
INSTRUCTION AND HARDWARE ACCELERATION FOR MP-MLQ IN G.723.1

Mikael Olausson, Dake Liu

Computer Engineering
Department of Electrical Engineering

Linköpings University
SE-581 83 Linköping, Sweden

ABSTRACT

This paper describes a significant improvement in com-
plexity for the higher bit rate, 6.3 kbit/s, speech coding
algorithm G.723.1. The solution is to reduce the num-
ber of multiplication of the most computing extensive
part of the algorithm. This part stands for around 50%
of the total complexity. This is done by identifying and
excluding multiplication with zeros. G.723.1 is one of
the proposed speech coders in the H.323 standard. The
work has been done by thoroughly examining the fixed
point source code from ITU, International Telecom-
munication Unions [1]. A hardware structure for an
application specific instruction set processor (ASIP) is
proposed to increase the performance.

1. INTRODUCTION

The market for voice over Internet protocol, also called
VoIP, has increased over the years. Voice has been a
natural choice of communicating for a long time and
will continue to be so. The H.323 standard contains
five different speech coders with different complex-
ities and bit rates. The first one is G.711, which is
mandatory and uses A/u-law compression at 64 kbit/s.
Another coder is the G.728 Adaptive differential PCM
(ADPCM) at 16 kbit/s. The third is G.722 and works
on the bit rates of 48/56/64 kbit/s. The last two are
more interesting if we are dealing with bandwidth lim-
ited transmission channels. These are G.723.1 and G.729.
While the first one have two different bit rates spec-
ified, 6.3 and 5.3 kbit/s, the last have three different,

Thanks to Swedish Foundation for strategic Research (SFF)
and the Technical Research and Research Education (TFF) for
funding.

6.4/8.0/11.8 kbit/s. These two both have parts that are
common, but also parts that differ a lot. From a market
point of view it is of highest interest to make the im-
plementations of these algorithms as efficient as pos-
sible. A couple of factors may influence the choice
of algorithm. For example some users want to squeeze
as many channels as possible on a limited transmission
channel. Then their choice is as low bit rate as possible
if the speech quality is good enough. Others might use
them in battery powered applications and their aim is
low power consumption by decreased complexity with
reduced speech quality as a trade off. The examina-
tion is not done in deep, rather from a behavior ap-
proach where we are not bound to a certain hardware
manufacture. The quality or the robustness will not be
treated.

2. GENERAL DESCRIPTION OF G.723.1

The frame size of G.723.1 is 30 ms(240 samples). In
addition to this, the algorithm uses a look ahead of
7.5 ms, this gives a total algorithmic delay of 37.5
ms. The first component of the algorithms is a high
pass filter to get rid of undesired low frequency com-
ponents. The short term analysis is based on 10th or-
der linear prediction (LP). These coefficients are cal-
culated for every subframe, 7.5 ms or 60 samples. The
unquantized coefficients are then transferred to Lin-
ear Spectral Pairs (LSP) for the last subframe. These
LSP are then quantized using a Predictive Split Vec-
tor Quantizer(PSVQ). The excitation parameters from
both the fixed and the adaptive codebook are deter-
mined on subframe basis. The codec then uses an open
loop approach to calculate the pitch delay. It is es-
timated every 15 ms(every second subframe) in the

G.723.1. This pitch value is then refined in the closed-
loop pitch analysis. The closed-loop analysis is done
for every subframe. The gains and the pitch delay are
referred to as adaptive codebook parameters. The fixed
codebook extraction is the most exhaustive part of the
whole algorithm. In this codec there exist two differ-
ent approaches. One, which is used in the lower bit
rate 5.3 kbit/s and is called Algebraic-Code-Excited-
Linear-Prediction, (ACELP). This ACELP places at
most 4 non-zero pulses within a subframe. The po-
sitions are determined from the codebook. The second
approach is to use Multi-Pulse Maximum Likelihood
Quantization (MP-MLQ). In this case you have more
freedom to place the pulses more individually and not
based on an algebraic codebook. It is in this part of
the algorithm our proposal fits in. Any improvement
in this part, will give great effects on the performance,
because this part alone stands for around 50% of the
total execution time.

3. STATISTICS OF BASIC OPERATIONS

All the arithmetic and logic functions like add, sub,
shift, multiply and so on are implemented with a stan-
dard C library. This makes it simply to do statistics
over how many times different functions are used. Ad-
ditional to this, the C code has been thoroughly exam-
ined and all the branch, loop and move functions have
also been identified and classified. All these statistics
over basic operations, branch, loop and move instruc-
tions give a good hint on where to find improvements
on instruction and architecture level. A more detailed
description can be found in [2].

