
High Performance, Low Latency FPGA based
Floating Point Adder and Multiplier Units in a

Virtex 4
Per Karlström

Department of Electrical Engineering
Linkping University

Email: perk@isy.liu.se

Andreas Ehliar
Department of Electrical Engineering

Linkping University
Email: ehliar@isy.liu.se

Dake Liu
Department of Electrical Engineering

Linkping University
Email: dake@isy.liu.se

Abstract— Since the invention of FPGAs, the increase in their
size and performance has allowed designers to use FPGAs
for more complex designs. FPGAs are generally good at bit
manipulations and fixed point arithmetics but has a harder
time coping with floating point arithmetics. In this paper we
describe methods used to construct high performance floating
point components in a Virtex-4. We have constructed a floating
point adder/subtracter and multiplier which we then used to
construct a complex radix-2 butterfly. Our adder/subtracter can
operate at a frequency of 361 MHz in a Virtex-4SX35 (speed
grade -12).

I. I NTRODUCTION

Modern FPGAs are a great asset as hardware components
in small volume projects or as hardware prototyping tools.
More features are added to the FPGAs every year, making it
possible to perform computations at higher clock frequencies.
Dedicated carry chains, memories, multipliers and in the most
recent FPGAs, larger blocks aimed at DSP computations and
even processors have been incorporated into the otherwise
homogenous FPGA fabric. All of these improvements accel-
erate fixed point computations but it is harder to implement
high performance floating point computations on FPGAs. One
of the major bottlenecks is the normalization required in a
floating point adder.

A floating point number consists of a mantissa (M) and
an exponent (e) as shown in equation (1). The sign of the
mantissa must be represented in some way. One way is to use
a two’s-complement representation, another common approach
is to use a sign magnitude representation where a sign bit (S)
decides the sign and mantissa holds the magnitude of the
number. The sign of the exponent must also be represented.
A common approach is to store the exponent in an excess
representation, where the exponent is treated as a positive
number from which a constant is subtracted to form the final
exponent. Since the mantissa in a normalized binary floating
point number using the sign bit representation always will
have a single one in the MSB position, this bit is normally not
stored together with the floating point number. The IEEE 754,
a standard for floating point numbers [4], dictates the format
presented in equation (2). The IEEE 754 single precision
format is 32 bit wide and uses a 23 bit fraction, an eight

bit exponent represented using excess 127, and one bit is used
as a sign bit.

x = M · 2e (1)

x = (−1)S · 1.M · 2e−excess (2)

The overall goal of our design was to balance throughput
and latency. Low latency is important if the floating point
unit is to be used as building blocks for systems where the
algorithms are not known beforehand, e.g. if the units are tobe
used in a processor. In theory, if latency was not a constraint,
pipeline stages could have been added until a higher clock
frequency could not be achieved.

We chose to implement the most commonly used opera-
tions, addition, subtraction, and multiplication. In order to test
these components in a realistic environment we constructeda
complex radix-2 butterfly kernel using our components.

We have tested the floating point units on an FPGA from
the Virtex-4 family (Virtex-4 SX35-10). For further details
about the Virtex-4 FPGA, see the Virtex-4 User Guide [2].
The Virtex-4 contains a number of blocks targeted at DSP
computations, these blocks are called DSP48-blocks and are
thoroughly described in the XtremeDSP user guide [3].

Floating point arithmetics is useful in applications wherea
large dynamic range is required or in rapid prototyping for
applications where the required number range has not been
thoroughly investigated. Our floating point format is similar
to IEEE 754 [4]. An implicit one is used and the exponent is
excess-represented. However, we do not handle denormalized
numbers, nor do we honor NaN or Inf.

The reason for excluding denormalized numbers is due to
the large overhead in taking care of these numbers, especially
for the multiplier. These are commonly excluded from high
performance systems, i.e. the CELL processor does not use
denormalized numbers for the single precession format in its
SPUs [6].

Our implementation has no rounding, therefore the results
after the addition and multiplication are truncated to fit the
mantissa size. It is usually easier to add en extra mantissa bit



to handle the same precision as achieved when using more
elaborate rounding schemes.

