Specification of a configurable general-
purpose protocol processor

T. Henriksson, U. Nordgvist and D. Liu

Abstract: A general-purpose protocol processor is specified with a dedicated architecture for
protocol processing. The paper defines a functional coverage, analyses the control requirements,
and specifies functional pages and a controller unit. The general-purpose protocol processor is for
network terminals, and therefore routing is not completely supported. However, it should be
possible to use it as part of a router with some minor modifications. The general-purpose protocol
processor is partitioned into two parts: a configurable stand-alone part and a program based
microcontroller. The configurable part performs the protocol processing without any running
program. The processor does not execute any cycle based program; instead execution is controlled
by configuration vectors and control vectors. The microcontroller assists with the interface to the
host processor and handles the configuration. It is concluded that by partitioning the control into
three levels, the architecture is flexible and verification is simplified. The proposed architecture also

has higher performance and lower power dissipation than other solutions.

1 Introduction

Computer networks are developing very fast and more and
more protocols are emerging for different applications. At
the same time as the protocols are becoming more complex
the transmission speeds also increase. This leads to a
situation where the electronic equipment has a hard task to
keep up with the speeds of the optical links and the
complexity of the new protocol standards. Many companies
and universities are working on new types of architectures
for switches and routers. _

For network terminals the scene is different, and very few
projects aim at dealing with the terminal, which is connected
to a high speed network. The processing in the terminal also
includes the data transformation from high bandwidth
network to low bandwidth applications. For terminals, two
kinds of protocol processors are available on the market,
one being the single protocol ASIC (application specific
integrated circuit) without flexibility and the other the
general purpose processor with limited performance. It is
clear that a new type of architecture for protocol processing
in network terminals is needed to reach the real-time
processing speed for gigabit/s or higher speeds with enough
flexibility [1-3].

The aim of this paper is to extend the specification of a
protocol processor [4] which is based on configurable
functional pages. The critical parts of the processor have
been implemented and simulated. The results of these
simulations are provided and the architecture is compared
to conventional solutions to clarify the value of this type of
architecture.

© IEE, 2002
IEE Proceedings online no. 20020443
DOI: 10.1049/ip-cds: 20020443

Published online 18 July 2002, Paper first received 14th September 2001 and in
revised form 5th April 2002

The authors are with the Department of Electrical Engineering, Linkdping
University, SE-581 83, Linkdping, Sweden

198

2 Functional coverage

To cover both the compatibility and flexibility the
architecture will include the most frequently used protocols,
so that the architecture can be simple and still flexible. It
means there are no problems to later include more
protocols. This work is concentrated on different types of
Ethernet, with IP/TCP-UDP (Internet protocol/transmis-
sion control protocol-user datagram protocol) [5] on top.
This can be seen as an instance of the general-purpose
protocol processor (GPPP); see Fig. 1. The same main
architecture with other functional pages (FPs) can be
used for totally different protocol stacks. Deciding which
FPs to include is the first level of configuration and
has to be done before manufaturing the GPPP. The
GPPP receives frames and processes them at real time
speed, but it does not create and send frames at the
same speed. The interface to the physical layer is the MII/
GMII (media independent interface/gigabit media indepen-
dent interface) [6] and the interface to a host processor is in
the middle of the TCP-UDP layer. As a platform for
protocol processing the GPPP performs all Ethernet
processing, all IP processing and TCP-UDP processing
for terminals.

To cover the protocols IP/TCP-UDP also ARP (address
resolution protocol), RARP (reverse address resolution
protocol), ICMP (internet control message protocol) and
IGMP (internet group management protocol) have to be
managed. Packets of these control oriented protocols are
not that common and there is no need to design specialised
hardware for them. Instead the functions can be performed
in software in the host processor with a relatively small total
overhead. These kinds of packets are only recognised and
then passed on to the host processor. The complete list of
jobs can be found in the Appendix.

