
INSTRUCTION AND HARDWARE ACCELERATIONS IN G.723.1 (6.3/5.3) AND G.729

Mikael Olausson, Dake Liu

Department of Electrical Engineering
Linköpings universitet

SE-581 83 Linköping, Sweden
{mikol,dake}@isy.liu.se

ABSTRACT

This paper makes accelerations on instruction level
based on the three speech coding algorithms G.723.1,
6.3 kbit/s and 5.3 kbit/s and G.729 8 kbit/s with hard-
ware implementation. All these three algorithms are
proposed by the H.323 standard together with G.711
64 kbit/s and G.728 16 kbit/s. The work has been
done by thoroughly examining the fixed point source
code from ITU, International Telecommunication Unions
[1], [2]. Three hardware structures are proposed to
increase the performance.

1. INTRODUCTION

The market for voice over Internet protocol, also called
VoIP, has increased over the years. Voice has been
a natural choice of communicating for a long long
time and will continue to be so. The H.323 stan-
dard contains four different speech coders with differ-
ent complexity and bit rates. The first one is G.711,
which is mandatory and uses A/u-law compression at
64 kbit/s. Another coder is the G.728 Adaptive dif-
ferential PCM (ADPCM) at 16 kbit/s. The last two
are more interesting if we are dealing with bandwidth
limited transmission channels. These are G.723.1 and
G.729. While the first one have two different bit rates
specified, 6.3 and 5.3 kbit/s, the last have three dif-
ferent, 6.4/8.0/11.8 kbit/s. These two both have parts
that are common, but also parts that differ a lot. From
a market point of view it is of highest interest to make
the implementations of these algorithms as efficient
as possible. A couple of factors may influence the
choice of algorithm. For example some users want
to squeeze as many channels as possible on a limited

transmission channel. Then their choice is as low bit
rate as possible if the speech quality is good enough.
Others might use them in battery powered applica-
tions and their aim is low power consumption by re-
duced complexity with reduced speech quality as a
tradeoff. Others might aim for high speech quality
with limited bit rate. This paper will point out some
factors that will influence the choice of speech codec
from hardware and complexity point of view. The
examination is done from a behavior approach where
we are not bound to certain hardware manufacture.
The quality or the robustness will not be treated.

2. GENERAL DESCRIPTION OF G.723.1 AND
G.729

The first difference between the G.723.1 and the G.729
is the frame size. While the G.723.1 is based on 30
ms(240 samples), the G.729 is based on 10 ms(80
samples) frames. The delay of the algorithms are
37.5 ms and 15 ms respectively. The fixed codebook
extraction is the most exhaustive part of the whole al-
gorithm. In these two codecs there exist two different
approaches. One which are used in both the lower bit
rate of G.723.1 and in G.729 and is Algebraic-Code-
Excited-Linear-Prediction, (ACELP). This ACELP places
at most 4 non-zero pulses within a subframe. A sub-
frame is 5 ms long in G.729 and 7.5 ms in G.723.1.
The positions are determined from the codebook. The
second approach is to use Multi-Pulse Maximum Like-
lihood Quantization (MP-MLQ). This one is used in
the higher bit rate of G.723.1. In this case you have
more opportunities to place the pulses more individ-
ually and not based on an algebraic codebook.

3. STATISTICS OF BASIC OPERATIONS

All the arithmetic and logic functions like add, sub,
shift, multiply and so on are implemented with a stan-
dard C library. This makes it simply to do statistics
over how many times different functions are used.
Additional to this, the C code has been thoroughly
examined and all the branch, loop and move func-
tions have also been identified and classified. All
these statistics over basic operations, branch, loop
and move instructions give a good hint on where to
find improvements on instruction and architecture level.
The statistics are presented in table 4 in the end of
the paper. The table corresponds of three columns
of numbers. The statistics for each speech coder with
both the average and maximum number of times each
operations occurs in a frame. The stimuli used for the
speech coders are the test vectors included with the C
code from ITU [1], [2]. All the statistics are calcu-
lated from the encoders only, while the encoding part
is the most time consuming.

3.1. Description of the operands

We can see that the most used function is the multiply-
and-accumulate, L_MAC. In table 4 we have not made
any distinction between accumulation with addition
or subtraction. This is not significant from hardware
point of view, while most DSP’s incorporate both this
functions. Here comes some explanation to the table.

