REDUCED FLOATING POINT FOR MPEGLV2 LAYER |11 DECODING

Mikael Olausson, Andreas Ehliar, Johan Eilert and Dake liu

Computer Engineering
Department of Electraical Engineering
Linkopings universitet
SE-581 83 Linkdping, Sweden
{mikol, andei, johei, dake}@isy.liu.se

ABSTRACT

A new approach to decode MPEG1/2-Layer3, mp3, is pre-
sented. Instead of converting the algorithm to fixed point
we propose a 16-bit floating point implementation. These
16 bits include 1 sign bit and 15 bits of both mantissa and
exponent. The dynamic range is increased by using this 16-
bit floating point as compared to both 24 and 32-bit fixed
point. The 16-bit floating point is also suitable for fast pro-
totyping. Usually new algorithms are developed in 64-bit
floating point. Instead of using scaling and double precision
as in fixed point implementation we can use this 16-bit float-
ing point easily. In addition this format works well even for
memory compiling. The intention of this approach is a fast,
simple, low power, and low silicon area implementation for
consumer products like cellular phones and PDAs. Both lis-
tening tests and tests versus the psychoacoustic model has
been completed.

1. INTRODUCTION

Entertainment in small handheld devices like cellular phones
and PDAs are getting more and more popular. One of these
extra features are audio playback. MPEG-1/2 layer IlI, of-
ten known as MP3, is an audio coding standard that pro-
vides high audio quality at low bit rates [1]. Since a lot
of these consumer product are portable, it is important to
use low power implementations. The idea is to use small
arithmetic units and still achieve high computional dynamic
range. The standard for MPEG includes both encoder and
decoder, but for the applications discussed here, the only in-
teresting part is the decoder. Usually the decoder is imple-
mented on a 24 or 32-bit fixed point processor. The bit size
is chosen to give reasonable quality in the decoded music.
If you use a standard 16-bit processor, i.e., a DSP, you have
to use double precision in parts of the computations. Other-
wise you will be able to hear a quality degradation. Here we
will present a new approach to a fast, simple, low power, and
low silicon area implementation using 16-bit floating point.

The target is portable devices without extreme audio quality
requirements; a cellular phone or a PDA. The headphones or
the loud speakers are usually of quite poor quality. Therefor
there is no need for high demands on the output music.

2. GENERAL DESCRIPTION OF THE MP3
FORMAT

The ISO/IEC 11172-3and ISO/IEC 13818-3 are coding stan-
dards that provide high quality audio at low bit rates. There
are three layers associated with the standard, layer I, 1l and
I11. They offer both increasing compression ratios, and in-
creasing computing complexity. Layer I11 is more known as
“mp3” based on the file extension it uses. The encoded bi-
trates ranges from 32 kbit/s up to 320 kbit/s. There are three
main sampling frequencies associated with the standard 23,
44.1 and 48 kHz. There are also half frequencies which are
just the main frequencies divided by 2. For a more complete
description of the standard, see [1].

3. THE WORK

The work began with the reference code in C for the MPEG
2 layer Ill decoder. First the arithmetic instructions were
exchanged against functions calls. This made it easier to
perform profiling of the code and to elaborate with the pre-
cision and the dynamic range. The first approach was to use
one format for all calculations within the decoder. While
memory sizes usually are limited to byte lengths, we tried
to use a floating point format while only using 16 bits. One
bit is allocated for the sign bit and the remainder for both
the mantissa and the exponent. This approach turned out to
be insufficient for the compliance testing [2]. To be called
a fully compliant audio decoder, the rms level of the differ-
ence signal between the reference decoder and the decoder
under test should be less than 2—15/\/ﬁ for a sine sweep
signal 20Hz - 10 kHz with an amplitude of -20 dB rela-
tive to full scale. In addition to this, the difference shall

have a maximum absolute value of no more than 214 rel-
ative to full scale. To be referred to as a limited accuracy
decoder, the rms level of the difference signal between the
reference decoder and the decoder under test should be less
than 2~ /4/12 for a sine sweep signal 20Hz - 10 kHz with
an amplitude of -20 dB relative to full scale. There are no
requirements of the maximum absolute difference. We were
unable to hear any degradation in quality when we listened
to the decoded files. The listening tests are described more
in detail in section 5. We then decided to increase the in-
ternal precision, keeping the external precision to 16 bits.
The distinction between internal and external precision lies
in where the data is stored. While data is in the datapath the
format of the data can be higher, but as soon as you store it in
memory it must be converted to 16 bits. Figure 1 shows the
result of the compliance test for different sizes of the inter-
nal and external mantissa. To be fully compliant we needed
a mantissa of 19 bits internally and 15 bits externally, al-
ternatively 18 bits internally and 16 externally. The IEEE
floating point format consists of a 23 bits mantissa. Our goal
of this approach was not to aim for full compliance, instead
the intention was a descent quality for low end equipment.
Therefor, the limited accuracy test was acceptable. Accord-
ing to figure 1 the demands of the mantissa is only 13 bits
internally and 9 bits externally, alternatively 12 bits inter-
nally and 10 bits externally for limited accuracy. This is a
reduction of 6 bits from the fully compliant requirements
and half of the mantissa size compared to the IEEE floating
point format. The compliance test has been performed on
fixed point arithmetic in [3]. The requirements from their
test is a 20 bits implementation.

