
FAST IP ADDRESS LOOKUP ENGINE FOR SOC INTEGRATION

Abstract. IP packet forwarding is a key operation in internet routers and the
limiting factor is the IP address lookup. Since almost a whole router is integra-
ted on a chip it is important to design the functional blocks with SoC integration
in mind. Here a hardware architecture for IP address lookup based on the k-
multibit trie search algorithm is presented. The designed and simulated architec-
ture is based on one SRAM access in series with two multiplexers and is claimed
to be optimally fast. Based on the performance of embedded SRAMs an approxi-
mate throughput of 500 MPackets/s is achieved when implemented in 0.18µm
technology. Memory requirements, multiplexing, scaling, and updating issues of
the architecture as well as 2-dimensional search are described.

1 Introduction

To make the continued growth of internet applications possible the routers must keep impro-
ving in performance much faster than Moore’s law predicts. Due to space, power consump-
tion and performance requirements it is desired to integrate as much as possible of a router
on one single chip. One way of doing that is to design the router as several heterogeneos
domain specific processors. An example of such a processor can be seen in [1].

The most critical component of today’s internet routers is the IP address lookup, which is
needed for forwarding packets to the right output port of the router.

During the last few years some algorithms have been presented for IP address lookup. A
good survey is provided in [2]. However, most algorithms are for software implementations
and therefore inherently not optimal from a performance point of view and not suitable when
a domain specific processor can be used. New software algorithms, that make use of the
access pattern to improve the average performance have been suggested more recently [3]
and [4], but they suffer from similar limitations. Another approach is to use hash functions
[5], but the memory requirement seems to be too high to allow an efficient SoC hardware
implementation.

Some approaches have been introduced for hardware schemes [8], [9], [10], and [11].
These are more interesting, when looking for a fast solution and we discuss them more tho-
roughly in section 7.

In this paper we present a novel, regular, and scalable hardware architecture for perfor-
ming IP address lookup optimally fast. We start with IPv4 addresses, for which we provide
an extensive performance analysis of our architecture. Then, we enhance the architecture
with three multiplexing schemes, which add significant flexibility to the architecture and
thus we achieve a domain specific processor for IP address lookup, which is suitable for SoC
router integration. We also extend the analysis to 128 bit long IPv6 addresses and forwarding
based both on destination and source addresses.

Tomas Henriksson
Department of Electrical Engineering

Linköpings universitet
SE-581 83 Linköping

tomhe@isy.liu.se

Ingrid Verbauwhede
UCLA EE Dept

7440B Boelter Hall
Los Angeles CA 90075

ingrid@ee.ucla.edu

The ability to update a forwarding table is essential to an implementation and we des-
cribe two different approaches, which both support instantaneous updates for our architec-
ture.

In section 2 the general problems with longest prefix matching are briefly explained, then
a discussion on embedded memories, which are essential and performance limiting compo-
nents for IP address lookup, is provided in section 3. Thereafter, in section 4, our novel
approach is outlined and in section 5 our simulation results are presented. Updating issues
and further extensions are discussed in section 6. Our results are compared to related work in
section 7 and finally conclusions are drawn and future work is outlined in section 8.

2 IP Address Lookup with Longest Prefix Match

The IP address lookup with longest prefix match problem has been described in many papers
(e.g. [2]). The forwarding of packets is based on matching the destination address of the
packet to prefixes in a routing table. Each prefix consist of a tuple <routing prefix, prefix
length>. The number of valid bits in the prefix is determined by the prefix length. In the
Internet of today the classless interdomain routing (CIDR) is used, which means routing pre-
fixes of any length can be used. Still, however, many routing prefixes are of length 16 or 24,
because of the original internet class-based routing scheme.

The task is conceptually simple, the routing prefix with the longest length, that match the
destination address is the best match. To each prefix an action pointer is associated. The
action pointer associated with the best match points to the action that should be taken for the
packet. For simplicity we can think of this action pointer as the output port identifier, but
more information is normally provided, such as next hop IP address.

Although the task is simple to understand, it has proven hard to implement in a good
way, especially with ever growing routing tables [7]. There are examples of more than 100k
rules in some core routers. To avoid a complicated search algorithm, direct memory lookup
can be applied. One way is to let the destination address be the address to the memory and
access the result directly. Already with IP addresses of 32 bits 4 billion entries would be
needed and for IPv6 addresses of 128 bits the approach is totally infeasible. Instead a combi-
nation of search algorithm and memory lookup can be used.

