
A CONVERGED HARDWARE SOLUTION FOR FFT, DCT AND WALSH TRANSFORM

Eric Tell, Olle Seger, Dake Liu

Department of Electrical Engineering, Linköping University, SE-581 83 LINKÖPING, Sweden
{erite, olles, dake}@isy.liu.se

ABSTRACT

We are interested in developing a programmable baseband
processor for multiple radio standards, including the wire-
less LAN standards 802.11a and 802.11b. 802.11a is based
on OFDM and uses a 64-point FFT. Demodulation of the
complementary code keying (CCK) used in 802.11b includes
the computation of a modified Walsh transform.

Similarities have been found between the radix-4 FFT
and the fast Walsh transform (FWT) and this has enabled the
design of a converged FFT and FWT processor. With small
modifications this processor can also be used for calculating
the discrete cosine transform (DCT).

A converged FFT/FWT/DCT processor was designed
and synthesized in a 0.13�m process. Results indicate that
the hardware can run at 385 MHz, which means a 64-point
FFT/DCT is calculated in 140 ns and a FWT for 802.11b
11Mb/s CCK in 47 ns. The area including memory is 0.40
mm2.

1. INTRODUCTION

With the upcoming 4th generation wireless systems and con-
vergence of multiple radio standards into a single terminal,
there is a need for building blocks that can be configured for
computing different algorithms used in different standards.

As a starting point for developing a programmable base-
band processor , the IEEE wireless LAN standards 802.11
a/b/g have been studied. It was found that computation of
FFT, which is used in OFDM standards such as 802.11a
and g, and the fast Walsh transform, which is used in the
802.11b standard, can use much the same datapathif the
radix-4 FFT algorithm is used.

This paper describes converged hardware for compu-
tation of 64-point FFT, 64-point discrete cosine transform
(DCT) and Walsh transform. 64-Point FFT is used in sev-
eral OFDM standards, including IEEE 802.11a. The Walsh
transform is needed for demodulation of CCK (complemen-
tary code keying) which is used in IEEE 802.11b.

The discrete cosine transform is used in several com-
mon audio and video compression algorithms. This makes
the processor useful for both baseband and application ac-
celeration for example for DAB (Digital Audio Broadcast-

ing), DVB (Digital Video Broadcasting) or a 4th generation
wireless multimedia terminal. DCT is often computed using
a FFT processor with some pre- and postprocessing. The
described FFT/FWT processor has been extended to also
allow efficient computation of DCT.

Although this particular implementation only computes
64-point transforms, the concept is easily extended to in-
clude eg. 256- or 1024-point transforms. Only memory size
and some parts of address generation would be modified.

Section 2 of this paper explains the theory behind the
radix-4 FFT and the modified fast Walsh transform. Section
3 presents the proposed datapath and section 4 describes the
addressing scheme. This is followed by implementation and
synthesis results and conclusions.

2. THEORY

2.1. The radix-4 FFT algorithm

The discrete Fourier transform, DFT, for0 � l < 64, is
defined by

X(l) =

63X
k=0

x(k)W kl
64 ; (1)

whereW64 = exp(�j2�=64). We now set out to derive a
radix-4 FFT of (1). This is done by factoring64 = 4�4�4.
The resulting algorithm will be similar to a 3-D DFT on a
4� 4� 4-cube. We make the following replacements of the
indices

k = 16k2 + 4k1 + k0 l = 16l2 + 4l1 + l0; (2)

where0 � ki; li < 4. We will also need~l,the bitreversed
version ofl,

~l = l2 + 4l1 + 16l0: (3)

We begin by evaluating

W k~l
64 =W

(16k2+4k1+k0)(l2+4l1+16l0)
64

=W k2l2
4 W k1l1

4 W k0l0
4| {z }

DFTkernels

�W 4k0l1+k0l2+4k1l2
64| {z }
twiddlefactors

: (4)

By inserting (2), (3) and (4) into (1), we get

X(~l) =

3X
k2=0

3X
k1=0

3X
k0=0

x(k)W
(k0+4k1+16k2)�(16l0+4l1+l2)
64

=

3X
k0=0

W 4l1k0
64

"
3X

k1=0

W
l2(k0+4k1)
64"

3X
k2=0

x(k)(�j)k2l2

#
(�j)k1l1

#
(�j)k0l0 ;

(5)

where we have used thatW4 = �j. (5) is a radix-4 FFT
that produces a bit-reversed output vector.

