
Abstract
Computer networks equipment present a bottleneck for
further increase of the capacity in the networks. The termi-
nals have problems to keep up with the network speed
when using general purpose processors for the protocol
processing. We present a novel processor architecture, that
works in-line with the data flow and does not use a tradi-
tional von Neuman architecture. The program is contained
in three lookup tables within the processor core, which
allows for one cycle if-then-else and switch-case-case...
execution. The processor is estimated to be able to handle
a 10 Gb/s Ethernet connection when implemented in a 0.18
micron technology.

1. Introduction

During the last years, the capacity of computer net-
works has exploded and today it is no longer the physical
transmission media that limits the performance. Instead
computer networks equipment has become the bottleneck
[2]. Many research efforts have been made in order to
make fast switches and routers [3] [4], but less effort has
been put into the network terminals. However, it has been
stated that a traditional computer, that is connected to a
Gigabit Ethernet uses 20%-60% of its processing power
for protocol handling and connecting a traditionally
designed computer to a 10 Gigabit Ethernet is totally in
vain [5].

The solution to the processing problem is host proces-
sor off-loading. Basically the protocol processing func-
tionality should be executed by another device, working in
parallel with the host processor. This requires not only new
network interface card (NIC) design, but also operating
system (OS) rewriting. Although major redesign efforts are
necessary, this is seen as the only way of increasing the
actual network capacity to the end user.

To modern computer networks not only traditional
computers are attached, but also various kinds of embed-
ded systems and IP telephones. The IP telephones show an
interesting feature of having a very low application bitrate
and being attached to a high-speed network. This asks for
an architecture, which splits the processing into two parts.

One, which works at network speed and handles the net-
work protocols and another, which works at the application
speed and handles the application processing.

In this paper we present a protocol processor architec-
ture consisting of a core and accelerators, that is dedicated
for processing network protocols at network speed as a
packet is received. Although this paper deals with Ethernet
and IP, the same architecture can be programmed for other
protocol stacks. The architecture is protected by a US
patent [1], which is pending at the time of writing. The rest
of the paper is organized as follows. In section 2, we
describe the network terminal system and how the protocol
processor fits into it. In section 3, the internal architecture
of the core protocol processor is described and in section 4
the accelerators are explained. Section 5 provides a discus-
sion on the efficiency of the architecture and compares it to
other existing processors. Finally, in section 6, we draw
some conclusions and outline future work in this area.

2. System perspective

In a network terminal, there are many bottlenecks, that
have to be considered. It is important to understand the
fundamental functionality and performance limits before
designing any new processor architecture.

2.1. Traditional implementation

Traditionally a computer has received packets through
a NIC, the Ethernet packet layer is processed on the NIC
and the packet is buffered on the NIC, before it is trans-
ferred to the main memory. Then the IP header and the
TCP or UDP header is processed by the OS. Since this
implies calculating the checksum over the whole packet,
the whole packet has to be read from memory. The OS can
also have the memory area divided into one kernel part, for
the OS, and one user part, for the applications. This
implies a consecutive write operation of the whole packet
as well. Figure 1 shows how this works.

2.2. Fundamental functionality

The above described process is not necessary in order

Embedded Protocol Processor for Fast and Efficient Packet Reception

Tomas Henriksson, Ulf Nordqvist and Dake Liu
Dept. of Electrical Engineering, Linköpings universitet

SE-581 83 Linköping, Sweden
E-mail: {tomhe, ulfnor, dake}@isy.liu.se, Phone: +46-13-28{8956, 2903, 1256}

to fulfill the fundamental functionality of packet reception,
which is to check that the packet is received correctly, des-
tined for the correct terminal and then deliver the payload
to the application. That means, that the packet payload
only has to be buffered in memory once, when changing
from network speed to application speed. To do so how-
ever, requires that the network protocol processing is done
at network speed and therefore a real-time system is
required. It also requires the memory to allow instant
writes from the NIC at any time.