II. RELATED WORK

A number of attempts at constructing floating point arith-
metics in FPGAs have been done and presented in the
academia. Although many of the papers are a bit old and few
target modern FPGAs such as the Virtex-4.

High-performance floating point arithmetics on FPGA is
discussed in [5] Although the paper has some interesting
figures about the area versus pipeline depth tradeoff, their
design seems to be a bit to general to utilize the full potential
of the FPGA. I.e. to reach 250 MHz for the adder they have
to use 19 pipeline stages on a Virtex2Pro speed grade -7.

To be fully IEEE 754 compliant the FPU needs to, in
one way or another, support denormalized numbers, be it
either with interrupts, letting the processor deal with these
uncommon numbers or having direct support for denormals
in hardware. For a good discussion on different strategies
to handle denormals see [7]. Although it is a good general
discussion the paper does not cover any FPGA specific details.

An interesting approach to tailor floating point computations
to FPGAs are to use higher than 2-radix floating points since
this maps better to the FPGA fabric. This is better described
in [11].

Full IEEE 754 rounding requires the FPU to support, round
to nearest even, round to minus infinity, round to positive
infinity, and round to zero. A more detailed discussion about
rounding is presented in [8]. This paper does not deal with
any FPGA specific implementations.

Since the invention of FPGAs and their increase in per-
formance, IP cores for FPGAs has started to appear in the
market. Both Nallatech [9] and Xilinx [10] has IP cores for
double and single precision floating point format. Neither of
these companies publish low level techniques used in their IP
cores.

III. M ETHODOLOGY

As a reference for the RTL code we implemented a C++
library for floating point numbers. The number of bits in the
mantissa and exponents could be configured from 1 to 30 bits.
The C++ model was later used to generate the test vectors for
the RTL test benches. Using a mantissa width of 23 and an
exponent width of 8 the C++ model was tested against the
floating point implementation used in the development PC.
The only differences occurred due to the different rounding
modes.

Initial RTL code was written using Verilog adhering to
the C++ model. The performance of the initial RTL model
was evaluated and the most critical parts of the design were
optimized to better fit the FPGA. This was repeated until the
performance was satisfactory and no bugs were discovered by
the test benches.

IV. I MPLEMENTATION

The implementation was written in Verilog and ISE 8.2i was
used to synthesize, place, and route the design.

A. Multiplier

A floating point multiplier is conceptually easy to construct.
The new mantissa is formed as a multiplication of the old
mantissas. In order to construct a good multiplier some FPGA
specific optimizations were needed. The 24×24 bit multiplica-
tion of the mantissa is constructed using four of the Virtex-4’s
DSP48 blocks to form a 35×35 bit multiplier with a latency
of five clock cycles. For a thorough explanation of how to
construct such a multiplier the reader is referred to [3]. The
new exponent is even easier to construct, a simple addition
will suffice. The new sign is computed as an exclusive-or of
the two original signs. The result of the multiplication has
to be normalized, this is a simple operation since the most
significant bit of the mantissa can only be located at one out
of two bit positions given normalized inputs to the multiplier.
The exponent is adjusted accordingly in an additional adder.

B. Adder/Subtracter

A floating point adder/subtracter is more complicated than a
floating point multiplier. The basic adder architecture is shown
in Figure 1. The first step compares the operands and swaps
them if necessary so that the smallest number enters the path
with the alignment shifter. If the input operands are non-zero,
the implicit one is also added in this first step. In the next step,
the smallest number is shifted down by the exponent difference
so that the exponents of both operands match. After this step,
an addition or subtraction of the two numbers are performed.
A subtraction can never cause a negative result because of the
earlier comparison and swap step.

The normalization step is the final and most complicated
step. It is implemented using three pipeline stages. Figure2
depicts the architecture of the normalizer. The following is
done in each pipeline stage:

1) The mantissa is processed in parallel in a number of
modules, each looking at four bits of the mantissa. The
first module operates on the first four bits and outputs
a normalized result assuming a one was found in these
bits. An extra output signal, shown as dotted lines in
Figure 2, is used to signal if all four bits were zero.
The second module assumes that the first four bits
were all zero and instead operates on the next four
bits, outputting a normalized result. This is repeated for
the remaining bits of the mantissa. Each module also
generates a value needed to correct the exponent, this is
marked as dotted lines in Figure 2.