The extension _A stands for multiplication with
equal input to both operand x and y, for example
when performing autocorrelation. Extension _I stands
for integer multiplication, i.e. multiplication without
proceeding left shift. All the other multiplications are
fractional. The basic 16-bit operations like, addition,
subtraction, shift, round, negate and so on are left out
from the table of statistics. They are almost always
present in a DSP.
The second part of the table deals with branch in-
structions. Except from the total number of them,
some special cases has been sorted out. First of all
is a distinction between the comparison statements
made. We distinguish between 16-bit and 32-bit as

Operation Explanation
ABS_S 16 bit absolute value.
MULT 16-bit multiplication with 16-bit result.
L_MULT 16-bit multiplication.
L_MAC 16-bit multiplication and accumulation.
MULT_R 16-bit multiplication and rounding.
L_SHL 32-bit left shift.
L_SHR 32-bit right shift.
L_ABS 32-bit absolute value.
DIV_S 16 by 16 bit division.
L_MLS 32 by 16-bit multiplication.
DIV_32 32 by 16-bit division.

Table 1: Explanation of some of the operations in
table 4.

indicated by the second part of the word in table 4,
MOVE_16 and MOVE_32. The last part of the word,
_COND, _CONDA and _COND_I, stands for special
cases of branch instructions. _COND means condi-
tional move, _CONDA is conditional move with ab-
solute value of the operand before the comparison
statement is executed and the last one, _COND_I,
means conditional move of both operand and loop
counter. Absolute value calculation of the operand
before branch comparison is optional in this oper-
ation. The operation TOTAL BRANCH in table 4
is the total number of branch statements found in a
frame. The third part of table 4 describes the number
of loop operations. The last part of 4 is the num-
ber of data movements within a frame. This includes
all data movements from clear, set update and move
data. No distinction is made between 32-bit and 16-
bit move.

3.2. Investigation of the statistics

If we look at the L_MAC operations of table 4 more
deeply, we will find that around 20% of all MAC op-
erations actually are integer multiplication in the 6.3
kbit/s of G.723.1 and over 33% in the 5.3 kbit/s case.
When we look at G.729, there is no need at all for
integer multiplication. This means that the multiplier
unit must have two modes of operation, fractional and
integer in the G.723.1 case. Also from table 4, around

2%-8% of the MAC operations are of the type auto-
correlation, this means that the same word must be
fed into both the x and y operand of the multiplier.

If we look closer into the branch operations we
can see that a large amount of them actually just are
conditional moves. The branch condition can be both
16- and 32-bit and be using absolute value or not. For
16-bit branch instructions this corresponds to the row
MOVE_16_CONDA in table 4. The C code for this
16-bit branch instruction together with the move in-
struction looks like the following:

a16 = abs_s(a16);
if (a16 > b16)

b16 = a16;

This kind of operation will be merged into one
instruction, amax a16, b16. The instruction takes the
absolute value of a16 and compares it with b16. The
biggest of the two are then stored in b16. An exten-
sion to the amax instruction is needed for the lower
bit rate of G.723.1. The absolute value of operand
a16 must be optional. We will call this new instruc-
tion max, max a16, b16, and it compares a16 and b16
and stores the biggest value in b16.

For 32-bit branch instructions it gets more com-
plicated. There are conditional moves with and with-
out absolute value, but they are not so many. Instead,
a large amount of the 32-bit branch instructions are
of the form named
MOVE_32_COND_I in table 4. In this case we do
not just perform a move instruction if the branch con-
dition is true, we also have to store the loop counter
value. While around 40-45% of the branch related
instructions of 6.3 kbit/s of G.723.1 are of the type
conditional move, we will design a hardware struc-
ture that merge this into one instruction. The hard-
ware is shown in figure 1. This will also reduce the
number of branch jumps needed. The branch instruc-
tions can be cumbersome if the pipeline is deep. For
the other two speech coders, this conditional move
is not so pronounced. Especially not in the case of
G.729.

Even though division is not used very often, around
60 times per frame for both long and short division, it
will be ineffective and time consuming to implement

this instruction in software. With hardware support,
the clock cycles can be at the range as the number of
bits required in the quote.

Normalization, or count the leading one’s or zero’s
of a signed number is another important instruction
to incorpate in hardware. Doing it in software will be
time consuming.

4. ASSEMBLY INSTRUCTION AND
HARDWARE SPECIFICATION FOR

IMPROVEMENTS

In this section we will present a couple of hardware
architectures to improve the performance of these speech
coding algorithms, especially the 6.3 kbit/s imple-
mentation of G.723.1.