3 Memories for IP Address Lookup

It can be assumed that the memory and the processing element will be implemented on the
same silicon die. Although it may be possible to use embedded DRAM with a somewhat
more complicated manufacturing process, it is not desirable since the speed-up techniques
used for cache-based memory hierarchies cannot be used in the IP address lookup algo-
rithms due to the non sequential access scheme. Therefore embedded SRAM with true ran-
dom access is better suited. On the other hand, the problem with SRAM is the limited
storage capacity and bigger silicon die area requirement. As will be shown later, the perfor-
mance of the lookup is highly dependent on the memory access time. Also it must be noti-
ced, that the memory access time is dependent on the size of the SRAM, both on the number
of words and the word length [12].

So it is crucial to keep the size of the memory as small as possible and definitely below
the limit for embedded SRAMs which is some hundred kilobytes. If the memory can be split
into several, preferably equally sized, independent components the constraints on the

memory are considerably relaxed. Although, the total size must still remain less than some
hundred kilobytes.

4 Direct Implementation of k-multibit Tries

The previous observations have led to the design of an architecture based on the k-multibit
trie search algorithm. In the original configuration the architecture consists of W/k stages,
each with a processing element and an associated memory, see Fig. 1. W denotes the number

of bits in the address and k the number of bits processed at each stage. In the first stage the k
most significant bits (msbs) will be used to address the memory, thus the first memory will
always need 2k entries. The output of a stage is a tuple <is_pointer, result/pointer>, where
the is_pointer = 0 means that the second field is the result, and the is_pointer = 1 means that
the second field is a pointer to the next stage. The internal structure of a stage can be seen in
Fig. 2. Each stage has a pipeline register in order to make full utilization of the processing

elements and the memories possible. The output from the memory is also synchronous, so
the pipelining takes also place inside the memory. To have a deterministic behavior, a result
is always forwarded to the last stage. This is done by letting the msb of the output of the pre-
vious stage (the is_pointer bit) control the multiplexer to the result/pointer output. If the pre-
vious output was a result, it is forwarded, otherwise it was a pointer and the <is_pointer,
result/pointer> output from the memory is chosen to be forwarded to the following stage. To
the first stage the only input will be the address. After the last stage the output will always be
a result. The address that is passed on to the next stage does not contain the k msbs, since

Figure 1: General architecture

PE

SRAM

Stage 0
Address

PE

SRAM

Stage 1

PE

SRAM

Stage
W/k-1

Figure 2: The architecture of one pipeline stage

SRAM

address[n-k..0]

address[n..n-k+1]

<is_pointer,
result/pointer>

concatenation

<is_pointer,
result/pointer>

is_pointer

data from routing
engine

address from
routing engine

Update
control

(result/)pointer

they will not be used by later stages. After the last stage there is no remaining part of the
address left.

Since the architecture is pipelined, one search can be started every clock cycle and also
one will be finished every clock cycle at full utilization. The delay from initiated search
request until the result is produced is W/k clock cycles. The length of a clock cycle is as
mentioned earlier mostly dependent of the memory access time. To be precise it is
the memory access time + 2 multiplexer delays. We claim that this is optimal, in the sense
that we will always need at least a memory access to be able to perform a search operation
within a big number of prefixes. If we also want to avoid the full lookup of 2W entries in the
memory, we need some evaluation mechanism. There is no faster evaluation mechanism
than a 2-input multiplexer. Updating of the routing table is necessary, therefore we also need
a multiplexer to support that. Hence, because we only use fundamentally required opera-
tions, we have reached optimality.

5 Results

5.1 Memory requirements

To find out how big the memories need to be, the available routing tables from IPMA of May
23rd 2001 [7] where used. Five different routing tables are available, in table 1 the results for
the smallest table, mae-east, with 16416 prefixes are presented. The unit of the values are
number of entries. An entry is a tuple <is_pointer, result/pointer>. As expected the memory
requirements increase when k increases, since the memory is used in chunks of 2k. It can
also be seen that when k=2x the memory requirements are relatively smaller than otherwise.
This is because the bits in the address exactly matches the number of stages. For all other
values of k the last stage will have less than k bits to process. This increases the amount of
required memory. The most promising values of k are 2 and 4, since they give good trade-
offs between number of stages and memory requirements. Similar analysis were made for
the other tables, but are left out due to space constraints.