4. FORMER WORK

In order to handle as many channels as possible within
a fixed bandwidth, we want an algorithm with as low
output bit rate as possible. The drawback of a low
bit rate is that the complexity is increased in order to
keep the quality high. In [2] there were three hard-
ware structures proposed. They all contributed to a
lower complexity. One of those proposals also hold
for other speech coding algorithms like G.729 and also
the lower bit rate of G.723.1. The first one merges
the instructions 32-bit absolute value, 32-bit compar-
ison and conditional data move of both a 32-bit data

and the loop counter into one instruction. This instruc-
tion turned out to be really useful for the speech cod-
ing, while they all use the analysis-by synthesis ap-
proach [3]. It is rather a trial and error procedure than
a deriving procedure for finding the best fitting sig-
nal out of many alternatives. In addition to this we
also presented an address calculation scheme includ-
ing offset addressing and absolute value calculation.
These calculations were incorporated within the ad-
dress generator unit instead of using the ordinary arith-
metic unit. While the first one could give complexity
savings from 9-15%, the last two could give savings on
another 5% in the higher bit rate of the G.723.1 speech
coder.

5. HARDWARE IMPROVEMENTS IN G.723.1
6.3 KBIT/S

Here we will look at another part of the MP-MLQ.
This part includes a lot of multiplications, where it
turns out that many of them are just multiplication by
zero. Here we can see a great potential for savings.
The C code for a step of the loop looks like the follow-
ing:

for (j = 0 ; j < 60 ; j ++){
OccPos[j] = (Word16) 0 ;

}

for (j = 0 ; j < Np(5 or 6) ; j ++){
OccPos[Temp.Ploc[j]] = Temp.Pamp[j] ;

}
for (l = 59 ; l >= 0 ; l –) {

Acc0 = (Word32) 0 ;

for (j = 0 ; j <= l ; j ++){
Acc0 = L_mac(Acc0, OccPos[j], Imr[l-j]) ;

}
Acc0 = L_shl(Acc0, (Word16) 2) ;
OccPos[l] = extract_h(Acc0) ;

}

This nested loop will be entered 64 times in the
worst case and the total number of multiplication-and-
accumulations will then be:

64 �

59X

l=0

j=lX

j=0

1 = 64 �
59 � 60

2
= 113280 (1)

Out of these 113280 MAC-operations are only 21120
actually multiplication with operand OccPos[j] not zero.
That means that over 90000 multiplications are wasted.
Before the loop starts all the entries to variable Occ-
Pos are cleared. We only have 5 or 6 array indices,
Temp.Ploc[i] as positions, which are between 0 and 59.
We also know their corresponding values, Temp.Pamp[i]
as amplitudes, which are non zero. There are six ele-
ments for even subframes and five for the odd ones out
of 60 entries in OccPos, which are not zero. So, in-
stead of forcing the inner loop to multiply over all Oc-
cPos values, even the zero valued ones, we just loop
over the non-zero values. The new proposed C code
for this nested loop will look like the following:

for (l = 59 ; l >= 0 ; l –) {
Acc0 = (Word32) 0 ;
for (j = 0 ; j < Np(5 or 6) ; j ++){

if ((l-Temp.Ploc[j]) >= 0)
Acc0 = L_mac(Acc0,

Temp.Pamp[j], Imr[l-Temp.Ploc[j]]) ;
}
Acc0 = L_shl(Acc0, 2);
OccPos2[l] = extract_h(Acc0);
}

This nested loop will also be entered 64 times in the
worst case and the total number of multiplications has
decreased to 64*60*5.5=21120. The number of mul-
tiplications has actually decreased even more, because
some of the multiplication will not occur due to the
branch operation. By implementing this in software on
a DSP, the performance estimations can become tricky.
We have introduced a conditional branch within the
loop. While it is such a short loop, the penalty from
pipeline stalls might be high. Some DSP’s include op-
erations, which can do conditional operations. A good
solution here would have been a conditional multiply-

and-accumulate.

ADDRESS REG

ADDRESS

SEGMENT
ADDRESS

OFFSETSTEP SIZE

Fig. 1. Address generator with offset addressing and
segment addressing.