4.1. 32-bit conditional move with loop index

As we saw from table 4 the 32-bit compare together
with conditional move and storage of the loop counter
will occur up to 10000 times per frame in the 6.3
kbit/s implementation of G.723.1. This sequence may
also include an 32-bit absolute value calculation be-
fore the comparison. The pseudo C code looks some-
thing like this:

for-loop with index i
basic operations
.
.
.
a32 = L_abs(a32); Optional
if (a32 > b32)

b32 = a32;
store index i;

end of if-statement
end of for-loop

These five instructions will be merged into one
instruction. A propose of the architecture is shown
in figure 1. To perform this operation 3-8 clock cy-
cles would have been required, whether the branch
expression is true or not and depending on the hard-
ware support for 32-bit operations. Now, with this
hardware improvement, it is reduced down to 1 clock

cycle. The 32-bit full adder (FA) on the left in the fig-
ure is used for absolute value calculations and is fed
from register ACR1. The result from absolute calcu-
lation is then compared to the value in register ACR2,
the reference register. The biggest of these values can
then be stored in either ACR1 or ACR2 by data driven
control, MSB, of the result of the compare. We do not
need to perform the absolute calculation, instead we
can perform the comparison directly between ACR1
and ACR2. In addition to this, a control signal must
be sent to the register file if a new loop counter value
has to be stored. The path delay from ACR1 via the

16

SATURATION

GUARD

MSB

32-bit FA

ACC

32

38

38

38

38

38

COEFF MEMORY

DATA MEMORY

32

16

R1 R2

33

38

R3

GUARD

17 x 17

Cin

ACR1 ACR2

GUARD

1 0

0 1
MSB

Figure 1: A 32-bit conditional move with absolute
value and loop counter move.

32-bit full adder (FA) and the accumulator to the ref-
erence register (ACR2) is less the path delay through
the multiplier. This extra hardware will not add extra
delay to the system.

4.2. Hardware improvements in G.723.1 6.3 kbit/s

By examining the C code for the G.723.1 6.3 kbit/s
we found one loop where this 32-bit conditional move
with loop index and extra hardware could give dra-
maticly improvements in the performance. The loop

is the search for the pulse positions in the fixed code-
book excitation. This loop also uses a complex scheme
for the pointer update, when fetching data together
with the 32-bit compare and absolute value presented
in the previous section. The C code for the loop look
like the following:

for (l = 0 ; l < 60 ; l += 2) {

if (OccPos[l] != (Word16) 0){
continue ;

}

Acc0 = WrkBlk[l] ;
Acc0 = L_msu(Acc0, Temp.Pamp[j-1],

ImrCorr[abs_s((Word16)(l-Temp.Ploc[j-1]))]) ;
WrkBlk[l] = Acc0 ;
Acc0 = L_abs(Acc0) ;

if (Acc0 > Acc1) {
Acc1 = Acc0 ;
Temp.Ploc[j] = (Word16) l ;

}
}

This loop will in the worst case be entered 288 times.
The last part of this loop, from the L_abs instruction,
is covered by our hardware proposal from the previ-
ous section. To keep the performance efficient, we
have to make the fetch of the variable ImrCorr in one
clock cycle. We can not use an ordinary pointer and
just post increment after data fetch due to the abso-
lute value. The solution is instead segmentation ad-
dressing with offset. The principle of this addressing
and the offset calculation is shown in figure 2. The
value stored in Temp.Ploc[j-1] is constant during the
whole loop and will be stored in a register, REG in
figure 2. To get an efficient calculation of the offset,
we have to use a loop counter with variable step size.
In this case the step size needs to be two. A second
problem is to make it bit exact with the C implemen-
tation above. This problem will rise from the fact that
the loop in the C code is increasing the loop index l,
while the loop counter in hardware is decreasing it’s
value. This will give a different result in the stored
loop index if two or more calculations on Acc0 will

give the same result. The solution can be to imple-
ment a loop counter that counts in the same direc-
tion as the for loop. A better solution is to keep the
hardware of the loop counter and instead change the
branch option from ’>’ to ’>=’.

OFFSETSTEP SIZE REG

OFFSET

MSB

ADDRESS

SEGMENT
ADDRESS

LOOP COUNTER

ADDR REG

Figure 2: Offset calculation with loop counter and
absolute value operation.