3 General architecture proposal

The proposed architecture is shown in Fig. 1. The GPPP
consists of two parts: a deep pipeline serial processor

IEE Proc.-Circuits Devices Syst., Vol. 149, No. 3, June 2002

[MI/GMII inten‘ace—l

[
<— Q
D —
0 .
o) >
L P GK’J
E —m = 3
o < 3 (o4
[- @ » 2 Tt
3 £ 2
a [—P ° k=
© !l 5
a 3 Q
J_J © » & B
k)
z - -2
A E |l &
£ > O
y e
-
LI
controller Ll
& >

[ile;
- pcontroller core

- host processor interface
« data buffer
+ configuration vectors

+ program memory

counter -

DPSP

Fig. 1 Overview of architecture
The FPs petform the actual protocol processing
DPSP = deep pipeline signal processor

(DPSP) and a microcontroller (1C). The DPSP is based on
software reconfigurable functional pages as well as a
software reconfigurable controller and counter unit
(C&C). The DPSP does not perform a cycle based program
execution. One instruction word is a configuration vector
for the complete execution of an FP. The data in the current
data packet selects the next control vector, so this is a data
driven control process. It offers high performance and low
power operation combined with high flexibility within the
protocol processing area.

The uC is used to configure the DPSP and to interface to
the host processor. The DPSP runs stand-alone after initial
configuration.)

The actual processing is performed in software reconfi-
gurable FPs [1]. Each of these FPs has its own specific task.
The FPs are fed with data from a parallelisation/
synchronisation unit (PSU); see Fig. 2. Data are pipelined
and the FPs will produce results at different times. To
evaluate the results and take care of extracted values the
C&C supports the FPs. The FPs that are needed are
specified in a later section.

Each FP is autonomous as it performs an operation after
configuration on a given start signal. The start signal is
generated from the PSU and is given to the FPs by the
C&C. Communication directly between the FPs is mostly
avoided; all FPs are controlled by the C&C and send flags

MIVGMII T l

32
parallelisation/ JY "‘ }_'— - =
synchronisation

unit Y
(PSU)

FP FP

Fig. 2 Data are synchronised and parallelised; thereafter one
pipeline register is situated between every FP to decrease fan-out
requirements

{EE Proc.-Circuits Devices Syst., Vol. 149, No. 3, June 2002

to the C&C when they have something to report. In this
way the verification of the FPs is greatly simplified and the
architecture is more flexible. Every FP is controlled by a
counter when to be active. Since three layers of protocols
are being processed at the same time, FPs cannot be reused
on different layers.

4 Control requirements

Protocol processing is a control intensive operation with
different processing tasks and heavy data dependency, see
Fig. 3. The control of the FPs can be divided into two
different types:

e configuration of the DPSP depending on the protocols
used in the network

® control of the DPSP depending on the received data.

The first part, the configuration, is handled by the uC,
and has to be finished before the packets arrive at the
terminal. The second part is conducted by the C&C on a
high level and by the FPs internally on a low level. When
the packet arrives at the terminal the control signals are
dynamically decided and different for each arriving packet,
dependent on the contents of that packet.

4.1 Layer transparent and dependent control
When a frame/packet for some reason has to be discarded,
all FPs should be shut down to save power and the GPPP
should wait in idle mode until the next frame arrives. This
calls for enable control of each FP. This kind of control,
that applies to all layers in the protocol stack is called layer
transparent control and affects the whole GPPP. In the case
of, for example, an ICMP packet, the FPs that deal with
TCP and UDP tasks can be disabled, but not the rest of the
GPPP; this would be the opposite case, the so-called layer
dependent control. So each FP will be assigned to a set and
each such set will be associated with the processing of a
certain layer in the protocol stack.

4.2 Peripheral control
The payload has to be delivered to the application software
of the host processor in a configurable way. This is taken

199

|
parallelise

check IP header checksum

check Ethernet destination address

extract Ethernet parameters

ARP or RARP?

send whole
check IP destination address Ethernet pay-
load to
software of
host pro-

IPv4 IPv4 or |Pv6?
IPv6
extract IP total length and header length

extract [P payload length

skip extension headers

determine transport layer protocol
send whole
IP payload
extract TCP/UDP payload to sf’of¥ware

of host

check CRC
processor
check TCP/UDP checksum
Y
reassemble
Fig. 3 Flowchart that illustrates operation
care of by the peripheral control. The peripheral control
consists of the payload delivery control and memory [FUReEE
allocation assistance. These are both implemented in the . IS)AFP
uC. ITLFEFJ
IDAFP
I . [IHCFP 1
5 Specification of functional pages IVFFP
. . . . EDAFP
Fig. 3 shows job allocation and order scheduling. As can be [EcCFP |

seen, the Ethernet checksum calculation FP (ECCFP) is
active at the same time as the other FPs. Since the data are
pipelined the concurrency is dependent on how the FPs are
placed along the pipeline. An example of the scheduling
is shown in Fig. 4. FPs will be placed in order to get
the shortest possible pipeline and tightest scheduling. The
interface to the FPs can be seen in Fig. 5. All signals
and flags connect to the controller unit except the data and
the clk. Each FP is explained in behavioural level detail
below:

5.1 Ethernet checksum calculation FP (ECCFP)
The ECCFP receives a start signal and then performs CRC-
32 calculation on all data passing through. In the end of the
frame the FP will receive a frame end signal and compare

200

time

Fig. 4 Principal scheduling of FPs for a TCP on itop of IPv4
example

the calculated value to the received frame check sequence.
On nonequality a discard flag is sent to the C&C.

5.2 Ethernet destination address extraction and
comparison FP (EDAFP)

The EDAFP is configured with the address of the terminal
where the GPPP is situated. The FP receives a start signal
and extracts and compares the received address to the
configured one and checks if the extracted address is a

IEE Proc.-Cireuits Devices Syst., Vol. 149, Ne. 3, June 2002

clk
data
FP

enable

32
;- m n
discard flag optional flags start optional control signals

Fig. 5 General interface of an FP

multicast address. If the frame is not addressed to this
network terminal a discard flag is sent to the C&C.

5.3 Ethernet length/ethertype field extraction
FP (ELTFP)

The ELTFP extracts the length/ethertype field. If an
ethertype is given, the length is expected from the ITLFP.
The value is distributed by the C&C. A counter keeps track
on how much data that has been received. When the
counter reaches the length value a frame end flag is sent.
This FP also gives the ethertype value to the C&C so
that special jobs, like ARP and RARP, can be handled
correctly.

5.4 IP header checksum calculation FP (IHCFP)
The THCFP is active if the IP version field is IPv4. It then
calculates the checksum by performing 16-bit one’s
complement addition of the header fields and makes sure
the result is 0. If not, a discard flag is sent to the C&C.

5.5 [P version field extraction FP (IVFFP)
The IVFFP extracts the IP version field and sends a flag to
the C&C telling which version of IP is used.

5.6 [P destination address extraction and
comparison FP (IDAFP)

The IDAFP is configured with the terminal address for the
application. The FP receives a start signal and IP version
information and extracts and compares the received address
to the configured one. It also checks if the extracted address
is a multicast address. If it is an unrecognised address a
discard flag is sent to the C&C.

5.7 IP header length extraction FP (IHLFP)

The IHLFP sends a flag when the IP header has been
_received. In IPv4 the THL field specifies the length. In IPv6
the header is always 40 bytes plus optional extension
headers. The extension headers, except fragmentation, in
IPv6 are not processed, since they concern routers and
management protocols.

5.8 [P total.length extraction FP (ITLFP)
The ITLFP extracts the length field to send the length value
to the ELTFP.

5.9 IP protocol/next header extraction FP
(IPNFP)

The IPNFP extracts the protocol field from the IP header
and sends a flag to the TCP-UDP FPs to tell if the present
packet is TCP or UDP. If there exist extension headers in
IPv6 packets these are skipped and the extension header
length field is used to find out when the next header starts.
This is done until a known header type is received. Known
headers are TCP, UDP, ICMP, IGMP and ICMPv6.

IEE Proc.-Circuits Devices Syst., Vol. 149, No. 3, June 2002

5.10 IP reassembly FP (IRAFP)

The IRAFP extracts the fragment fields from the IPv4
header and searches for a fragment extension header in
1Pv6. If fragmentation is present this FP manages payload
data to be stored in memory on the right place and controls
the TUCFP to process the right data. To assist the IRAFP,
memory tables and timers for reassembly are present.

5.11 TCP-UDP checksum calculation FP
(TUCFP)

The TUCFP calculates the checksum by performing 16-bit
one’s complement addition of the whole packet, including
some IP header fields. If the result is nonzero a discard flag
is sent to the C&C. Multiple back-up accumulator registers
are used in order to be able to calculate checksums of
multiple packets, since fragments of them may arrive nested.

