
THE ADSP-21535 BLACKFIN AND SPEECH CODING

Mikael Olausson

Computer Engineering
Department of Electrical Engineering

Linköpings universitet
SE-581 83 Linköping, Sweden

{mikol}@isy.liu.se

Dake Liu

Computer Engineering
Department of Electrical Engineering

Linköpings universitet
SE-581 83 Linköping, Sweden

{dake}@isy.liu.se

ABSTRACT

This paper will evaluate the new processor ADSP-21535
Blackfin from Analog Devices in terms of speech coding.
Three speech coding algorithms has been studied, G.723.1,
6.3 kbit/s and 5.3 kbit/s and G.729 8 kbit/s. All these three
algorithms are proposed by the H.323 standard together with
G.711 64 kbit/s and G.728 16 kbit/s. I will discuss some im-
portant issues of these speech coding algoriths and compare
them with the capabilities of Blackfin. The work has been
done by thoroughly examining the fixed point source code
from ITU, International Telecommunication Unions [1], [2]
and by the instruction reference manual [3] and the hard-
ware reference guide [4].

1. INTRODUCTION

The market for voice over Internet protocol, also called VoIP,
has increased over the years. Voice has been a natural choice
of communicating for a long long time and will continue to
be so. The H.323 standard contains four different speech
coders with different complexity and bit rates. The first one
is G.711, which is mandatory and uses A/u-law compres-
sion at 64 kbit/s. Another coder is the G.728 Adaptive dif-
ferential PCM (ADPCM) at 16 kbit/s. The last two are more
interesting if we are dealing with bandwidth limited trans-
mission channels. These are G.723.1 and G.729. While
the first one have two different bit rates specified, 6.3 and
5.3 kbit/s, the last have three different, 6.4/8.0/11.8 kbit/s.
These two both have parts that are common, but also parts
that differ a lot. From a market point of view it is of high-
est interest to make the implementations of these algorithms
as efficient as possible. A couple of factors may influence
the choice of algorithm. For example some users want to
squeeze as many channels as possible on a limited transmis-
sion channel. Then their choice is as low bit rate as possible
if the speech quality is good enough. Others might use them
in battery powered applications and their aim is low power
consumption with reduced speech quality as a tradeoff.

2. GENERAL DESCRIPTION OF G.723.1 AND G.729

The first difference between the G.723.1 and the G.729 is
the frame size. While the G.723.1 is based on 30 ms(240
samples), the G.729 is based on 10 ms(80 samples) frames.
The delay of the algorithms are 37.5 ms and 15 ms respec-
tively. Both algorithms includes a high pass filter to get rid
of undesired low frequency components. The short term
analysis is based on 10th order linear prediction (LP). For
G.729 the LP is calculated for every frame, 10 ms, while
for the G.723.1 they are calculated for every subframe 7.5
ms. Both uses the Durbin-Levinson algorithm to calcu-
late the coefficients. The unquantized coefficients are then
transferred to Linear Spectral Pairs (LSP). For the G.723.1,
are only the LP coefficients from the last subframe trans-
ferred. These LSP are then quantized using a two-stage
Vector Quantization(VQ) for G.729 and a Predictive Split
Vector Quantizer(PSVQ) for G.723.1. The excitation pa-
rameters from both the fixed and the adaptive codebook are
determined on subframe basis. In G.729 the frames are di-
vided into two subframes of 5 ms each, while in the G.723.1
each frame are divide into 4 subframes of 7.5 ms each. Both
codecs uses an open-loop approach to calculate the pitch de-
lay. For the G.729 this delay is estimated once every frame,
while it is estimated every 15 ms(every second subframe)
in the G.723.1. This pitch value is then refined in the closed-
loop pitch analysis. The closed-loop analysis is done for ev-
ery subframe for both codecs. The gains and the pitch delay
are referred to as adaptive codebook parameters. The fixed
codebook extraction is the most exhaustive part of the whole
algorithm. In these two codecs there exist two different ap-
proaches. One which are used in both the lower bit rate
of G.723.1 and in G.729 and is Algebraic-Code-Excited-
Linear-Prediction, (ACELP). This ACELP places at most 4
non-zero pulses within a subframe. The positions are de-
termined from the codebook. The second approach is to
use Multi-Pulse Maximum Likelihood Quantization (MP-
MLQ). In this case you have more opportunities to place
the pulses more individually and not based on a algebraic

G.723.1 (5.3/6.3) G.729 (8.0)
Transmission
rate 5.3/6.3 kbit/s 8.0 kbit/s
Algorithmic
delay 37.5 ms 15 ms
Frame size 30 ms 10 ms
subframes 4 2
LP calculation every 7.5 ms every 10 ms
Open-loop
pitch estimation every 15 ms every 10 ms
Closed-loop
pitch analysis every 7.5 ms every 5 ms
Fixed-codebook
excitation ACELP/MP-MLQ ACELP

Table 1: General description of G.723.1 and G.729

codebook.

