
 paper
nit. The
rted.
proto-

ller. The
ute any
control-
tioning
e also

r pro-
market,
r-
essing

The

So
tocols.
tocol
mes at the
e mid-
 all IP

control
d the
ds of

ssor
l as a
m exe-
t data

low-

er initial

c task.
d the

upports
Specification of a configurable General-Purpose Protocol Processor

Tomas Henriksson, Ulf Nordqvist and Dake Liu

Dept. of Physics and Measurement Technology, Linköping University, SE-581 83 Linköping, Sweden

Phone: +46-13-28{8956, 5816, 1256}, Email: {tomhe, ulfnor, dake}@ifm.liu.se

Abstract
A general-purpose protocol processor is specified with a dedicated architecture for protocol processing. This
defines a functional coverage, analyses the control requirements, specifies functional pages and a controller u
general-purpose protocol processor is aimed for network terminals, therefore routing is not completely suppo
However it should be possible to use it as part of a router with some minor modifications. The general-purpose
col processor is partitioned into two parts, a configurable stand alone part and a program based microcontro
configurable part performs the protocol processing without any running program. The processor does not exec
cycle based program, instead execution is controlled by configuration vectors and control vectors. The micro
ler assists with the interface to the host processor and handles the configuration. It is concluded that by parti
the control into three levels, the architecture is flexible and verification is simplified. The proposed architectur
has higher performance and lower power dissipation than other solutions.

Introduction
Networking is developing very fast and more and more protocols are emerging for different applications. Highe
cessing performances are requested by the applications. Two kinds of protocol processors are available on the
one is the single protocol ASIC without flexibility, the other is the general purpose processor with limited perfo
mance. It is clear that a new type of architecture for protocol processing is needed to reach the real-time proc
speed for Gigabit/s or higher speeds with enough flexibility [1], [2], [3].

The aim of this paper is to specify a protocol processor which will lead to the implementation of a prototype. 
architecture is compared to conventional solutions to clarify the value of this type of architecture.

Functional Coverage
To cover both the compatibility and flexibility the architecture will include the most frequently used protocols. 
that the architecture can be simple and still flexible. It means there are no problems to later include more pro
This work is concentrated on different types of Ethernet, with IP/TCP-UDP [4] on top. The general-purpose pro
processor (GPPP) receives frames and processes them at real time speed, but it does not create and send fra
same speed. The interface to the physical layer is the MII/GMII [5] and the interface to a host processor is in th
dle of the TCP-UDP layer. As a platform for protocol processing the GPPP performs all Ethernet processing,
processing and TCP-UDP processing for terminals.

To cover the protocols IP/TCP-UDP also ARP, RARP, ICMP and IGMP have to be managed. Packets of these
oriented protocols are not that common and there is no need to design specialized hardware for them. Instea
functions can be performed in software in the host processor with a relatively small total overhead. These kin
packets are only recognized and then passed on to the host processor.

General architecture proposal
The proposed architecture is shown in figure 1. The GPPP consists of two parts, a deep pipeline serial proce
(DPSP) and a microcontroller (µC). The DPSP is based on software reconfigurable functional pages (FP) as wel
software reconfigurable controller and counter unit (C&C). The DPSP does not perform a cycle based progra
cution. One instruction word is a configuration vector for the complete execution of a FP. The data in the curren
packet selects the next control vector so this is a data driven control process. It offers high performance and 
power operation combined with high flexibility within the protocol processing area.

TheµC is used to configure the DPSP and to interface to the host processor. The DPSP runs stand alone aft
configuration.