5. PERFORMANCE ESTIMATIONS

In order to make an estimation on the performance we
have weighted the operation by how many clock cy-
cles they consume. This is of course very hardware
dependent, but to get a rough estimate it is a good
starting point. It is also important when evaluating
the improvements. All the operation from table 4 are
grouped together with operations that consumes the
same amount of clock cycles. Even the operations
that are left out from the table are included in this per-
formance estimation. The table 5 below lists all the
operations and their corresponding clock cycle con-
sumption. The branch instructions are weighted after

Cycles Operation
1 add, sub abs_s, shl, shr, negate, extract_h

extract_l, round, l_deposit_h, l_deposit_l
norm_s and multiplications

2 l_add, l_sub, l_negate, l_shl, l_shr, norm_l
3 l_abs
18 div_s
20 div_32

Table 2: Number of clock cycles per operation

their complexity in the comparison statement. If you

compare with zero, then the cycle count is 1. For two
16-bit number the cycle count is 2 and finally, when
you compare two 32-bit numbers the cycle count is
3. All the initialization of loops are counted as one
clock cycle. When moving data are 16-bit movement
treated as 1 clock cycle and 32-bit movement treated
as two clock cycles. The only exception is when data
is set to zero, then are both 16-bit and 32-bit treated
as 1 clock cycle. Table 5 gives the estimated perfor-
mance of the three speech coders.

6. CONCLUSION

In this paper we have proposed three hardware ar-
chitectures and three assembly instruction to improve
the performance. We have also seen statistics over
three different speech coders in terms of basic opera-
tions, add, sub, etc, branch statements, loop and move
instructions. In table 6 are the estimated savings pre-
sented. Most of this work applies to the higher bit
rate of G.723.1, 6.3 kbit/s. The number presented,
both the cycle count and the performance improve-
ments, are estimated from worst case scenario.

Operation G.723.1(6.3) G.723.1(5.3) G.729(8.0)
Cycle count 6000000 431000 458000
32-bit conditional
with loop index 56-90000 12-30000 9-14400
Total saving (%)9-15 3-7 2-3

Table 3: Improvements of the different hardware and
assembly proposals in the G.723.1 and G.729. Note
that the figures for G.729 is normalized to 30 ms, 3
frames, in order to be comparable with G.723.1.

7. ACKNOWLEDGMENT

This work was financially supported by the Center
for Industrial Information Technology at Linköping
Institute of Technology (CENIIT), Sweden.

8. REFERENCES

[1] Itu-t recommendation g.723.1, dual rate speech
coder for multimedia communications transmit-
ting at 5.3 and 6.3 kbit/s, 1996.

[2] Itu-t recommendation g.729, coding of speech
at 8 kbit/s using conjugate-structure algebraic-
code-excited-linear-prediction (cs-acelp), 1996.

G.723 G.723 G.729

(6.3 kbit/s) (5.3 kbit/s) (8.0 kbit/s)

Operation Average/Max Average/Max Average/Max

L_MAC 222373/264810 130872/141129 38734/42384

L_MAC_I 53118/69108 65343/67188 0/0

L_MAC_A 5538/5660 5908/5916 5081/5383

L_MAC_IA 684/720 713/720 0/0

L_MULT 2007/6822 5610/10339 5914/6842

L_MULT_A 119/254 123/254 9/10

MULT 329/7544 2067/7544 6564/7544

I_MULT 0/0 3280/3312 0/0

MULT_R 3308/3478 3436/3478 240/240

ABS_S 6975/8945 1189/1201 21/21

L_ADD 557/682 489/597 596/597

L_SUB 638/841 366/841 832/845

L_SHL 8550/10242 5210/5693 3068/3097

L_SHR 2625/4075 4540/6794 3150/4081

L_ABS 6937/9068 646/652 100/100

NORM_S 6/11 6/11 11/11

NORM_L 378/782 400/790 70/71

L_MLS 291/404 303/404 0/0

MPY_32_16 48/1002 9/1002 972/1002

MPY_32 8/166 1/166 166/166

DIV_S 11/24 15/24 23/24

DIV_32 47/50 49/50 10/10

TOTAL OP 343149/461334 275471/329995 111612/124163

MOVE_16_COND 28/104 2229/2256 84/104

MOVE_16_CONDA 1050/1105 1094/1105 0/0

MOVE_16_COND_I 1/23 91/92 22/23

MOVE_32_COND 4/10 4/10 7/10

MOVE_32_CONDA 337/351 586/591 80/80

MOVE_32_COND_I 8876/10869 3063/3148 508/508

TOTAL BRANCH 18534/28358 12516/20485 4585/5690

TOTAL LOOP 15333/18011 13180/13676 2618/2749

TOTAL MOVE 58633/73370 50360/56163 11592/12335

Table 4: Statistics of G.723.1 6.3 kbit/s, 5.3 kbit/s
and G729 8.0 kbit/s. Note the different frame sizes
between G.723.1 and G729, 30 ms and 10 ms respec-
tively.

