
A HARDWARE ARCHITECTURE FOR A MULTI MODE BLOCK INTERLEAVER

Eric Tell, Dake Liu

Dept. of EE, Linköping University, SE-581 83 Link¨oping, Sweden

ferite, dakeg@isy.liu.se

Abstract - We are interested in developing a pro-
grammable baseband processor for software defined
radio and are trying to find configurable hardware blocks
that can be used in multiple radio standards, including
for example wireless LAN and 3G standards.

This paper suggests an architecture for a multi mode
block interleaver that is suitable e.g. for the IEEE 802.11a
and 802.11g standards. Our implementation is based
on a special matrix memory to which data is written as
rows but read out as columns.

To enable a comparison, an interleaver for the Wire-
less LAN standard 802.11a has been implemented both
using our suggested architecture and using a traditional
interleaver implementation based on a bit memory.

Our implementation reaches a significantly higher
performance and a lower power consumption with no
extra area. The price to pay is a small loss of generality.

I. Introduction

We want to develop a platform for software defined radio
based on a programmable processor supported by config-
urable hardware accelerator blocks for functions that are
not well suited for software implementation. Typical ex-
amples of such functions are algorithms operating on bit
level, such as channel coding functions (FEC, interleav-
ing).

This paper introduces a new architecture for a config-
urable multi mode block interleaver. As opposed to tradi-
tional block interleaver implementations where only one
bit is read or written per clock cycle, in the new architec-
ture larger words are read/written in parallel. This leads
to a significant performance increase as well as decreased
power consumption. The new architecture can also be im-
plemented to match the memory interface of a host pro-
cessor.

Section II of the paper gives some backgroundon block
interleaving. Section III gives an example of an interleav-
ing scheme that is used in several OFDM based wireless
LAN standards. Section IV describes a traditional block
interleaver implementation and section V introduces the
proposed new architecture. Differences between the two
schemes are discussed in section VI and implementation
results are found in section VII.

II. Background

Interleaving is used in radio systems to distribute transmit-
ted bits in time or frequency or both. Consecutive bits on
the input stream should not be transmitted consecutively
(or on the same frequency in an OFDM system). Inter-
leaving reduces the effect of burst errors caused by a fast
fading (or frequency selective fading in an OFDM system)
channel [1][2].

One major class of interleavers are block interleavers.
A block interleaver operates on one block of input bits at
a time and there is no interleaving between the blocks. A
block interleaver is often implemented by writing the bits
into a matrix row by row and then reading them column by
column. Deinterleaving is simply the reversed operation -
write column by column and read row by row.

In a general block interleaver the number of rows and
columns must be configurable. However, a survey of inter-
leaving schemes for different radio standards shows that
this is not enough. A more general interleaver should be
able to carry out the following steps:

1. Write bits to matrix row by row.
2. Perform intra-row permutations.
3. Perform intra-column permutations.
4. Read bits column by column.

In addition, some standards (including IEEE 802.11a) use
different permutations for different rows/columns).

III. Interleaving for OFDM Wireless LANs

The wireless LAN standards 802.11a [3], 802.11g and
Hiperlan/2 [4] are all OFDM based and use 48 data sub-
carriers and 4 pilot tones. They also use the same inter-
leaving scheme.

The interleaving scheme is defined by two permuta-
tions. The first permutation ensures that adjacent bits are
modulated onto nonadjacent subcarriers and the second
permutation ensures that that adjacent bits are mapped al-
ternatively onto less and more significant bits of the con-
stellation, thereby long runs of low reliability (LSB) are
avoided. The block size is always equal to one OFDM
symbol and depends on the signal constellation.

In the equations below,k denotes the index of the bit
before the first permutation,i denotes the index after the
first but before the second permutation andj denotes the
index after the second permutation.N is the number of



bits in an OFDM symbol andNBPSC is the number of
bits per subcarrier. The two permutations are given by:

i = (NS=16)(k mod 16) + floor(k=16) (1)

j = s � floor(i=s) + (i+N � floor(16i=N)) mod s(2)

s = max(NBPSC=2; 1)

Closer study reveals that the first permutation defines
a block interleaver with 16 columns and a variable num-
ber of rows. The second permutation defines intra-column
permutations which depend on the block size and may also
differ between columns. Tables 1 and 2 show the different
block sizes and permutation schemes used in this scheme.

Constellation Bits/subc. Block size Rows
BPSK 1 48 3
QPSK 2 96 6
16-QAM 4 192 12
64-QAM 6 288 18

Table 1: Block size for different signal constellations

Constellation Intra-column permutation
BPSK no permutation
QPSK no permutation
16-QAM < 1; 0; 3; 2; 5; 4; 7; 6; 9; 8; 11; 10>
64-QAM Three different permutations are used,

alternating every column

Table 2: Intra column permutations for different signal
constellations

This is one example of how many block interleaving
schemes can be expressed in terms of the four steps de-
scribed in section II.