Unfortunately the number of entries at the different stages are varying with several
orders of magnitude. It will be the stage with the biggest memory requirement that will
decide the minimum clock cycle period. The size of the biggest memory, emax, will also
decide how many bits, m, are necessary for the result/pointer field in each entry, assuming
that the result can be expressed with less bits than the pointer. The memory address consists
of m+k bits and thus 2m+k >= emax. For example, if k=4, emax=298320 for mae-west, and
m>=15. Setting m=15 would allow for a emax of up to 215+4=524288 and therefore m=15
could handle routing tables with more entries than mae-west. Exactly how big routing tables
can be handled is dependent of the exact distribution of prefixes in the routing table.

Having m=15 is certainly reasonable, since each entry in the memory would consist of
16 bits, 1 bit for the is_pointer field and 15 bits for the result/pointer field. With 215+4
entries, the biggest memory requires 1 mega byte (MB). It should also be noticed, that the
memory with the most entries normally does not have to have that many bits for the pointer
since the next stage has a lot fewer entries. However, for the sake of regularity it is reasona-
ble to make each stage identical. According to [12], a 2 MB 4-transistor SRAM can operate
at 500 MHz. In [13] a 4K word (16 bit) 6-transistor SRAM has an access time of 1.21 ns, a
larger memory will have slightly longer access time. It is also known that 2 input multiplex-
ers have a propagation delay of about 0.15 ns. All these numbers are for the 0.18 mm gene-
ration of technology. It is probable that our architecture has a cycle delay of about 2 ns and

since we handle one routing lookup request every clock cycle the maximum throughput is
approximately 500MPackets/s.

5.2 Hardware Multiplexing

In order to decrease the differences between the memory requirements of the stages a trade-
off with the throughput can be made. The idea of hardware multiplexing is to use each phy-
sical stage for two or more logical stages of the k-multibit trie search algorithm. This can be
done in different ways, e.g. mirroring, serial stage reuse, and full loops. For the example of
mirroring, see Fig. 3. Each physical stage will need an extra multiplexer in order to chose the
correct input. There is also a need for a control part, which supports the select signals to all
multiplexers according to the multiplexing scheme selected. It is also roughly shown how
the memory requirements add up on each physical stage.

To describe the three previously mentioned multiplexing schemes we define pi as the i:th
physical stage and li as the i:th logical stage. The tuple <pi, lj> represents that logical stage j

Table 1: Memory Requirements for Mae-East, 16416 Prefixes.

Stage k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
0 2 4 8 16 32 64 128 256 512 1024
1 4 16 48 160 608 1728 6272 21248 76288 274432
2 8 40 216 1328 8576 52736 258048 713728 2384896 5517312
3 12 108 1192 13184 91264 298112 794496 4608 5632 1024
4 20 332 6592 44608 172416 1152 640
5 38 1072 22816 86208 320 64
6 54 3296 37264 288 32
7 98 8064 49656 80
8 166 11152 144
9 298 18632 88
10 536 21552 8
11 978 26788
12 1648 72
13 2676 36
14 4032 20
15 5704 4
16 5576
17 7440
18 9316
19 9478
20 10776
21 12414
22 13394
23 14100
24 36
25 20
26 18
27 22
28 10
29 4
30 2
31 2
Total 98882 91188 118032 145872 273248 353856 1059584 739840 2467328 5793792

is executed on physical stage i. In tables 2-7 it can be seen how the scheduling for the three
schemes work for k=4 with 2 and 4 logical stages being executed on each physical stage

respectively. Each row is representing a task and each column represents a clock cycle.
It can easily be seen that all three schemes provide full utilization of the provided physi-

cal stages, both for double and quadruple multiplexing. The exact scheduling determines
when results will be ready. This differs dependent on which scheme that is used and the
results can be seen in the tables 2-7. Although necessary for the exact implementation it is of
less general interest.