Compliance results depending on the precision of the floating point arithmetics

- Not compliant - Limited accuracy I:l Full precision

20 []

190 L]

8 I

wr [

8 e | .
g sy (1 11 |m.
E1p () () () (O I
£ (L rrrrri
& 12 () () (O I I B
up N () (O O

10 (N N O [O o

of I I) O e e

s HEENENENNNENENENNR

rANNEEEEEEENNER

7 8 s 10 1 12 13 14 15 16 17 18 19 2

Internal mantissa size

Figure 1: Compliance test for different sizes of the internal
and external mantissa.

While the mantissa is responsible for the precision, the
exponent determines the dynamic range. One of the reasons

for using this floating point approach was to avoid the prob-
lem of scaling variables that had to be completed in integer
representation. Since we did not want variables to overflow,
the upper limits of the exponent was set by the dynamic
range of the variables. This was done by profiling the code
and storing the maximum values of the variables. As a re-
sult, we could distinguish a difference in the upper limit for
variables in the data path and the ones stored in memory.
We needed a higher range for internal variable in the data
path.

4. MOTIVATION

By using this reduced floating point representation we can
achieve a high dynamic range and a reasonable precision,
with fewer bits. We use 6 bits for the exponent in the in-
ternal representation. In order to get the same dynamic
range using fixed point, it is necessary to use 32 bits. If
this amount of bits is not available, double precision would
be used instead. This results in a performance degrading.
Another approach is to use appropriate scaling in order to
reach the required dynamic range. Unfortunately, this pro-
cess is tricky and time consuming. In addition, the code size
would become bigger, the firmware would be more com-
plex, and the debugging harder. However, floating point is a
more straight forward implementation. In this floating point
approach we can attack the problem of dynamic range and
precision independently. If our goal is a high dynamic range
we would allocate more bits for the exponent and if there is
high demands on the precision we allocate more bits for the
mantissa. In the fixed point approach we cannot separate
these issues. By increasing the dynamic range the precision
would also increase and vice versa. In the case of fixed point
representation, an extra bit will increase the dynamic range
by 2n+1 /27 = 2. In the floating point alternative, an extra
bit in the exponent will give a 227 /2™ = 2™ increase in the
dynamic range. From the calculations above it is clear that
the floating point is superior when one wants to have an high
dynamic range. For the precision aspect the floating point
representation is also favorable. Due to the normalization
of all the values, the same number of precision bits will al-
ways occur. In a fixed point representation we have to trade
precision for dynamic range. By shifting the binary point
to the right we can represent larger numbers on the expense
of lower precision. The other extreme is when there are too
many bits allocated for the precision resulting in an over-
flow. The IEEE standard[4] specifies a number of floating
point formats. The first two is single precision and double
precision, that use a total of 32 respective 64 bits for their
implementation. The reference decoder for the mp3 for-
mat uses the double precision format in their calculations.
While our target for this paper is low-end applications, we
will use the same concept as for the floating point standard

but reduce both the mantissa and the exponent to fit our pur-
poses. To find a balance between the two the block floating
point representation can be used. Again, the mantissa must
be separated from the exponent, but the exponent stays the
same for a whole block of values. As in the fixed point case,
we will need to search through the whole block of data to
find the right exponent and then scale the values appropri-
ately. As a result both high dynamic range and high preci-
sion are possible. The drawback is when the values within a
block differ significantly. The exponent is then chosen from
the largest value and the small values will be shifted down
and in turn lose most of their precision. The three represen-
tations are shown in figure 2.

Binary point

AT

-2 20 2712720784 75,6

sf e] m |

Sign bit Exponent Mantissa

Mantissa ‘
‘ Mantissa ‘
Mantissa ‘

Figure 2: Fixed point, floating point and block floating point
representation. In fixed point, the binary point is imaginary.