2.2. The modified FWT algorithm

The modified Walsh transform, for0 � l < 64, is defined
by

X(l) =
7X

k=0

x(k)(�j)p(k;l): (6)

The kernel functionp(m;n) is given by

p(m;n) =

2X
i=0

mini; (7)

wherem =< m2m1m0 > is in base 2 andn =< n2n1n0 >
is in base 4.

We now try a deduction similar to the one carried out in
section 2.1

l = 16l2 + 4l1 + l0

k = 4k2 + 2k1 + k0; (8)

where0 � li < 4 and0 � ki < 2. With this representation
we have

p(k; l) = k2l2 + k1l1 + k0l0: (9)

Inserting (8) into (6), we get

X(l) =

1X
k0=0

1X
k1=0

1X
k2=0

x(k)(�j)(k2l2+k1l1+k0l0)

=

1X
k0=0

"
1X

k1=0

"
1X

k2=0

x(k)(�j)k2l2

#
(�j)k1l1

#
(�j)k0l0 :

(10)

By comparing (5) and (10) it is easy to see that they
both can compute the modified Walsh transform. Suppose
that the input vector in (10) is given by

x(k) =< a; b; c; d; e; f; g; h > : (11)

To compute modified Walsh transform with the FFT ma-
chinery in (5) we make two modifications:

1. Short circuit the multiplication with the twiddle fac-
torsW64.

2. The input vectorx in (5) has 64 entries. We make the
following assignments:x(0) = a, x(1) = b, x(4) =
c, x(5) = d, x(16) = e,x(17) = f , x(20) = g,
x(21) = h and all other entries are zero.

With these modifications (5) and (10) are identical.

2.3. The DCT algorithm

To calculate a DCT using FFT hardware the input samples
have to be reordered according to figure 3 c and the the out-
put samples have to be multiplied with compensation fac-
tors. The theory behind this method is explained for exam-
ple in [5].

The input to the DCT is real-valued and only the real
part of the output is used. However by using both real and
imaginary parts of the input samples, and applying some
post processing, two DCTs can be computed simultaneously.

3. DATAPATH

Figure 1 depicts the suggested integrated data path for FFT,
DCT and FWT. In FFT/DCT mode the datapath executes
one radix-4 FFT butterfly per clock cycle and in FWT mode
it executes two Walsh transform butterflies per clock cy-
cle.The mode is controlled by a single, 1-bit control signal
controlling all the multiplexers. The multipliers and coeffi-
cient ROM are not used in FWT mode. FFT and DCT uses
the same datapath, but the coefficients are different in the
final step. One of the multipliers is redundant for FFT since
the first coefficient of every butterfly is one. Furthermore to
enable DCT the multipliers have to be two bits wider (eg.
16x12 instead of 14x12) and the coefficient ROM will hold
64x4=256 coefficients instead of 48x3=144.

In FFT and DCT modes the datapath is pipelined into
three stages. In the first stage two additions are executed,
in the second stage one (real) multiplication is executed and
the third stage has one addition (which is part of the com-
plex multiplication) and one round or truncate operation.

In FWT mode, the critical path is just one addition and
the datapath is not pipelined.

Based on 802.11a, 12-bit precision (ie 12 bits each for
real and imaginary parts) has been chosen for input and out-
put data. Precision requirement investigations has shown
that to reach this precision it is enough to use 16-bit preci-
sion for intermediate results and 12-bit precision for coeffi-
cients. Each complex multiplier consists of four 12x16 bit
real multipliers and two 30-bit adders. The memory word
length is 32 bits.