The actual processing is performed in software reconfigurable FPs [1]. Each of these FPs has its own specifi
The FPs are fed with data from a parallelization/synchronization unit (PSU), see figure 2. Data is pipelined an
FPs will produce results at different times. To evaluate the results and take care of extracted values the C&C s
the FPs. The FPs that are needed are specified in a later section.



l is gen-
all FPs
ation
 to be
ent layers.

cy, see
Each FP is autonomous as it performs an operation after configuration on a given start signal. The start signa
erated from the PSU and is given to the FPs by the C&C. Communication directly between the FPs is avoided,
are controlled by the C&C and send flags to the C&C when they have something to report. In this way the verific
of the FPs is greatly simplified and the architecture is more flexible. Every FP is controlled by a counter when
active. Since three layers of protocols are being processed at the same time, FPs cannot be reused on differ

Control Requirements
Protocol processing is a control intensive operation with different processing tasks and heavy data dependen
figure 3. The control can be divided into two different types:

• configuration of the DPSP depending on the protocols used in the network

• control of the DPSP depending on the received data

Figure 1:Overview of the architecture, the FPs perform the actual protocol processing

µC
• µcontroller core

• host processor interface

• data buffer

• configuration vectors

• program memory

Controller
&

Counter

R
eg

is
te

r 
ch

ai
n 

bu
ffe

rs

M
ul

ti 
by

te
 b

as
ed

 s
hi

ft 
re

gi
st

er
s

µC
 In

te
rf

ac
e

MII/GMII Interface

F
P

DPSP
DPSP = Deep Pipeline Serial Processor

Figure 2:Data is synchronized and parallelized, thereafter one pipeline register is situated between every
FP to decrease the fan-out requirements

MII/GMII

. . . FPFP

Parallelization/
synchronization

unit
(PSU)



Extract IP total length and header length

IPv4 or IPv6?

ARP or RARP?

Figure 3:Flowchart that illustrates the operation

Pass on payload to application

Reassemble

Check IP header checksum

Check IP destination address

Check Ethernet destination address

Check CRC

Parallelize

Synchronize

Determine IP version

Check TCP/UDP checksum

Extract TCP/UDP payload

Determine transport layer protocol

Extract Ethernet parameters

Send whole
Ethernet pay-
load to the soft-
ware of the
hostprocessor

Yes

ICMP or IGMP?

Send whole IP
payload to the
software of the
hostprocessor

Yes

Skip extension headers

Extract IP payload length

IPv4
IPv6



the GPPP

sists of

CFP) is
e FPs are
rtest
 control-

 end of
ck

t signal
s a multi-

. The
counter
Layer transparent control
When a frame/packet for some reason has to be discarded, all FPs should be shut down to save power and 
should wait in idle mode until the next frame arrives. This calls for enable control of each FP.

Peripheral control
The payload has to be delivered to the software of the host processor in some way. The peripheral control con
the payload delivery control and memory allocation assistance.

Specification of the Functional Pages
Figure 3 shows job allocation and order scheduling. As can be seen the Ethernet checksum calculation FP (EC
active at the same time as the other FPs. Since the data is pipelined the concurrency is dependent of how th
placed along the pipeline. An example of the scheduling is shown in figure 4. FPs will be placed as to get sho
pipeline and scheduling. The interface to the FPs can be seen in figure 5. All signals and flags connect to the

ler unit except the data and the clk. Below each FP is explained in somewhat more detail.

Ethernet checksum calculation FP (ECCFP)
The ECCFP receives a start signal and then performs CRC-32 calculation on all data passing through. In the
the frame the FP will receive a frame end signal and compare the calculated value to the received frame che
sequence. On non equality a discard flag is sent to the C&C.

Ethernet destination address extraction and comparison FP (EDAFP)
The EDAFP is configured with the address of the terminal were the GPPP is situated. The FP receives a star
and extracts and compares the received address to the configured one and checks if the extracted address i
cast address. If the frame is not addressed to this network terminal a discard flag is sent to the C&C.