2.3. Protocol processor environment

After having realized this, it is clear that as much as
possible of the protocol processing must be off-loaded
from the host processor. This can be done in different ways
and what is described here is just one possibility. The pro-

tocol processor that we present operates on one frame at a
time and therefore needs support in order to update con-
nection state variables and trigger the sending of packets,
for example acknowledgments. Since those tasks can be
done concurrently with application processing and recep-
tion of the next packet, we assume that they are handled by
a processor of traditional design. We refer to that processor
as the supporting microcontroller or simply, theµC. The
protocol processor is most suitable for protocols that do
not include processing over several packets, e.g Ethernet,
IP and UDP, if we assume that the IP reassembly can be
handled by theµC. The suggested packet reception archi-
tecture is depicted in figure 2.

3. Protocol Processor Architecture

The previous section described the environment for the
protocol processor and thereby put some constraints on the
architecture. Instead of having the data in a memory, the
data arrives at constant network speed on an input port.
This makes the protocol processor a data stream processor
for in-line processing. Since the data does not have to be

Figure 1: Traditional packet reception

Ethernet PHY

Ethernet MAC

DMA Controller

Network Interface
Card

IP processing

TCP/UCP process-
ing, including copy

to user memory

Application process-
ing

Packet Buffer

Kernel Memory
Area

Host Processor

User Memory Area

Figure 2: Suggested new packet reception

Ethernet PHY

Protocol Processor

DMA Controller

Network Interface
Card

Application process-
ing Host Processor

User Memory Area

Supporting micro-
controller

loaded from memory, traditional registers are not neces-
sary. Therefore the processor has very few internal states,
the most important is the program counter. Others are just
some status bits and a dynamic input buffer, which will be
described later. The architecture is radically different from
a von Neuman architecture and is referred to as the Linko-
ping architecture in table 1,which lists the main features.

3.1. Important instructions

The fundamental functionality translates into check-
sum calculations, field matching and memory management
when looking at it at a lower level of abstraction. The
checksum calculations are of two types, CRC and 1’s com-
plement addition. The field matching operations, when
described in a sequential programming language, trans-
lates into compare instructions and if-then-else and switch-
case-case... control flows. The key is to implement an
instruction set architecture, which supports real-time fast
execution of such programs.

3.2. Core architecture

Thus we have designed the architecture which is out-
lined in figure 3. The protocol processor also contains
accelerators for checksum calculations, which are not
shown in the figure.

The packet is received through the dynamic buffer,
which normally holds only one word of data. The proces-
sor architecture is general and the word length,l, can be
chosen at design time. In our prototype we have usedl=32
bits as the word length. The dynamic buffer can hold sev-
eral words of data if that is required. It is controlled from
the instruction. Attached to the dynamic buffer is also a

field extraction unit, which selects a field from the buffer
content. That field is forwarded to the compare units (CU),
an array ofn comparators. The reference values for these
comparators come from the parameter code book (PCB).
The PCB has an output ofn words. Internally it is a lookup
table, with k lines of eachn words. A pointer from the
instruction decoder (ID) selects which line to forward to
the output.

The output from the compare units is a vector ofn bits,
in which each bit represents a match or a non-match. These
n bits are used to select an output from the control code
book (CCB). The CCB is another lookup table, that con-
tains relative jump addresses. It consists ofk lines of each
n addresses. The same pointer that is used for the PCB is
also used for the CCB in order to select one of thek lines.
The n output bits from the compare units select which
address to forward to the next program counter generation
(NPCG). The NPCG calculates the next program counter
value, which is used by the program counter (PC). The PC
is a simple register, which is updated every clock cycle.
The output is used to select an instruction from the instruc-
tion table (IT). The IT is a lookup table, which contains the
instructions for the protocol processor.

Since the only register in the chain is the PC, a com-
plete switch-case-case... statement can be executed in one
clock cycle as long as the branches are not more thann. An
additional default branch can also be handled.