3. THE ADSP-21535 BLACKFIN

Traditionally, DSPs, Digital Signal Processor, has focused
on number crunching, while a MCU, Micro Controller Unit,
has concentrated on performing control functions. This has
lead to two different branches of processor development. It
is usually a bad idea to perform control functions on a DSP
and vice versa. At the same time one need both control func-
tionality and computing power in a system. In the Blackfin
processor one tries to combine them both. Instead of adding
DSP functionality to a MCU, they have added control func-
tionality to the DSP. The instruction size is either 16 bits for
control functions or 32 bits for DSP functions. This makes
the code very flexible and dense. You can also execute in-
structions in parallel. One DSP instruction and two control
functions at the same time. This gives an instruction length
of 64 bits. It is not allowed to issue two DSP instructions in
parallel neither is more than two control instructions in par-
allel allowed. The architecture is not superscalar and cannot
perform out of order execution. In a MCU, it is preferable to
have a short pipeline due to all the changes in the program
flow. On the other hand is a deep pipeline almost manda-
tory in order to get high throughput in heavy computations.
Deeper pipeline can give higher clock speed. The Black-
fin is running at 300 MHz. This is two factors that cannot
be united. In Blackfin they have an eight stage pipeline.
To reduce the penalty in branches, they have included static
branch prediction. The Blackfin is a 32-bit architecture with
a double MAC, two 40-bit ALUs and one 40-bit shifter and
four 8-bit video ALUs.

4. STATISTICS OF BASIC OPERATIONS

All the arithmetic and logic functions like add, sub, shift,
multiply and so on are implemented with a standard C li-
brary. This makes it simply to do statistics over how many
times different functions are used. Additional to this, the C
code has been thoroughly examined and all the branch, loop
and move functions have also been identified and classified.
All these statistics over basic operations, branch, loop and
move instructions give a good hint on where to find im-
provements on instruction and architecture level. The statis-
tics are presented in [5]. From the statistics one can see that
multiplications or multiply-and-accumulate is the dominant
operation, around 1/3 of all operations.

5. SPEECH CODING

In this section I will bring up some aspects of speech coding
and the computinal demands. First of all we have make clear
that we are dealing with fixed point implementations. The
Blackfin does not have any floating point unit. The Blackfin
processor is a 32-bit architecture. The data format can be
32, 16 or even 8 bit wide. This makes it suitable for many
applications. When performing 16-bit operations, there is
support for both dual and quad processing. Data loads and
stores are also 32 bit wide. This together with the dual MAC
makes for example filter calculation much faster. Window-
ing is also done in half the time due to the dual processing.
32-bit additions and subtractions are supported directly by
the ALU. In an ordinary 16-bit DSP you will have to do up-
per and lower halves separately. The same is true for the
shifter and absolute value calculations. With the 32-bit in-
structions comes also saturation arithmetic. This is much
better than using software solutions. Of course will the mul-
tiplier allow both signed, unsigned, fractional and integer
operations. The execution times is also reduced by the fact
that instructions can be issued in parallel. One 32-bit DSP
instruction in parallel with two 16-bit control instructions.

As mentioned before is the Fixed-Codebook excitation
the most extensive part of the whole algorithm. The calcu-
lations are done by Analysis-by-Synthesis. This means that
we try all possible combinations or at least a certain amount.
We then choose the one with the smallest error signal. We
need instructions with the following functionality:

a16 = abs_s(a16);
if (a16 > b16)

b16 = a16;

This is covered by the MAX instruction in the Blackfin.
The absolute value is not incorporated, but Blackfin can per-
form two comparisons and two decisions within the MAX

instruction. This is also possible for comparisons lesser
than. This instruction is very useful when you are searching
an array for the largest value. This is done in speech coding
together with scaling to avoid overflow. An even more im-
portant instruction is based on 32-bit decisions. It looks like
the following:

for-loop with index i
basic operations
.
.
.
a32 = L_abs(a32); Optional
if (a32 > b32)

b32 = a32;
store index i;

end of if-statement
end of for-loop

This is common in codebook search. You try one entry,
perform all the synthesis calculations and get a synthesized
signal. Compare this signal with the original one and calcu-
late an error measurement like Least-Mean-Square(LMS).
This value is then compared to the best one so far. Except
from the error value itself it is also important to store the
entry of the codebook for the best choice. Either the loop
counter or the a pointer to the memory. The blackfin proces-
sor has incorporated such an instruction, but only for 16-bit
values. It is called Vector SEARCH. This instruction can
store both the best error value and a pointer to the memory.
Actually, it can perform two of these calculation within an
instruction. The drawback is that it only works for 16-bit
values. With 32-bit values you have to solve it in software
with compare instructions and conditional moves. There is
a 32-bit MAX instruction, just like for 16 bits. But there is
no good way to store the loop counter or the a pointer. With
an instruction that merge this into one instruction, one can
save up to 15% of the total execution time [5]. A propose
of a hardware architecture that will merge these instructions
into one is shown in figure 1. The 32-bit full adder (FA)
on the left in the figure is used for absolute calculations and
register R4 is used as a reference register for the branch in-
struction. In addition to this a control signal must be sent to
the register file if a new loop counter value has to be stored.
The path delay from ACR via the 32-bit full adder (FA) and
the accumulator to the accumulator register (ACR) is less
the path delay through the multiplier. This extra hardware
will not add extra delay to the system.