To do this even better we will use the hardware ar-
chitecture of figure 1, segmentation addressing. This
one was originally presented in [2]. The offset cal-
culation is rather simple, while it is a subtraction be-
tween the loop counter and the stored value of variable
Temp.Ploc[j] in a register. The offset value is then
added to the start address of the variable Imr. This
modification is not enough, the calculated address off-
set, l-Temp.Ploc[i], can point outside the Imr buffer
and we will perform an illegal multiplication. This can
only occur when the result from the subtraction is neg-
ative. The solution is to use the msb bit from the sub-
traction between the loop counter and the Temp.Ploc[j]
in figure 2. This data dependent control signal will
then be propagated to the multiplier. If this bit turns
out to be a one, i.e. a negative value of the subtraction
result, the multiplier will not take the fetched operand
as input, rather it will take a zero. We call this opera-
tion conditional operand. This will introduce an extra

multiplexer in the multiplier circuit. The reason for
the extra absolute value calculation in the offset calcu-
lation circuit is found in [2]. We can address calcula-
tions, which require absolute value calculations.

LOOP COUNTER REG

OFFSET

MSB

Control signal to the multiplier

Fig. 2. Offset calculation with loop counter and abso-
lute value operation.

6. PERFORMANCE ESTIMATIONS

In order to make an estimation on the performance we
have weighted the operation by how many clock cy-
cles they consume. This is of course very hardware
dependent, but to get a rough estimate it is a good start-
ing point. It is also important when evaluating the im-
provements. The table 1 below lists all the operations
and their corresponding clock cycle consumption.

The branch instructions are weighted after the com-
plexity in the comparison statement. If you compare
with zero, then the cycle count is 1. For two 16-bit
numbers the cycle count is 2 and finally, when you
compare two 32-bit numbers the cycle count is 3. All
the initialization of loops are counted as two clock cy-
cles. When moving data are 16-bit movement treated
as 1 clock cycle and 32-bit movement treated as two
clock cycles. The only exception is when data is set to
zero, then both 16-bit and 32-bit are treated as 1 clock
cycle. Table 2 gives the estimated performance of the
four different implementations. To make the estimate

Cycles Operation
Arithmetic operations
1 16-bit operations
2 32-bit operations
3 32-bit absolute value calculations
18 16-bit by 16-bit division
20 32-bit by 16-bit division
Branches
1 comparison with zero
2 comparison between two 16-bit values
3 comparison between two 32-bit values
Loops
2 Loop start
Moves
1 16-bit move
2 32-bit move

Table 1. Number of clock cycles per operation.

even more accurate, we have also introduced memory
related issues. We have taken into account that fetch-
ing operands from memories take one clock cycle, at
least for the first operands of the loop. When you need
the next operand of a buffer it is assumed to be in a
register already. This fetch has been done during the
operation of the operands. As we can see from table
2 there is no big difference between the branch im-
plementation and the conditional multiply. This is not
true because pipeline issues are hard to calculate. For
a 2-stage pipeline, this is true, but for deeper pipelines
you have to insert nop operations after the branch in-
struction. The total complexity of the whole algorithm
is around 20 MIPS, without any modifications. This
value is calculated by counting the basic operations
and multiplying them by their weights from table 1.

7. CONCLUSION

In this paper we have seen four different implemen-
tations of a critical part of the fixed codebook search.
By examining the code carefully, we have reduced the
number of required multiplication by more than five
times. This gives a performance improvement of about
30 % compared to the original implementation. While
this number just corresponds to the fixed codebook ex-

Operation Average Maximum Improve-
MIPS MIPS ment

Original 8.40 11.08
With branch 7.74 10.64 4-8 %
With conditional
multiply 7.41 10.12 8-11 %
With extra HW 5.73 7.80 29-31 %

Table 2. Performance estimation for the four different
implementations of the fixed codebook excitation for
the higher bit rate of the speech coder G.723.1. The
improvement in percent compared to the original im-
plementation is stated in the fourth column.

citation part and this part stands for approximately 50
% of total execution time, the overall improvement is
around 15 %. The modified hardware architecture to
improve the performance is also presented. We have
calculated the performance improvements by applying
weights to all basic operations, add, sub, etc, branch
statements, loop and move instructions.

8. ACKNOWLEDGMENTS

This work was financially supported by the Swedish
Foundation for strategic Research (SFF) and the Tech-
nical Research and Research Education (TFF).

9. REFERENCES

[1] ITU-T Recommendation G.723.1, Dual Rate
Speech Coder for Multimedia Communications
Transmitting at 5.3 and 6.3 kbit/s, 1996.

[2] M. Olausson and D. Liu, “Instruction and
hardware accelerations in G.723.1(6.3/5.3) and
G.729,” inThe 1st IEEE International Symposium
on Signal Processing and Information Technology,
2001, pp. 34–39.

[3] A.M. Kondoz, Digital Speech, John Wiley and
Sons Ltd, 1994.