2) One of the previous results, both mantissa and exponent
offset value, is selected to be the final output. If all bits
were zero, a zero is generated as the final result.

3) The mantissa is simply delayed to synchronize with
the exponent. The exponent is corrected with the offset
selected in the previous stage.

Our normalization uses a rather hardware expensive ap-
proach a less hardware expensive architecture could be usedif
deeper pipelines were allowed. The modules in the first stage
of the normalizer looks at four bits each, the choice to look at



CMP

Exponent

A
dd

N
or

m
al

iz
at

io
n

C
om

pa
re

/S
el

ec
t

A
lig

n

Find leading one

Mantissa

1

2

Fig. 1. The overall adder architecture

ff1 in 4
shift

ff1 in 4
shift

ff1 in 4
shift

Unnormalized mantissa Exp

4 20

Normalized mantissa New exponent

Shifted by

6−1 MUX
Priority
decoder

0

Fig. 2. The normalizer architecture

four bit was done since it maps well to the four input LUTs
of the Virtex-4.

C. Low Level Optimizations

Initially the adder met timing at 250 MHz. It did not achieve
this performance once it was inserted into a complex radix-2
butterfly. At this point further optimizations were required.
One FPGA specific optimization was to make sure that the
adder/subtracter was implemented using only one LUT per bit.
Figure 3 shows a bit cell of the optimized adder. An additional
input signal is used to zero out the mantissa from the pre-
alignment step, marked with 1 in Figure 1. This is done so
that the shifter in the align step only has to consider the five
least significant bits in the exponent difference, marked with 2
in Figure 1. If one of the more significant bits is one, the

mantissa is shifted so much that all its bits are zero. This is
handled by theSet to zero signal in Figure 3. A similar way to
achieve the same result is by using the reset input of the flip
flops, although this will limit the maximum clock frequency.

Sum

LUT

A

Sub

B
Set to zero

Carry in

Carry out

Fig. 3. Combined adder and subtracter

D. Testing

In addition to testing the RTL implementation against the
C++ model, we have also tested a radix-2 complex butterfly,
using a 15 bit mantissa and 10 bit exponent format, for real in
a Virtex-4SX35 speed grade -10. This design was successfully
run at a clock frequency of 250 MHz.

V. RESULTS

Table I lists the final resource utilization in the FPGA for
various components. The numbers in the table is the maximum
frequency the place and route tool could achieve with a a
Virtex-4 speed grade -10. These speeds also assumes a clock
with no jitter. All clock frequencies are rounded down to the
nearest integer from the results reported by the place and route
tools. We have focused our measures and comparisons on the
adder since it is the bottleneck module in our current design.

Adder Multiplier
LUTs 557 88
Flip Flops 375 244
DSP48 0 4
Speed 275 MHz 327 MHz
Stages 7 6

TABLE I

COMPONENTSTATISTICS

Table II list various performance metrics over different
devices and speed grades.

Latency Speed in device (MHz)
Module XC4VSX-10 XC4VSX-11 XC4VSX-12

23 bit M, 8 bit e
Adder 7 275 318 361
Multiplier 6 327 400 451

15 bit M, 10 bit e
Adder 6 285 330 369
Multiplier 3 338 375 418

TABLE II

PERFORMANCE IN VARIOUS DEVICES.

Table III compares the performance of the 23 bit format
floating point adder using the best speed grades from a number
of FPGA families from Xilinx.



XC4VSX-12 XC2VP-7 XC2V-6 XC3SE-5 XC3S-5
Freq. 361 MHz 288 MHz 250 MHz 202 MHz 174 MHz

TABLE III

FAMILY COMPARISON

Table IV list the resource utilization of the steps in Figure1.
To avoid the extra delays associated with the FPGA I/O pins
two extra pipeline stages before and and one stage after were
inserted into the top module. These extra flip flops are not
included in the resource utilization metrics.

Table V compares our results from the adders (DA) against
some other results published, although we do not handle
denormalized numbers or all rounding modes in our design we
are confident that no more than three pipeline stages needs to
be added to make the units fully IEEE 754 complaint. USC [5]
does not consider NaN or denormals and Nallatech [9] uses
an alternative internal floating point format and can thus also
avoid handling denormals. Thus the comparisons here are not
completely fair they still give a good picture of how the
performance of our floating point units compare to other FPGA
implementations.