The fact of how the memory requirements add up, on the other hand, is most interesting,
since now we have to consider the total memory on one physical stage as the performance
limiting factor. As mentioned above, an extra multiplexer for the input selection and some
control logic for selecting the correct input is also needed, so now the critical path will con-

Table 2: Scheduling for Mirroring, k=4

Task 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 p0,l0 p1, l1 p2,l2 p3,l3 p3,l4 p2,l5 p1,l6 p0,l7
2 p0,l0 p1,l1 p2,l2 p3,l3 p3,l4 p2,l5 p1,l6 p0,l7
3 p0,l0 p1,l1 p2,l2 p3,l3 p3,l4 p2,l5 p1,l6 p0,l7
4 p0,l0 p1,l1 p2,l2 p3,l3 p3,l4 p2,l0 p1,l6 p0,l7
5 p0,l0 p1,l1 p2,l2 p3,l3 p3,l4 p2,l5 p1,l6
6 p0,l0 p1,l1 p2,l2 p3,l3 p3,l4
7 p0,l0 p1,l1 p2,l2
8 p0,l0

Table 3: Scheduling for Double Mirroring, k=4

Task 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 p0,l0 p1, l1 p1,l2 p0,l3 p0,l4 p1,l5 p1,l6 p0,l7
2 p0,l0 p1,l1 p1,l2 p0,l3 p0,l4 p1,l5 p1,l6 p0,l7
3 p0,l0 p1,l1 p1,l2 p0,l3 p0,l4 p1,l5 p1,l6
4 p0,l0 p1,l1 p1,l2 p0,l3 p0,l4

Result

Memory stage 2 Memory stage 3
Memory stage 7

Figure 3: Hardware multiplexing by mirroring for k=4

Physical stage 0

Logical stage 0

&

Logical stage 7

Physical stage 3

Logical stage 3

&

Logical stage 4

Physical stage 2

Logical stage 2

&

Logical stage 5

Physical stage 1

Logical stage 1

&

Logical stage 6

Address

Memory stage 0 Memory stage 1

Memory stage 6
Memory stage 5

Memory stage 4

The sizes of the boxes are not proportional to the
required memory size, since the exact size

depends of the content of the routing table, they
only provide an overview of how the memory
requirements add up on each physical stage,

when hardware multiplexing is used.

sist of 3 multiplexer delays + the memory access time. Table 8 shows the memory require-
ments per physical stage when the various multiplexing schemes are used on the mae-east
routing table. For this routing table full loops are best when each stage is used twice, but
double mirroring is better when using each stage 4 times. The purpose is obviously to mini-
mize the maximum memory requirement per physical stage, the emax when hardware multi-
plexing is used.

Using the right multiplexing scheme makes it possible to only slightly increase the max-
imum memory requirement per stage, e.g. for double mirroring, k=2 it increases from 26788
to 27300. We can approximate that the memory access time will remain the same and the
addition of an extra multiplexer will only minorly influence the minimum clock cycle
period. There will also be extra wiring needed and the output of some stages will have a hig-
her fan-out. Totally, however, the multiplexed solution should be able to run almost as fast as

Table 4: Scheduling for 2 Serial Reuses, k=4

Task 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 p0,l0 p0,l1 p1,l2 p1,l3 p2,l4 p2,l5 p3,l6 p3,l7
2 p0,l0 p0,l1 p1,l2 p1,l3 p2,l4 p2,l5 p3,l6 p3,l7
3 p0,l0 p0,l1 p1,l2 p1,l3 p2,l4 p2,l5 p3,l6 p3,l7
4 p0,l0 p0,l1 p1,l2 p1,l3 p2,l4 p2,l5 p3,l6 p3,l7
5 p0,l0 p0,l1 p1,l2 p1,l3 p2,l4 p2,l5 p3,l6
6 p0,l0 p0,l1 p1,l2 p1,l3 p2,l4
7 p0,l0 p0,l1 p1,l2
8 p0,l0

Table 5: Scheduling for 4 Serial Reuses, k=4

Task 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 p0,l0 p0,l1 p0,l2 p0,l3 p1,l4 p1,l5 p1,l6 p1,l7
2 p0,l0 p0,l1 p0,l2 p0,l3 p1,l4 p1,l5 p1,l6 p1,l7
3 p0,l0 p0,l1 p0,l2 p0,l3 p1,l4 p1,l5 p1,l6
4 p0,l0 p0,l1 p0,l2