Topic von Neuman Linkoping Advantage

Data RF and memory input port
load operation

not needed, less
memory needed

Program In memory Distributed
load operation

not needed, less
memory needed

If
control
flow

pipeline penalty no penalty
real time

behaviour, faster

Case
control
flow

many
instructions

single
instruction

real time
behaviour, faster

Regular
tasks

ALU Accelerators
Higher degree of

parallelism

Table 1. Architectural features
Figure 3: Protocol processor core overview

Program Counter
(PC)

Instruction Table (IT)

Instruction Decoder (ID)

Parameter Code
Book (PCB) Compare Units

Control Code Book
(CCB)

Dynamic Buffer
with Field

Extraction Unit

Next Program
Counter Generation

(NPCG)

Input Port

The program is split up into three parts, which are all
contained in the processor core. The IT contains the core
instruction, the PCB contains the reference values, and the
CCB contains the relative jump addresses.

3.3. Example

An example is used to illustrate how this works. Let us
look at the C like code in figure 4.

That code will be executed in one clock cycle in the
protocol processor and it works like this. The instruction
specifies a line in the PCB and CCB, say line 3. On line 3
in the PCB the reference values 0x0800, 0x0806, and
0x8035 are stored. In the CCB on line 3 the corresponding
relative jump addresses are stored, so let us assume that
this instruction is on linej in the IT. And let us further
assume that the routine processIP() starts on linej+14,
processARP() starts on linej+23 and processRARP()
starts on linej+32. Then the content of linei in the CCB is
14, 23, and 32. In this examplen=3 is thus sufficient.
When deciding on the value ofn, one has to consider the
switch-case-case... statement with the most branches in all
the programs one wants to be able to execute in the proto-
col processor. Figure 5 shows the example operation, when
ethType = 0x0806 andn=4.

3.4. Programming interface

The protocol processor core is programmed through a
special configuration interface before the operation starts.
During operation the configuration can be changed at any
time by writing new values to a certain position in a lookup
table. For example if a new connection is opened and a
new UDP port will accept packets, this port number is
stored on the adequate position in the PCB. TheµC is

responsible for the configuration and the incremental
updates. It therefore has a copy of the configuration in its
memory.

3.5. Implementation

The protocol processor core instruction set has been
implemented in a cycle true C++ simulator, that simulates
the structure of the architecture. It uses binary configura-
tion data for the lookup tables. The assembly instruction
set is finished and some key components have been imple-
mented in VHDL.

4. The accelerators

The protocol processor core, that has been described so
far only handles the field matching and decision making
part of the packet reception processing. The other parts,
checksum calculation and memory management, are han-
dled by accelerators. The main reason for dividing the pro-
cessing like this is that the field matching and decision
making uses only the packet headers, but the checksum
calculation and the memory management uses the whole
packet. Since the core and the accelerators use the same
data at the same time, the protocol processor is best
described as a MISD architecture in the processor classifi-
cation scheme of Flynn [6]. The program flow of the dif-
ferent parts is also completely different. The field
matching part consists of almost only if-then-else and
switch-case-case... statements, but the checksum calcula-
tion consists of bitwise operations, which are the same for

Figure 4: Code example

switch (ethType) {
case 0x0800:

processIP();
break;

case 0x0806:
processARP();
break;

case 0x8035:
processRARP();
break;

default:
handleException();
break;

}

Figure 5: Example operation of PCB and CCB

0800 0806 8035 0000

14 23 32 00

= = = =

0806

23

PCB

CCB

0 1 0 0

3

From the
field extrac-

tion unit

From the
instruction
decoder

each word of data, much like signal processing algorithms.
Memory management implies storing the payload in the
correct memory location based on the result of the field
matching operations. So that later on the application can
access the payload directly.

4.1. Communication

The accelerators have to communicate with the proto-
col processor core in order to synchronize the operation.
This is done through synchronous control signals and
flags. The protocol processor core gives start signals and
other control signals to the accelerators. When they have
finished their operation they set flags, which the protocol
processor core can evaluate.

4.2. Implementations

Implementations for a CRC-32 accelerator [7] and a
TCP/UDP checksum calculation unit [8] have already been
done as a part of our first generation protocol processor
[9]. These show that the accelerators can operate at high
throughput rate, approximately 10 Gb/s and do not require
much silicon area.

5. Evaluation and discussion

In this section we discuss the performance of the proto-
col processor and provide an estimation. We also compare
our solution to other work.