−i

coef.
ROM

round

trunc/
round

trunc/
round

trunc/
round−i

IN
PU

TS

FW
T/

FF
T/

DC
T

OU
TP

UT
S

pip
eli

ne

FW
T

OU
TP

UT
S

trunc/

Walsh
round

Walsh
round

Walsh
round

Walsh
round

Figure 1: Data path

3.1. Memory architecture

All Algorithms use in-place calculation so it is enough to
use one memory.

The memories are divided into four banks of 16 words
each, and each bank into two subbanks of eight words each.
In each clock cycle the processor may read one word from
each bank (totally four words) and write one word to each
subbank (totally eight words).

Our implementation uses a register file with eight banks
that have separate read and write ports.

Bank0

Bank1

Bank2

Bank3

Bank4

Bank5

Bank6

Bank7

Memory

R
 e

 a
 d

I n

 t
e

r
c

h
a

n
g

e

W
 r

 i
t e

I n

 t
e

r
c

h
a

n
g

e

butterfly
Radix−4 FFT/Walsh

(a) The implemented memory ar-
chitecture

2−bit
adder

2−bit
adder

XOR

3−bit bank select

lsbmsb
6−bit address

(b) Calculation of
bank select signal

Figure 2: Memory architecture

A scheme for making sure that all four parallel reads are
always in different banks and that all eight parallel writes
are always in different sub banks, has been found by further
developing the scheme presented in [4] as shown in figure 2
b. Hence two two-bit adders and one XOR-gate are needed
to find the right memory bank, given the address.

Once the correct sub bank has been selected, the three
most significant bits of the address is used for addressing

within the sub bank.

4. ADDRESSING

All addressing is based on two 6-bit counters, one for gener-
ating read addresses and one for write addresses (The write
counter is delayed a number of steps corresponding to the
pipeline depth; In FFT- or DCT-mode the coefficient ROM
is also addressed by a delayed value of the read counter). In
the following description it is assumed that the output of the
6-bit read or write counter isfx0; x1; x2; x3; x4; x5g

4.1. FFT and DCT

When a FFT or DCT is computed the counter runs from 0
(f0; 0; 0; 0; 0; 0g) to 47 (f1; 0; 1; 1; 1; 1g). x0 andx1 indi-
cates the current step. Each of the three steps has 16 itera-
tions (=16 butterflies). The four addresses that are used in
parallel are the following:

if fx0; x1g = f0; 0g : a0 = f0; 0; x2; x3; x4; x5g
a1 = f0; 1; x2; x3; x4; x5g
a2 = f1; 0; x2; x3; x4; x5g
a3 = f1; 1; x2; x3; x4; x5g

if fx0; x1g = f0; 1g : a0 = fx2; x3; 0; 0; x4; x5g
a1 = fx2; x3; 0; 1; x4; x5g
a2 = fx2; x3; 1; 0; x4; x5g
a3 = fx2; x3; 1; 1; x4; x5g

if x0 = 1 : a0 = fx2; x3; x4; x5; 0; 0g
a1 = fx2; x3; x4; x5; 0; 1g
a2 = fx2; x3; x4; x5; 1; 0g
a3 = fx2; x3; x4; x5; 1; 1g

4.2. FWT

When a FWT transform is computed the counter runs from
2 (f0; 0; 0; 0; 1; 0g) to 15 (f0; 0; 1; 1; 1; 1g). x2 andx3 in-

dicates the current step. The first step has 2 iterations (=4
butterflies), the second step has 4 iterations and the last step
has 8 iterations. The eight addresses that are written in par-
allel are a0-a7 below. The four addresses that are read in
parallel are a0-a3:

if fx2; x3g = f0; 0g :
a0 = f0; 0; 0; x5; 0; 0g a4 = f1; 0; 0; x5; 0; 0g
a1 = f0; 1; 0; x5; 0; 0g a5 = f1; 1; 0; x5; 0; 0g
a2 = f0; 0; 0; x5; 0; 1g a6 = f1; 0; 0; x5; 0; 1g
a3 = f0; 1; 0; x5; 0; 1g a7 = f1; 1; 0; x5; 0; 1g