Table 6: Scheduling for 2 Full Loops, k=4

Task 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 p0,l0 p1, l1 p2,l2 p3,l3 p0,l4 p1,l5 p2,l6 p3,l7
2 p0,l0 p1,l1 p2,l2 p3,l3 p0,l4 p1,l5 p2,l6 p3,l7
3 p0,l0 p1,l1 p2,l2 p3,l3 p0,l4 p1,l5 p2,l6 p3,l7
4 p0,l0 p1,l1 p2,l2 p3,l3 p0,l4 p1,l5 p2,l6 p3,l7
5 p0,l0 p1,l1 p2,l2 p3,l3 p0,l4 p1,l5 p2,l6
6 p0,l0 p1,l1 p2,l2 p3,l3 p0,l4 p1,l5
7 p0,l0 p1,l1 p2,l2 p3,l3 p0,l4
8 p0,l0 p1,l1 p2,l2 p3,l3

Table 7: Scheduling for 4 Full Loops, k=4

Task 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 p0,l0 p1, l1 p0,l2 p1,l3 p0,l4 p1,l5 p0,l6 p1,l7
2 p0,l0 p1,l1 p0,l2 p1,l3 p0,l4 p1,l5 p0,l6 p1,l7
3 p0,l0 p1,l1 p0,l2 p1,l3 p0,l4 p1,l5 p0,l6
4 p0,l0 p1,l1 p0,l2 p1,l3 p0,l4 p1,l5

the original configuration. It must be noticed that since each physical stage is used 2 or 4
times for each lookup request, the throughput will be decreased with the same factor.

Interestingly one can use the same configuration of, for example, 8 physical stages to
implement a scheme with k=2 with multiplexing (mirroring and 2 full loops are almost
equally good) and also a scheme with k=4 with no multiplexing. Since the memory sizes
must be determined at the time of manufacturing this observation increases the flexibility of
the architecture. A small routing table will fit in the memory with k=4 and the throughput
can be kept maximal. When the routing table grows too big, k can be changed to 2 and mul-
tiplexing can be used so the same hardware can support increasingly bigger routing tables,
with a throughput decrease. Even bigger routing tables will fit in with k=1 and double mirro-
ring.

Building the memory in blocks can also allow post-manufacturing memory allocation to
the stages by using configurable interconnects. This however introduces more hardware
overhead and increases the access time.

5.3 Scaling

When talking about the scalability of an IP address lookup implementation, two different
views can be considered. First it is the scaling to more prefixes in the routing table and
second the scaling to longer addresses, e.g. 128 bit IPv6 addresses.

To investigate the scalability of the routing table, all five routing tables from IPMA were
used. The simulations were performed for k=1, 2, and 4. As already noticed k=2x gives good
values and k should be kept fairly small in order to limit the size of the memories. The
results can be seen in Fig. 4. The interesting fact is that for growing routing tables the emax
grows less than linearly for k=4. For k=2 the growth is approximately linear for the used
routing tables. This is because many routing prefixes share the same entry in the k-mulitbit
trie. With an increasing number of prefixes, this aggregation helps keeping the emax limited.
For bigger k, emax grows, but one must keep in mind that the number of stages decreases
with a factor of k, so the total memory requirement does not grow as rapidly as emax.

The second scalability issue is harder to investigate, since there is a lack of accessible
IPv6 routing tables of sufficient size. IPMA provides us with one, which was used as of
December 31st, 2000 23:14. It only contains 219 distinct prefixes and the simulation gives
the results of table 9. It is hard to tell how well our architecture will handle big IPv6 tables.
What is clear, however, is that the same principle is applicable to IPv6 and that the delay
until the result is available will increase since more stages are needed. How the throughput is
affected is dependent of how much emax grows.