5. TESTING THE QUALITY

In addition to the compliance test described in chapter 3,
we conducted objective measurement tests. The idea was to
use the psychoacoustic model from an mp3 encoder, in this
case from LAME version 3.92. First, the masking levels
from each subband were extracted. The decoder under test
was then compared to the reference decoder using double
floating point precision. From this, two different measure-
ment could be made; one where we calculated the Signal-to-
“hearable” noise ratio (SHNR) and one where we measured
the masking flag rate. The SHNR is calculated in the same
way as the more traditional Signal-to-Noise ratio (SNR), ex-
cept that the noise is exchanged with the “hearable noise”.
l.e. all the noise that is introduced by the decoder under
test is compared to the reference decoder that exceeds the
masking levels. The masking levels are calculated from the
reference decoder output signal.

SHNR[dB] = 10 x logm% (1)
hr

where Pg,.[i] is the output samples from the decoder under
test squared and

o | dif fli] — Mask[i] dif f[i] > Mask[i]
Pirli] = { 0 dif f[i] <= Mask]i]

Mask{i] is the masking levels from the psychoacoustic model.
diff[i] is the difference between the output signal from the
reference decoder and the decoder under test squared; diff[i]
= (pemires — pemay:)® To make it more convenient are all
the calculations made on a midchannel. ‘42 where I is
the left channel and r is the right channel. The second mea-
surement is from [5]. The flag rate gives the percentage of
frames with audible distortion, i.e., frames where the intro-
duced noise is above the masking level. In table 1 we used
the sine wave file from the compliance test and changed the
number of bits for the mantissa and the exponent. The first
test was the single precision floating point. The result was
very good performance, but we used 32 bits for the repre-
sentation. In order to be called a full precision decoder we
used a 19 bit mantissa internally and a 15 bit mantissa inter-
nally. See figure 1. The degradation from the single floating
point is only 7 dB. For limited accuracy the degradation is
much bigger, especially in the case hearable noise. Here,
a 13 bits internal mantissa and 9 bits externally were used.
Further, a test was conducted where the internal and exter-
nal representation were the same. Namely, 10 bits mantissa,
5 bits exponent and 1 sign bit. This is interesting since it fits
into a 16 bit memory and a 16 bit datapath. As a conclu-
sion of this test the difference between the SNR and SHNR
decreases as you decrease the precision, i.e., the noise intro-
duced becomes more and more “hearable”.

Precision SNR SHNR
Single float 89.1 1158 2.5%1077
Full precision 829 1086 6.0x10~*
Limited Accuracy 53.9 60.9 0.16
16-bits 46.2 473 0.13

Flag Rate

Table 1: The result of the objective measurement.

The second test was the sound files from the SQAM
disc [6], Sound Quality Assessment Material, a mixture of
both male and female speech in English, French and Ger-
man. It also includes electronic tune in file frer07_1. The
remaining sounds are purely instrumental; violoncello in
viool10_2, trumpet in trpt21_2, horn in horn23_2, glocken-
spiel in gspi35_1 and gspi35_2, harpsichord in harp40_1,
soprano insopr44 1, bass inbass47_1and quartet in quar48_1.
These sounds are known to be revealing for MPEG coding.
As we can see in table 2 the SNR remains rather constant.
It is approximately 54 dB and similar to the compliance test

Test file SNR SHNR Flag Rate
bass47_1 54.9dB 69.0dB 0.011
frer07_1 54.6 64.3 0.084
gspi35_1 54.4 69.4 0.012
gspi35_2 54.2 72.9 0.0086
harp40_1 541 107.0 3.7%10°5
horn23_2 54.1 64.5 0.18
quar48_1 53.6 72.2 0.047
sopr44_1 54.8 65.0 0.020
spfe49_1 55.0 70.5 0.0050
spff51_1 55.2 70.4 0.0048
spfg53_1 54.3 74.1 0.0024
spme50_1 55.3 71.2 0.0067
spmf52_1 55.2 74.6 0.0034
spmg54_1 54.8 75.4 0.0024
trpt21_2 53.9 73.3 0.0076
viool0_2 54.8 735 0.0013

Table 2: The result of the objective measurement.

in table 1. It seems as if the noise introduced is constant but
the amount of “hearable” noise differ. This is one reason
why the SNR measure does not suit well for the purpose of
audio quality measurement. All the noise introduced will
not effect the listening quality.

