PROTOCOL

In general, any agreement that facilitates communications. In data communi-
cations, a public (standard) or private (proprietary) specification for communi-
cations between peer layers in a layered architecture.

QoS Quality of Service

Quality of service in computer networks means that different connections or
flows can get different priority. For example QoS can be used to guarantee min-
imum bandwidth for real-time traffic.

PC Program Counter

A storage element that stores the address to the current instruction in the pro-
gram memory.

RF Register File

The register file is the primary computing buffer of a processor. Normally
operations can only be conducted on values which are stored in the register file.

ROM Read Only Memory

A storage element which cannot change content.

ROUTER

A device that connects two or more LANs to each other and that operates at
OSI Model layers one through three. A router is able to select among multiple
paths to route a data packet through the network based on an address sent with
the data.

ROUTING TABLE

A table of the addresses of the various nodes on the LANs served by a bridge
or other internet working device. The routing table allows frames to be for-
warded to the LAN where their destination node is located.

RTL Register Transfer Level

An abstraction level for describing the functionality of digital circuits. RTL
describes the registers in the design and how data can move between them.

SIMD Single Instruction Multiple Data

A classification of computers. In a SIMD system one instruction stream
applies to many data streams.

120 Glossary

SRAM Static Random Access Memory

The fastest type of computer storage for information.

Superscalar

A type of processors that can execute more than one instruction per clock
cycle by having multiple execution units. The scheduling of instructions is done
in hardware at runtime.

TCP Transmission Control Protocol

A transport protocol that delivers reliable end-to-end communication by the
use of connections. TCP is often used with IP, TCP/IP.

TERMINAL

The device on a network that sends or receives data. A terminal is often a
computer.

TOE TCP Offload Engine

A device that is used to fully or partly offload the TCP processing from the
host CPU.

TTL Time To Live

A header field in the IP header that was initially meant as the time to live for a
packet in seconds, but due to the implementation problem is used as a counter
of number of hops to live.

UDP User Datagram Protocol

A transport protocol that delivers unreliable best-effort communication.

VHDL VHSIC Hardware Description Language

A description language for digital circuits. VHDL can be used to write RTL
descriptions of circuits.

VLIW Very Long Instruction Word

A type of processors that can execute multiple operations per clock cycle. The
scheduling of operations is done in the compiler.

XGMII eXtended Gigabit Media Independent Interface

The interface between the PHY and the MAC in 10 Gigabit Ethernet.

References
[B.1] Longman Comprehensive Dictionary of Computing, Longman Asia Lim-

ited, ISBN 962 359 417 8.

Glossary 121

[B.2] “Glossary of Communication Terms”, Intersil Application Note
AN9640.1, December 1996.

122 Glossary