It is not just the calculations themself that consumes
clock cycles. The address calculations can be pretty tricky
as well. A DSP has good support for addressing the mem-

16

SATURATION

GUARD

GUARD

ACR

MSB

32-bit FA

ACC

32

38

38

38

38

38

38

38

38

38

R4

32

COEFF MEMORY

DATA MEMORY

38

32

32

16

R1 R2

33

38 38

R3

GUARD

32 32

38

17 x 17

Figure 1: A 32-bit conditional move with absolute value and
loop counter move.

ory. Modulo addressing, bitreverse addressing, autoincre-
ment and decrement and more than one address register.
But sometimes can the addressing be more complex than
the actual calculation. Look at the following:

for (l = 0 ; l < 60 ; l += 2) {

if (OccPos[l] != (Word16) 0){
continue ;

}

Acc0 = WrkBlk[l] ;
Acc0 = L_msu(Acc0, Temp.Pamp[j-1],

ImrCorr[abs_s((Word16)(l-Temp.Ploc[j-1]))]) ;
WrkBlk[l] = Acc0 ;
Acc0 = L_abs(Acc0) ;

if (Acc0 > Acc1) {
Acc1 = Acc0 ;
Temp.Ploc[j] = (Word16) l ;

}
}

This loop will in the worst case be entered 288 times. The
last part of this loop, from the L_abs instruction, where dis-

cussed in the previous section. We can not use an ordinary
pointer and just post increment after data fetch due to the
absolute value. The trick in software is to split the loop into
two parts. One where l-Temp.Ploc[j-1] is always positive
and the other where it is negative. When we have made
this separation, it is correct to use the autoincrement or au-
todecrement functionality of address registers. The hard-
ware solution is instead segmentation addressing with off-
set [6]. The principle of this addressing is shown in figure 2
and the offset calculation is shown in figure 3. The value
stored in Temp.Ploc[j-1] is constant during the whole loop
and will be stored in a register, REG in figure 3. To get
an efficient calculation of the offset, we have to use a loop
counter with variable step size. In this case the step size
needs to be two.

ADDRESS REG

ADDRESS

SEGMENT
ADDRESS

OFFSETSTEP SIZE

Figure 2: Address generator with offset addressing and seg-
ment addressing.

6. CONCLUSION

The Blackfin processor is a big improvement in calculation
capacity compared to an ordinary 16-bit DSP. The 32-bit ar-
chitecture allows dual operations and 32-bit loads and stores
from memory and registers, which is a speed up. This to-
gether with special instructions like MAX makes it suitable
for speech coding. The drawback is the lack of more com-
plex addressing schemes and to migrate some of the special
instructions for 16-bit operands to 32-bit operands. Espe-
cially the Vector SEARCH instruction. Searching for the
best entry in a table and at the same time store the lowest
error measurement value is a common function in speech
coding. We have also looked into some hardware structures
that will solve these problems. These are of course very
specialized and would not fit into a general processor like
Blackfin. Blackfin is not just a DSP processor it is also a
MCU at the same time. The idea is to integrate a DSP and
MCU into one processor.

LOOP COUNTER REG

OFFSET

MSB

Figure 3: Offset calculation with loop counter and absolute
value operation.

7. REFERENCES

[1] Itu-t recommendation g.723.1, dual rate speech coder
for multimedia communications transmitting at 5.3 and
6.3 kbit/s, 1996.

[2] Itu-t recommendation g.729, coding of speech at
8 kbit/s using conjugate-structure algebraic-code-
excited-linear-prediction (cs-acelp), 1996.

[3] Blackfin DSP Instruction Set Reference. Part number
82-000410-14 edition, 2002.

[4] ADSP-21535 Blackfin DSP Hardware Reference. Part
number 82-000410-13 edition, 2002.

[5] M. Olausson and D. Liu. Instruction and hardware ac-
celerations in G.723.1(6.3/5.3) and G.729. In The 1st
IEEE International Symposium on Signal Processing
and Information Technology, pages 34–39, 2001.

[6] M. Olausson and D. Liu. Instruction and hardware ac-
celerations for MP_MLQ in G.723.1. In 2002 IEEE
Workshop on Signal Processing Systems Design and
Implementation, pages 235–239, 2002.