23 bit M, 8 bit e 15 bit M, 10 bit e
LUT FF LUT FF

Compare/Select 113 149 99 129
Align 97 57 100 44
Add 31 33 26 33
Normalization 326 222 225 145
Total 567 461 450 351

TABLE IV

ADDER RESOURCE UTILIZATION

XC2VP-6 XC2VP-7
DA Nallatech Xilinx DA USC

Adder
Speed 248 MHz 184 MHz 269 MHz 288 MHz 250 MHz
Latency 7 14 11 7 19

TABLE V

COMPARISON WITH OTHER IMPLEMENTATIONS

VI. D ISCUSSION

There are a number of opportunities for further optimiza-
tions in this design. For example, instead of using CLBs for
the shifting, a multiplier could be used for this task by sending
in the number to be shifted as one operand and a bit vector
with a single one in a suitable position as the other operand.

If the application of the floating point blocks are known
it is possible to do some application specific optimizations.
For example, in a butterfly with an adder and a subtracter,
operating on the same operands, the first compare stage could
be shared between these. If the application can tolerate it,
further pipelining could increase the performance significantly.
If the latency tolerance is very high, bit serial arithmetics could

probably be used as well. In this project we limited the pipeline
depth to compare well with FPUs used in CPUs.

According to a post on comp.arch.fpga it is possible
to achieve 400MHz performance in a XC4VSX55-10 for
IEEE 754 single precision floating point arithmetics [1]. Few
details are available but a key technique is to use the DSP48
block for the adder since an adder implemented with a carry
chain would be too slow. The post normalization step is
supposed to be implemented using both DSP48 and Block
RAMs. The pipeline depth of this implementation is not
known, although what is known is that the normalization
consists of 11 pipeline stages.

It would also be interesting to look at the newly announced
Virtex-5 FPGA. The 6-LUT architecture should reduce the
number of logic levels and routing all over the design. As an
example, one could investigate if the parallel shifting modules
in the normalizer should take six bits as input since it could
map well to the six input LUT architecture of the Virtex-5 or
if the fact that a 4-to-1 mux can be constructed in a six input
LUT still favors the current four bits per module architecture.

A final step of this research would be to implement all
rounding modes and at least generate flags so a software so-
lution can deal with denormals and the other special numbers
defined in IEEE 754.

VII. C ONCLUSION

We have shown that it is possible to achieve good floating
point performance with low latency in modern FPGAs. To
make maximal use of an FPGA it is important to take
into account the specific architecture of the targeted FPGA.
The most important optimization we did was to perform the
normalization in a parallel fashion.

The parallel normalization approach proved to be efficient
since it reduced the number of pipeline stages needed to
perform the normalization operation.

REFERENCES

[1] Andraka, Ray; Re: Floating point reality check, news:comp.arch.fpga, 14
May 2006

[2] Xilinx; Virtex-4 User Guide
[3] Xilinx; XtremeDSP for Virtex-4 FPGAs User Guide
[4] ANSI/IEEE Std 754-1985 IEEE Standard for Binary Floating-Point Arith-

metic
[5] Govindu G., Zhuo L., Choi S, and Prasanna V. Analysis of High-

performance Floating-point Arithmetic on FPGAs
[6] Oh H., Mueller S. M. Jacobi C. et al A Fully Pipelined Single-Precision

Floating-Point Unit in the Synergistic Processor Element of a CELL
Processor

[7] Schwarz M. E., Schmookler M., and Trog S. Hardware Implementations
of Denormalized Numbers

[8] Santoro M. R., Bewick G., and Horowitz M. A. Rounding Algorithms for
IEEE Multipliers

[9] Nallatech http://www.nallatech.com
[10] Xilinx Floating-point Operator v2.0

http://www.xilinx.com/bvdocs/ipcenter/datasheet/floatingpoint ds335.pdf
[11] Cantanzaro R. and Nelson B. Higher Radix Floating-Point Representa-

tion for FPGA-Based Arithmetic