5.12 TCP-UDP packet length counter FP
(TULFP)

The TULFP extracts the length value and provides this to
the software of the host processor. The length is also needed
for reassembly and checksum calculation.

6 Ethernet checksum calculation functional page

This section provides a more detailed description of the
ECCFP and describes the issues with a high-speed
implementation. The ECCFP manages the cyclic redun-
dancy check (CRC) of the Ethernet frame. The CRC is
computed on the whole Ethernet frame, and after the frame
check sequence (FCS) has been received the result must be
all zeros. The FCS has been calculated by the sender and is
the remainder of the data divided by the CRC polynomial.

Various types of CRC implementations have been
investigated [7], but for this instance of the GPPP only
one type of CRC, with fixed polynomial, is needed. The
fastest way to do this is to use a parallel implementation.
The wider the words that are used, the lower the clock
frequency can be, but the complexity also grows with the
word width. However, the complexity and thereby the
critical path delay does not grow as fast as the word width
increases so in general an architecture which calculates
more bits in parallel will support higher throughput [8]. It
has to be considered that data in Ethernet frames can be of
any number of bytes and if more than § bits are computed
in parallel the initial and final words may not be of the
same width. We use a 32-bit parallel implementation,
which is a good trade-off between complexity and
performance. As in [9] the register elements that are
starting points of critical paths have been duplicated. This
is done in a way so that the driving strength can be adjusted
to minimise the delay. Combinational logic in the most
critical paths has been pushed over the clock cycle
boundary defined by the registers to a path with less
latency. Before the output this has to be compensated for.
In a 0.18 um process technology implementation, the static
timing analysis (STA) provides the result of 10.53 Gbit/s
throughput operation for the ECCFP. The STA was done
with extracted parasitics from the layout.

7 TCP-UDP checksum calculation functional page

The other FP that possibly can limit the performance of the
GPPP is the TUCFP. This FP has a relatively straightfor-
ward task for most packets. When the IP header arrives, the
pseudo header must be extracted and the 1’s complement
addition is used to add up 16-bit words of the pseudo
header and the IP payload.

201

The first observation, that complicates the operation a
little bit, is that the required upper layer payload length is
not present in the TCP header, so it must be calculated as
the IP total length—IP header length. The IP header length
is specified in units of 4 bytes, so it must first be left shifted
by two bit positions.

The second observation, that complicates the operation
much more, is that fragmented IP packets must be dealt
with. The fundamental problem is that the GPPP does layer
2-4 processing at each fragment when it arrives, i.e. some
layer 4 tasks are performed before the IP packets are
reassembled. For the TCP UDP checksum computation this
means that the checksums for each fragment are calculated
individually and when more fragments arrive they are
combined with the already existing partial checksum. It has
to be taken care of that the pseudo header is included
exactly once in the computation and duplicated fragments
must be discarded before being computed. There is also a
need for a time-out if all fragments do not arrive within a
certain time limit. The TUCFP makes use of the IRAFP for
some of this functionality.

The TUCFP has been implemented in VHDL and the
result is that the operation in an 0.18 pm process technology
can support transmission speeds of up to 11.55 Gbit/s [10].
The STA was done in the same manner as for the ECCFP.

8 Controller and counter unit

Fig. 6 shows the general structure of the C&C. The C&C
has to manage high-level control only, since FP specific
control is handled within each FP. It receives flags from the
FPs, schedules the pipeline delay, and sends control signals
to the FPs. The controller unit is based on a configurable
finite state machine (FSM), which controls the discarding or
delivery of packets depending on the flags it receives from
the FPs. When a flag that tells the C&C to discard a packet
is received, all activities are switched off except for the PSU,
which looks for the next frame.

flags
N 4 control signals

Y T
clk
—>

pC
configurable | IF
FSM

\

Fig. 6 Controller and counter unit overview

If a packet is received without any problem, the C&C
notifies the yC and tells it where in memory the packet can
be found. The C&C also manages memory allocation and
storage of payload with help from the pC.