Ethernet length/ethertype field extraction FP (ELTFP)
The ELTFP extracts the length/ethertype field. If an ethertype is given, the length is expected from the ITLFP
value is distributed by the C&C. A counter keeps track on how much data that has been received. When the 

Figure 4:Principle scheduling of FPs for an TCP on top of IPv4 example. The boxes show when the FPs
are active. Job abbreviations are specified later in this paper.

time

ECCFP
EDAFP

ELTFP
IVFFP

IHCFP
IDAFP

ITLFP
IPNFP

IRAFP
TUCFP

TULFP

Figure 5:General interface of a FP

FP

clk

enable

discard flag
optional flags start optional control signals

data

32

m n



special

 com-

ersion
cted

Pv6 the
 IPv6 are

resent
header
Known

v6. If
ls the

luding
sed to

needed

pecific
ntrol sig-
iscard-
card a

e

undancy
al-time

frame
RC
 host
creases.
reaches the length value a frame end flag is sent. This FP also gives the ethertype value to the C&C so that 
jobs, like ARP and RARP, can be handled correctly.

IP header checksum calculation FP (IHCFP)
The IHCFP is active if the IP version field is IPv4. It then calculates the checksum by performing 16-bit one’s
plement addition of the header fields and makes sure the result is 0. If not a discard flag is sent to the C&C.

IP version field extraction FP (IVFFP)
The IVFFP extracts the IP version field and sends a flag to the C&C telling which version of IP is used.

IP destination address extraction and comparison FP (IDAFP)
The IDAFP is configured with the terminal address for the application. The FP receives a start signal and IP v
information and extracts and compares the received address to the configured one, it also checks if the extra
address is a multicast address. If it is an unrecognized address a discard flag is sent to the C&C.

IP header length extraction FP (IHLFP)
The IHLFP sends a flag when the IP header has been received. In IPv4 the IHL field specifies the length. In I
header is always 40 bytes plus optional extension headers. The extension headers, except fragmentation, in
not processed, since they concern routers and management protocols.

IP total length extraction FP (ITLFP)
The ITLFP extracts the length field to send the length value to the ELTFP.

IP protocol/next header extraction FP (IPNFP)
The IPNFP extracts the protocol field from the IP header and sends a flag to the TCP-UDP FPs to tell if the p
packet is TCP or UDP. If there exist extension headers in IPv6 packets these are skipped and the extension 
length field is used to find out when the next header starts. This is done until a known header type is received.
headers are TCP, UDP, ICMP, IGMP and ICMPv6.

IP reassembly FP (IRAFP)
The IRAFP extracts the fragment fields from IPv4 header and searches for a fragment extension header in IP
fragmentation is present this FP manages payload data to be stored in memory on the right place and contro
TUCFP to process the right data. To assist the IRAFP memory tables and timers for reassembly are present.

TCP-UDP checksum calculation FP (TUCFP)
The TUCFP calculates the checksum by performing 16-bit one’s complement addition of the whole packet, inc
some IP header fields. If the result is non zero a discard flag is sent to the C&C. Multiple accumulators are u
calculate checksums of multiple packets, since fragments of them may arrive nestled.

TCP-UDP packet length counter FP (TULFP)
The TULFP extracts the length value and provides this to the software of the host processor. The length is also
for reassembly and checksum calculation.

The Controller and Counter Unit
Figure 6 shows the general structure of the C&C. The C&C has to manage high-level control only, since FP s
control is handled within each FP. It receives flags from the FPs and schedules the pipeline delay it sends co
nals to the FPs. The controller unit is based on a configurable finite state machine (FSM), which controls the d
ing or delivery of packets depending on the flags it receives from the FPs. When a flag, that tells the C&C to dis
packet is received, all activities are switched off except for the PSU, which looks for the next frame.

If a packet is received without any problem, the C&C notifies theµC and tells it where in memory the packet can b
found. The C&C also manages memory allocation and storing of payload with help from theµC.