5.1. Critical path analysis

The protocol processor does not use the pipelining
technique, since that would not allow the single cycle exe-
cution of if-then-else and switch-case-case... statements.
This implies that the program memory has to be kept small
in order to be able to store it inside the processor core, in
the three lookup tables IT, PCB, and CCB. The critical
path is the longest circular path in figure 3. That is, from
the PC, through the IT, the ID, the PCB, the CU, the CCB
and the NPCG then back to the input of the PC. The ID
does not contribute to the critical path, since the assembly
instruction format is chosen so that the pointer for the PCB
is directly stored in the instruction word. The delay
through the IT is that of the multiplexer, that selects the
correct instruction. Similarly, the delays through the PCB
and the CCB also are multiplexer delays. All of these from
the control signal input to the output. Some of the control
signals have high fanout, which increases the delay. Except
from the multiplexer delays there is also the delay in the
compare unit, which is a comparison and in the NPCG,
which is an addition.

The maximum program size influences the delay. If we
definem as the number of instructions in IT andp as the
number of bits in the instruction word in addition tok, l,
andn as defined earlier, we can describe the delay easily.
First there is anm-to-1 multiplexer of widthp. Then ak-to-
1 multiplexer of widthn*l . Then a comparison ofl bits.
Then ann-to-1 multiplexer of width log2(m). Finally there
is the addition of log2(m) bits.

We have a test program that checks the Ethernet desti-
nation address, demultiplexes IP and ARP packets, checks
the IP destination address, demultiplexes UDP and TCP
packets and checks the UDP port. For that test program,
we use 32 bit words and 32 bit instructions. Further we
have 6 lines in the PCB and the CCB, we use 27 instruc-
tions and we use maximally 3 branches in a case statement.
This leads to the following configuration,k=6, l=32,m=27,
n=3, andp=32. If we round up to the nearest potential of
two we getk=8, l=32,m=32,n=4, andp=32, which leaves
some headroom to execute more complex programs.

With the above configurations, the delay estimations
are shown in table 2. When scaling to a 0.18 micron tech-

nology an expected performance gain of a factor higher
than 2 indicates that the protocol processor core can handle
10 Gb/s data streams.

5.2. Area estimations

The area of the protocol processor core is to large
extent used by the lookup tables. With the parameters from
the previous subsection, we get 1k bits in the IT, 1k bits in
the PCB, and 160 bits in the CCB. This occupies less than
1 mm2 in a 0.35 micron technology, or approximately
0.2 mm2 in a 0.18 micron technology.

The rest of the circuitry demands less area and dou-
bling the above values gives an upper limit, which still
assures a small processor core. Therefore the limit on the
sizes of the lookup tables do not come from the area usage,
but rather from the size-dependent delay in the critical

Unit Delay contribution
In 0.35 micron

technology

IT 32-to-1 multiplexer 2.1 ns

ID 0 ns

PCB 8-to-1 multiplexer 1.7 ns

CU 32-bit comparison 1.0 ns

CCB 4-to-1 multiplexer 0.6 ns

NPCG 5-bit addition 1.1 ns

Total 6.5 ns

Table 2. Delay estimations

path. Small area is requested since the protocol processor
is integrated with other components on the same silicon
die.

5.3. Related work

As mentioned earlier, there is not much work done for
network terminals, however some of the work on routers,
that deal with port processing has some similarities with a
network terminal.

Field-programmable port extenders (FPXs) [10] pro-
vide flexible port processing through FPGA technology.
The processing functionality is described in VHDL. FPXs
are aimed for ATM processing and it is hard to compare
the results to our estimations. It can however be concluded
that they use a totally different approach to solve a related
problem.

In [11] an architecture is presented together with the
design methodology. The specification lacks however
some information and there are no performance figures,
thus it is hard to compare it to our processor.

The storage area network (SAN) community has real-
ized the same problem as have we [12] and efforts are
going on to design TCP-Offload Engines (TOEs) [13]. Still
no architectures have been presented. A TOE is more com-
plex than our protocol processor, which actually could be
used as a building block for TOEs. In [14] TCP offloading
for transmission at Gigabit speed is described, but no hard-
ware architecture is presented, also, the requirements for
transmission are quite different from those for the recep-
tion. So again it is hard to make a fair comparison to our
processor.