Table 8: Memory requirements when multiplexing is used for mae-east, 16416 prefixes

Stage Mirroring Doublemirror 2 serially 4 serially 2 full loops 4 full loops

k = 2 k=4 k=2 k=4 k=2 k=4 k=2 k=4 k=2 k=4 k=2 k=4
0 8 96 19224 57888 20 176 168 14688 11156 44624 11560 46240
1 36 448 21964 87984 148 14512 12764 131184 18648 86368 19756 99632
2 76 87536 22700 1404 130816 78124 21592 1616 24908
3 180 57792 27300 11360 368 132 26896 13264 34964
4 27120 29784 404
5 22624 48340 1108
6 21928 108 3316
7 19216 24 8068
Total 91188 145872 91188 145872 91188 145872 91188 145872 91188 145872 91188 145872

6 Updating and Further Extensions

6.1 Updating Issues

A routing table is constantly changing its content. The implementation must allow instant
incremental changes to the routing table. The k-multibit trie implementation in software has
an updating complexity of O(W/k + 2k) [2]. Our hardware implementation has the same
complexity and more precisely, an update requires at most 2k writes in the memory at each
stage. By scheduling these writes so that they are pipelined in the same fashion as the lookup
requests, only 2k clock cycles will be lost for an update since W/k stages can be accessed in
parallel. This all requires that the routing update engine has a copy of the memory structure,
but since it is normally implemented on a general purpose CPU this is not a problem. The C-
program used for simulation is capable of generating the necessary memory structures for
configuration and updating of the forwarding engine.

Another tempting way of managing the updating is to make use of dual-port memories.
These memories are almost as fast as single port, but require more area and totally smaller
storage capacity is supported [13]. However, the updating could be performed at the same
time as a lookup request is serviced, which would allow zero time overhead for updates. An
issue that has to be addressed is that of the consistency. When a new rule is added this can

Table 9: Memory requirements for IPv6 routing table

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=16
emax 4 16 40 128 384 1280 4480 14336 7864320
Total 510 812 1424 3168 7904 20160 47488 100352 20316160

1 2 3 4 5 6 7 8

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

5

Figure 4: (Maximum memory entries per stage, emax, as a function of number of prefixes, n

+ : k=1

squares : k=2

* : k=4

require a maximum of 2k writes in each stage as previously mentioned, therefore an update
may be partial at the time of a lookup, which could lead to an incorrect forwarding decision.

6.2 2-Dimensional Search

IP packet forwarding based only on the destination address limits the router performance to
best effort, since no differentiation of packets can be done. To improve this more fields from
the packet header, such as source address, transport layer protocol, TCP/UDP source port
and destination port are used. Each field can be seen as a search dimension. Normally the
different dimensions have different search criteria, only IP destination address and source
address can be assumed to have longest prefix match search. Transport layer protocol typi-
cally requires exact match and TCP/UDP ports often require range matching.

Thanks to the work done by Srinivasan et al. [6], it is known that the k-multibit trie
search algorithm can be used also for 2-dimensional longest prefix match. Since our archi-
tecture is a direct implementation of this algorithm, it can also handle the search on source
address as well as destination address. Further investigations, on how this affects the number
of stages and the emax have not been performed, since there is also a lack of such routing
tables.

7 Related Work

Through the last years some papers have been presented on IP address lookup. Here, we
compare our solution to these.

In 1997 Zitterbart et al. [10] presented an IP lookup scheme for IPv6. The architecture is
based on a binary search algorithm and thus has 128 stages. They consider an FPGA-based
implementation with discrete SRAM components since also pipelining is not considered
they can only support 62.5 kPackets/s.

Gupta et al. [8] presented a routing lookup scheme, based on DRAMs. They compared
their solution to software algorithms and had a big improvement. The lookup needs only 2
memory accesses and can be pipelined, reaching a performance of approximately
20MPackets/s using DRAMs with 50 ns access time.

Huang and Zhao presented a scheme based on SRAM lookup [9], which needs maxi-
mally three memory accesses. This work was later improved by Wang et al. [11] to handle IP
address lookup with only 2 SRAM accesses. There is a need for some logic, including
adders and multiplexors in their solution. They have used other routing tables to evaluate
their architecture and therefore it is hard to compare the memory requirements, but our solu-
tion seems to have smaller memory requirements. In their work a routing table of 44075 pre-
fixes needs 456 kilo byte (kB) for three memory accesses and 565 kB for two memory
accesses respectively. We used one routing table with 44959 prefixes and need only 331 kB
when k=2 is used and minimal word lengths for each memory are used.

We have smaller memories and less logic between the memories, which gives us higher throughput. Their
latency is however smaller than ours, since we need in total more memory accesses.