if fx2; x3g = f0; 1g :
a0 = fx4; x5; 0; 0; 0; 0g a4 = fx4; x5; 1; 0; 0; 0g
a1 = fx4; x5; 0; 1; 0; 0g a5 = fx4; x5; 1; 1; 0; 0g
a2 = fx4; x5; 0; 0; 0; 1g a6 = fx4; x5; 1; 0; 0; 1g
a3 = fx4; x5; 0; 1; 0; 1g a7 = fx4; x5; 1; 1; 0; 1g

if x2 = 1 :
a0 = fx3; x4; x5; 0; 0; 0g a4 = fx3; x4; x5; 0; 1; 0g
a1 = fx3; x4; x5; 0; 0; 1g a5 = fx3; x4; x5; 0; 1; 1g
a2 = fx3; x4; x5; 1; 0; 0g a6 = fx3; x4; x5; 1; 1; 0g
a3 = fx3; x4; x5; 1; 0; 1g a7 = fx3; x4; x5; 1; 1; 1g

4.3. Input and Output

The fact that in-place calculation is used results in the input
(for DCT and FWT) and output (for all transforms) not be-
ing in order. The data therefore has to be reordered before
and/or after the computation.

For FFT the input is in order and the output is in bitre-
versed order, that is sample numberfs0; s1; s2; s3; s4; s5g
is found at addressfs5; s4; s3; s2; s1; s0g. For FWT the in-
put and output is reordered as described by figure 3 a and
b. For DCT the input is reordered as described by figure 3 c
and the output is in bitreversed order.

In our implementation the reordering is built into the
ports used for storing input data and reading output data.

5. RESULT

The FFT/FWT/DCT processor described above has been
implemented in VHDL and synthesized in a 0.13�m pro-
cess using Cadence Physically Knowledgeable Synthesis.
The processor consists of 24970 cells and the area is 0.40
mm2 including memory. The processor can operate at 385
MHz. The FFT and (complex) DCT executes in 54 clock
cycles or 140 ns and the FWT in 18 clock cycles or 47 ns.
The performance is certainly good enough for the 802.11a
and b standards where the symbol times are 4�s and 8/11
�s respectively.

=1=1=1 =1 =1

0 00

chip#:

code#:

address:address:

a) FWT input reordering b) FWT output reordering

c) DCT input reordering

address:

sample#:

c0 c1 c2

c0 c1 c2 c3 c4 c5

s0 s1 s2 s3 s4 s5

a0 a0

a0

a1 a1

a1

a2 a2

a2

a3 a3

a3 a4

a4a4 a5 a5

a5

Figure 3: Reordering schemes for FWT and DCT inputs and
outputs

6. CONCLUSION

This paper has presented similarities that have been found
between the radix-4 FFT algorithm and the modified Walsh
transform and has shown how these similarities have been
exploited to design a converged processor for 64-point FFT,
64-point DCT and modified Walsh transform.

The proposed architecture is suitable for a baseband pro-
cessor that needs to handle both OFDM standards like IEEE
802.11a and the IEEE 802.11b standard which uses the mod-
ified Walsh transform for CCK demodulation. The perfor-
mance exceeds by far the requirements of these two stan-
dards.

7. REFERENCES

[1] IEEE Std 802.11b. 1999.

[2] IEEE Std 802.11a. 1999.

[3] B Pearson,Complementary Code Keying made simple,
application note, Intersil Corporation, 2001.

[4] B. S. Son et. al,A High-Speed FFT Processor for
OFDM Systems, proc. ISCAS 2002, vol 3 pp. 281-284.

[5] R. Storn, Efficient Input Reordering for the DCT
based on a Real-Valued Decimation in Time
FFT, International Computer Science Institute
(www.icsi.berkeley.edu) technical report, 1995.