9 Discussion

The unique architecture introduced by us uses extensive
parallelism and configurable control to cut down the
hardware redundancy and so the power- and time-
consuming characteristics of a programmable processor.
The critical path to the real-time speed limit has been found
in the ECCFP. If a data width of 32 bits is used it is possible
to support 10 Gbit Ethernet. In a conventional solution, the
CRC check is performed in the MAC controller, but all
network- and transport-layer processing is performed by the
host processor. The GPPP relieves the host processor from

202

this burden, which is of great importance as the network
transmission speed increases. Other dedicated processors,
but still program based, can solve the same tasks but suffer
from much higher power dissipation than the GPPP. Also
other dedicated protocol processing solutions normally
make use of a layer-based pipelining technique [11], which
introduces latency. This latency is eliminated in the GPPP
since all layers are processed concurrently.

10 Conclusions

By using the proposed architecture and control, a config-
urable GPPP is accomplished. The configuration-based
architecture makes hardware reuse and wide functional
coverage possible and moves unnecessary hardware design
to a compiler. The control is partitioned into three different
parts, FP internal control, the C&C and the uC. This
partition simplifies verification and increases the flexibility
and supports future changes in the protocols. The proposed
architecture has higher performance and lower power
dissipation than its competitors.

The project is under functional implementation phase,
approaching the delivery of the payload to the host
processor. Studies are also being made concerning problems
occurring when not buffering the whole Ethernet frame and
how to solve the reassembly of IP packets in hardware.

11 Acknowledgments

This study was supported by the Intelect program of the
Swedish Foundation for Strategic Research (SSF). The
Authors would like to thank Dr. George Liu, Ericsson
Research, for interesting discussions.

12 References

1 LIU, D.,, NORDQVIST, U., and SVENSSON, C.: ‘Configuration-
based architecture for high speed and general-purpose protocol
processing’. Proceedings of SIPS’99, Taiwan, pp. 540-547

2 GERORGIOU, C. J, and LI, C.-S.: ‘Scalable protocol engine for
high-bandwidth communications’. Proceedings of IEEE international
Conference on Communications, Towards the knowledge millennium,
Montreal, 1997, Vol. 2, pp. 1121-1126

3 YANG, M, and TANTAWY, A. ‘A design methodology for
protocol processors’. Proceedings of Fifth IEEE Computer Society
workshop on Future trends of distributed computing systems, 1995,
pp. 376381

4 HENRIKSSON, T., NORDQVIST, U., and LIU, D.: ‘Specification
of a configurable general-purpose protocol processor’. Proceedings of
CSNDSP 2000, Bournemouth, UK, pp. 284-289

5 TANENBAUM, A. S.: ‘Computer networks’ (Prentice Hall PTR,
1996, 3rd edn.)

6 KADAMBI, J., CRAYFORD, I, and KALKUNTE, M.: ‘Gigabit
Ethernet’ (Prentice Hall, 1998)

7 NORDQVIST, U., HENRIKSSON, T. and LIU, D.. ‘CRC
generation for protocol processing’. Proceedings of Norchip 2000,
Turku, Finland, pp. 288293

8 PEI, T.-B., and ZUKOWSKI, C.: ‘High-speed parallel CRC circuits
in VLSD, IEEE Trans. Commun., 1992, 40, (4), pp. 653-657

9 HENRIKSSON, T., ERIKSSON, H., NORDQVIST, U., LARS-
SON-EDEFORS, P., and LIU, D.: ‘VLSI implementation of CRC-32
for 10 Gigabit Ethernet’. Proceedings of ICECS 2001, Malta, pp.
1215-1218

10 PERSSON, N.: ‘Specification and implementation of a functional
page for internet checksum calculation’. Master’s Thesis, Link6ping
University, March 2001, No. LiTH-IFM-EX-959

11 KAISERWERTH, M.: ‘The parallel protocol engine’, IEEE/ACM
Trans. Netw., 1993, 1, (6), pp. 650-663

13 Appendix: List of jobs

Ethernet/802.3 CRC check, Ethernet/802.3 destination
address check, Ethernet/802.3 payload protocol determina-
tion, IP version determination, ARP/RARP recognition,
IPv4/IPv6 destination address check, IPv4 header checksum
check, IP reassembly support, IP payload protocol
determination, TCP packet length determination and
TCP/UDP checksum check.

IEE Proc.-Circuits Devices Syst., Vol. 149, No. 3, June 2002)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