6. Conclusions and future work

The network terminals soon will become the bottle-
necks in computer networks. New efficient solutions are
needed. We have designed a protocol processor for packet
reception that works in-line with the data flow and has a
novel architecture, which is needed for real-time operation
of field matching and decision making. The processor is
estimated to be able to handle 10 Gb/s data streams, when
implemented in a modern CMOS technology.

Ongoing work finalizes the instruction set coverage
verification and starts implementing the architecture on
register transfer level. We have also started to integrate the
protocol processor in a system, in order to demonstrate its
functionality in a real environment.

There is a need for a good programming interface, con-
sisting of an assembler, compiler, and debugger, but non of
this has been initiated yet.

References

[1] US Patent application no. 09/934372
[2] W. Bux, W. E. Denzel, T. Engbersen, A. Herkersdorf, and R.

P. Luijten, “Technologies and Building Blobks for Fast
Packet Forwarding”,IEEE Communications Magazine, Vol.
31, No. 1, Jan 2001, pp. 70-77

[3] T. Wolf and J. S. Turner, “Design Issues for High-Perfor-
mance Active Routers”,IEEE Journal on Selected Areas in
Communications, Vol. 19, No. 3, March 2001, pp. 404-409

[4] J. Williams, “Architectures for Network Processing”,Inter-
national Symposium on VLSI Technology, Systems, and Ap-
plications 2001, pp. 61-64

[5] R. Merritt, “iWarp interface spec could bust IP bottlenecks”,
EETimes, on the www: http://www.eetimes.com/story/
OEG20011207S0091

[6] M. J. Flynn, “Very High-Speed Computing Systems”,Pro-
ceedings of the IEEE, Vol. 54, No. 12, December 1966, pp.
1901-1909

[7] T. Henriksson, H. Eriksson, U. Nordqvist, P. Larsson-Ede-
fors, D. Liu, “VLSI IMPLEMENTATION OF CRC-32 FOR
10 GIGABIT ETHERNET", in Proceedings ofICECS 2001,
vol III, pp. 1215-1218, September 2-5, 2001, Malta

[8] T. Henriksson, N. Persson, D. Liu, “VLSI IMPLEMENTA-
TION OF INTERNET CHECKSUM CALCULATION
FOR 10 GIGABIT ETHERNET", to appear in Proceedings
of Design and Diganostics of Electronics, Cricuits and Sys-
tems, April 17-19, 2002, Brno, Czeck Republic

[9] T. Henriksson, U. Nordqvist, D. Liu, "Specification of a
configurable General-Purpose Protocol Processor", in Pro-
ceedings ofCSNDSP 2000, pp. 284-289, July 18-20, 2000,
Bournemouth, UK

[10] F. Braun, J. Lockwood, and M. Waldvogel, “Protocol Wrap-
pers for Layered Network Packet Processing in Reconfig-
urable Hardware”,IEEE Micro, Vol. 22, No. 1, Jan/Feb
2002, pp. 66-74

[11] M. Attia and I. Verbauwhede, “Programmable Gigabit Eth-
ernet Packet Processor Design Methodology”,European
Conference on Circuit Theory and Design, Vol. III, pp. 177-
180, August 28-31, 2001, Espoo, Finland.

[12] K. Voruganti and P. Sarkar, “An Analysis of Three Gigabit
Netowrking Protocols for Storage Area Networks”,Interna-
tional Conference on Performance, Computing, and Com-
munications, 2001, pp. 259-265

[13] L. Gwennap, “Count on TCP offload engine”, EETimes, on
the www: http://www.eetimes.com/semi/c/ip/
OEG20010917S0051

[14] H. Bilic, Y. Birk, I. Chirashnya, and Z. Machulusky, “De-
ferred Segmentation for Wire-Speed Transmission of Large
TCP Frames over Standard GbE Networks”,Hot Intercon-
nects 9, 2001, pp. 81-85