The two last discussed architectures do not consider IPv6 addresses and when examining
them it is obvious that they are very specific for 32 bit addresses. Our architecture is general
and can be used for arbitrary long addresses.

In [14], Kim extends the architecture by Huang et al. to handle IPv6 addresses by limit-
ing the search to 48 bits in the 128 bits address space. Thereby a performance of 4 MPack-
ets/s is achieved in an FPGA implementation. It is mentioned that it is very hard to extend
the search to the full 128 bit length of IPv6 addresses.

8 Conclusions and Future Work

We have designed and simulated an IP address lookup architecture based on one SRAM
access and two multiplexers in each pipeline stage. The performance reached is about
500MPackets/s, based on SRAM performance. Hardware multiplexing has been described
as a way of making a trade-off between throughput and hardware reuse, double mirroring is
a very efficient scheduling technique in limiting the increased memory need per stage. Hard-
ware multiplexing also increases the flexibility of the architecture. The architecture scales
better than linearly for growing routing tables, but it is hard to conclude the behavior for
IPv6 addresses.

By using only SRAM and multiplexers, the lookup engine is made suitable for SoC inte-
gration.

The architecture is capable of 2-dimensional search, but in the near future even more
dimensions need to be searched. It is intended to extend the architecture in order to make it
capable of handling search in more dimensions.

Acknowledgments

The authors would like to thank SwitchCore for interesting discussions.

References

[1] Attia, M., Verbauwhede, I.: Programmable Gigabit Ethernet Packet Processor Design Methodology,
ECCTD 2001, Vol. III, pp. 177-180

[2] Ruis-Sanchez, M. A., Biersack, E. W., Dabbous, W.: Survey and Taxonomy of IP Address Lookup
Algorithms, IEEE Network, March/April 2001, pp. 8-23

[3] Gupta, P., Prabhakar, B., Boyd, S.: Near-Optimal Routing Lookups with Bounded Worst Case Perfor-
mance, IEEE Infocom 2000, pp. 1184-1192

[4] Ergun, F., Hittra, S., Sahinalp, S. C., Sharp, J., Sinha, R. K.: A Dynamic Lookup Scheme for Bursty
Access Patterns, IEEE Infocom 2001, pp. 1444-1453

[5] Broder, A., Mitzenmacher, M.: Using Multiple Hash Functions to Improve IP Lookups, IEEE Infocom
2001, pp. 1454-1463

[6] Srinivasan, V., Varghese, G., Suri, S., Waldvogel, M.: Fast and Scalable Layer Four Switching, Procee-
dings of ACM SIGCOMM 98, pp. 191-202

[7] Internet Routing Table Statistics, http://www.merit.edu/ipma/routing_table/
[8] Gupta, P., Lin, S., McKeown, N.: Routing Lookups in Hardware at Memory Access Speeds, IEEE Info-

com’98, San Francisco, CA, April 1998, pp. 1240-1247
[9] Huang, N.F., Zhao, S.M.: A Novel IP-Routing Lookup Scheme and Hardware Architecture for Multigi-

gabit Switching Routers, IEEE Sel. Areas in Comm., Vol. 17, No. 6, June 1999, pp. 1093-1104
[10] Zitterbart, M., Harbaum, T., Meier, D., Brokelmann, D.: Efficient Routing Table Lookup for IPv6, IEEE

Workshop on High-Performance Communication Systems, 1997, pp. 1-9
[11] Wang, P.-C., Chan, C.-T., Chen, Y.-C.: A Fast IP Routing Lookup Scheme, IEEE Communications let-

ters, Vol. 5, No. 3, March 2001, pp. 125-127
[12] Noda, K., Takeda, K., Matsui, K., Ito, S., Masuoka, S., Kawamoto, H., Ikezawa, N., Aimoto, Y.,

Nakamura, N., Iwasaki, T., Toyoshima, H., Horiuchi, T.: An Ultrahigh-Density High-Speed Loadless
Four-Transistor SRAM Macro with Twisted Bitline Architecture and Triple-Well Shield, IEEE JSSC,
Vol. 36, No. 3, March 2001, pp. 510-515

[13] Embedded Memories, http://www.umc.com/english/design/e.asp
[14] Kim, D.: Design and Implementation of a Gigabit Wireless Router, master thesis at Electrical Enginee-

ring Department at UCLA, pp. 17-26