Discussion
The proposed architecture uses extensive parallelism and configurable control to cut down the hardware red
and so the power- and time-consuming characteristics of a programmable processor. The critical path to the re
speed limit has been found in the ECCFP. If a data width of 32 bits is used there should be no problem to de
Gigabit Ethernet data and perform the CRC check using a 31.25 MHz clock. In a conventional solution, the C
check is performed in the MAC controller, but all network- and transport-layer processing is performed by the
processor. The GPPP relieves the host processor from this burden which is of great importance as the speed in



wer dis-
ed pipe-
essed

d archi-
to a com-

 archi-

proces-
e and

ors

rmina-
cksum
/UDP

u, Ulf

heng
-

f the
81
6

o.6
Other dedicated processors, but still program based, can solve the same tasks but suffer from much higher po
sipation than the GPPP. Also other dedicated protocol processing solutions normally make use of a layer-bas
lining technique [6], which introduces latency. This latency is eliminated in the GPPP since all layers are proc
concurrently.

Conclusions
By using the proposed architecture and control, a configurable GPPP is accomplished. The configuration-base
tecture makes hardware reuse and wide functional covery possible and moves unnecessary hardware design
piler. The control is partitioned into three different parts, FP internal control, the C&C and theµC. This partition
simplifies verification and increases the flexibility and supports future changes in the protocols. The proposed
tecture has higher performance and lower power dissipation than its competitors.

The project is under functional implementation phase, approaching to the delivery of the payload to the host 
sor. Studies are also being made concerning problems occurring when not buffering the whole Ethernet fram
how to solve the reassembly of IP packets in hardware.

Acknowledgments
This study was supported by the Intelect program of Swedish Foundation for Strategic Research (SSF). Auth
would like to thank Dr. George Liu, Ericsson Research, for interesting discussions.

Appendix: List of Jobs
Ethernet/802.3 CRC check, Ethernet/802.3 destination address check, Ethernet/802.3 payload protocol dete
tion, IP version determination, ARP/RARP recognition, IPv4/IPv6 destination address check, IPv4 header che
check, IP reassembly support, IP payload protocol determination, TCP packet length determination, and TCP
checksum check.

References
[1]. Configuration-based architecture for high speed and general-purpose protocol processing, Dake Li
Nordqvist and Christer Svensson, proceedings of SIPS’99, Taiwan
[2]. Scalable Protocol Engine for High-Bandwidth Communications, Chirstos J. Gerorgiou and Chung-S
Li, IEEE Int. Conf. on Communications, 1997. ICC’97 Montreal, Towards the Knowledge Millennium. pp.1121
1126 vol.2 1997
[3]. A Design Methodology for Protocol Processors, Michael Yang and Ahmed Tantawy, Proceedings o
Fifth IEEE Computer Society Workshop on Future Trends of Distributed Computing Systems, 1995, pp.376-3
[4]. Computer Networks, 3rd Ed., Andrew S. Tanenbaum, Prentice Hall PTR, ISBN 0-13-349945-6, 199
[5]. Gigabit Ethernet, Jayant Kadambi et al, Prentice Hall PTR, ISBN 0-13-913286-4, 1998
[6]. The Parallel Protocol Engine, Matthias Kaiserswerth, IEEE/ACM Transactions on Networking, vol.1 N
December 1993 pp.650-663

Figure 6:Controller and counter unit overview

clk

flags
control signals

configurable
FSM

µC
IF

counter


	Specification of a configurable General-Purpose�Protocol�Processor
	Abstract
	Introduction
	Functional Coverage
	General architecture proposal
	Control Requirements
	Layer transparent control
	Peripheral control

	Specification of the Functional Pages
	Ethernet checksum calculation FP (ECCFP)
	Ethernet destination address extraction and comparison FP (EDAFP)
	Ethernet length/ethertype field extraction FP (ELTFP)
	IP header checksum calculation FP (IHCFP)
	IP version field extraction FP (IVFFP)
	IP destination address extraction and comparison FP (IDAFP)
	IP header length extraction FP (IHLFP)
	IP total length extraction FP (ITLFP)
	IP protocol/next header extraction FP (IPNFP)
	IP reassembly FP (IRAFP)
	TCP-UDP checksum calculation FP (TUCFP)
	TCP-UDP packet length counter FP (TULFP)

	The Controller and Counter Unit
	Discussion
	Conclusions
	Acknowledgments
	Appendix: List of Jobs
	References