Infigure 3 and figure 4 the extremes from table 2 harp40_1
and horn23_2 can be seen. Harp40_1 has the highest SHNR
and the lowest flag ratio, which indicates the best sound
quality. The opposite is the file horn23_2, which has one
of the lowest SHNR and the highest flag ratio. In figure
3 we can see the difference between the reference decoded
file and the file decoded with our proposal; 1 sign bit, 9 bits
mantissa and 5 exponent bits externally and 13 bits man-
tissa and 6 bits exponent internally. The difference between
the two test files is not substantial. The SNR is very simi-
lar, around 54 dB. Finally, the error signal after the masking
level is taken into account in figure 4. Here we can see
that there is a significant difference. The noise introduced
from our reduced floating point format is not masked away
as well in the test file horn23_2 as in the test file harp40_1.
This is not clear from the SNR, but with the measurements
SHNR and flag ratio it becomes much clearer.

6. SAVINGS IN POWER AND AREA

The high dynamic range from this reduced floating point
has more advantages as compared to an ordinary fixed point
implementation. First, a mantissa of just 13 bits reduces the
multiplier. In the comparing fixed point implementation a
multiplier of 20-24 bits is needed. Here it is alright with
just 13 bits. By using a reduced floating point format, one

Difference Signal Original and tested

200

50
Time Freq

Difference Signal Original and tested

Time Freq

Figure 3: The difference between the original and the de-
coder under test. Above for the test file harp40_1 and below
for horn23_2. The frequency axle is the output from the fft
and the sampling frequency is 44.1 kHz.

can also reduce the size of the accumulator register. There
is no need for double precision and guard bits. In addition,
the smaller size of the variables gives smaller adder units.
In fixed point arithmetic you have to keep track of the scal-
ing of the variables, otherwise you will run into precision
or overflow problems. Since the scaling takes place within
the arithmetic unit, there is no need for an barrel shifter, just
a small one for the six bit exponent. The absence of need
for dynamic scaling results in a decrease of the amount of
code and the programming task becomes easier. The re-
duced format of the external variables, i.e. the variables that
are stored in memory, reduces the size of the data memory.
If you customize your own memory, it is enough with 15
bits for external storage. The internal variables within reg-
isters are still larger; 20 bits.

Operation 20-bit reduced 20-bit fixed point
floating point

Multiplier 13x13 20x20

Accumulator 20 bits 40 bits

Register 20 bits 20 bits

Memory 15 bits 20 bits

Table 3: Comparison between 20-bit reduced floating point
and 20-bit fixed point

On the negative side is the more complex arithmetic
unit, where variables need to be shifted before addition and
subtraction. There is also a need for post scaling to make
sure that the bits in the mantissa are aligned correctly. This

Error Signal after Masking

Error squared
o - 0~ @ &

8
g
8

200
1000

50
0 0

Time Freq

Error Signal after Masking

Error squared
o N & oo @

8
8
8

200

Time Freq

Figure 4: The remaining error after the the noise be-
low masking level is taken away. Above for the test file
harp40_1 and below for horn23_1.The frequency axle is the
output from the fft and the sampling frequency is 44.1 kHz.

hardware is expensive and power consuming. Finally, it
might give a deeper pipeline.

7. FUTURE WORK

To prove this concept more accurate one has to implement
it in silicon and conduct additional measurements. The real
numbers on silicon sizes, memory issues and implementa-
tion difficulties could then be obtained. One might be able
to exchange algorithm from the reference decoder to more
simpler ones without any quality degradation. This new al-
gorithm might suit better for this implementation.

An objective listening test with proffesional listeners is
also preferable. We have made less complicated listening
tests ourselves, but we do not know what kind of artifacts
to listen for. The aim for this implementation is not high
performing audio devices, rather low end products. Con-
sequentially, we might be able to shrink the mantissa and
exponent sizes even further.

Another interesting aspect would be to have a reconfig-
urable architecture. The number of mantissa bits and expo-
nent bits would then be programmable on the fly. In that
case you can trade power consumption for audio quality.

8. CONCLUSION
9. ACKNOWLEDGMENT

This work was financially supported by the stringent of SSF

10. REFERENCES

[1] Iso/iec-13818-3, information technology - generic cod-
ing of moving pictures and associated audio - part 3:
Audio, 1998.

[2] Isofiec-11172-4, information technology - generic cod-
ing of moving pictures and associated audio - part 4:
Compliance testing, 1998.

[3] In-Cheol Park Yongseok Yi. A Fixed-Point MPEG
Audio Processor Operating at Low Frequency. IEEE
Transactions on Circuits and Systems—II: Analog and
Digital Signal Processing, 47:779-786, November
2001.

[4] leee standard for binary floating-point arithmetic 1985,
1985.

[5] Itu-r 1387-1, method for objective measurements of
perceived audio quality, 1998.

[6] SQAM - Sound Quality Assess-
ment Material. In http://www.tnt.uni-
hannover.de/project/mpeg/audio/sqam/.

and the Center for Industrial Information Technology at Linkdping

Institute of Technology (CENIIT).