IV. Traditional Interleaver Implementation

Figure 1 describes a traditional block interleaver imple-
mentation based on a bit addressable memory and a ROM
(or look-up table) storing the interleaving sequence.

This implementation is completely general and even
supports interleaving schemes that cannot be described by
the steps outlined in section II. For interleaving operation
the input bits are first written sequentially to the memory
and then read in the order defined by the LUT. For dein-
terleaving the bits are written according to the LUT and
then read sequentially.

The number of bits in the data memory is equal to the
largest block size and the number of words in the LUT is
at least equal to the sum of the block sizes of all interleav-
ing schemes it should handle. For example in the 802.11a
interleaver the data memory size is 288 (maximum block
size) bits and the LUT needs 624 (sum of all block sizes)
9-bit entries.

addr

address

data

r/w

r/w

bits

N*m words

ROM

Nx1 bits
Memory

mode

Address
Counter

Control

&
interleave/deinterleave

xor

Figure 1: Traditional block interleaver implementation

The main advantages of this implementation are that
it is very simple and straight forward and that it is com-
pletely general as long as the block size is fixed for each
mode. (Schemes where the number of rows is arbitrary
are not well supported.

The main disadvantage is that the bits have to be writ-
ten and read one at a time.

Another disadvantage is that the complete interleaving
sequence of every interleaving scheme has to be stored
explicitly in the LUT, making it relatively large if many
modes have to be supported.

V. A Novel Interleaver Architecture

The motivation for the new implementation is to try to
avoid the need for addressing each individual bit in the
memory and instead enable read and write of several bits
in parallel. The new architecture should also be more suit-
able for operation as an accelerator unit for a programmable
processor. It should therefore be possible to make the in-
terleaver compatible with the processor word length. Ide-
ally the interleaver interface to the processor should look
like an ordinary memory. Then the interleaver could be
used as a normal data buffer and it would be possible to
carry out the interleaving at no extra instruction cost.

The number of rows and columns should be config-
urable. The solution should be suitable for multiple stan-
dards, i.e. multiple intra-row and intra-column permuta-
tion schemes should be supported. It might not have to be
completely general but preferably the cost for supporting
additional modes should be small compared to the corre-
sponding cost (for increasing ROM size) in the traditional
approach.

Figure 2 shows the main idea of the new architec-
ture. The architecture is based on a special matrix mem-
ory block where words are written as rows but read as
columns.

A complete row can be written in one clock cycle and
a complete column can be read. Intra-row permutations
are carried out before the bits are stored to memory by
simply reordering the bits on the input data bus. In the



control
LUT

c7c6c5c4c3

intra−column
permutations

intra−row

8

8

88

3

data in

address bus

data out

mode

permutations

c2c1c0

r0

r1

r2

r3

r4

r5

r6

r7

Figure 2: New interleaver implementation

same way intra-column permutations are carried out by
reordering the bits on the output data bus after the data
has been read. If a small number of different permutation
schemes are needed, the permutation blocks are just a set
of small multiplexers using the same control signal.

The operation for deinterleaving is the same as for in-
terleaving. The deinterleaving is seen as just another in-
terleaving scheme where the row number has become col-
umn number and the intra-row permutations have become
intra-column permutations and vice versa.

The matrix is dimensioned according to the largest
number of rows or columns that has to be supported. If
an interleaving scheme with smaller block size is used the
extra rows and/or columns are deactivated to save power.

The interface of the interleaver can be made compat-
ible with the memory interface of a processor. Hence
it may be possible to use the interleaver as a computing
buffer, as described above.

Since the addressing is taken care of by the processor,
very little control logic is needed in the interleaver itself.

The interleaver is configured by three control signals
specifying the number of rows, the number of columns
and the permutation scheme to use.

A control block may be needed to decide the permu-
tation mode according to the current mode (and address).
This is implemented as a small look-up table.

VI. Comparison of the two schemes

The main constraint for the new architecture is the de-
creased flexibility compared to the completely general tra-
ditional block interleaver implementation. This is how-
ever compensated by large gains in performance and power
consumption. Furthermore the flexibility is still enough
for the standards we have studied.

VI.1. Performance

Using the new architecture, it is possible to interleave a
block ofR rows andC columns inR + C clock cycles,

as long as bothR andC are smaller than the longest word
length of the processor. Generally the cycle count isR �

ceil(C=l) +C � ceil(R=l), wherel is the processor word
length.

However additional processing will be needed in most
cases sinceR andC are generally not equal to processor
word length. The extra cycle count depends on the sup-
port for bit field operations in the processor and on the
implementation of other baseband algorithms.

Nevertheless the performance is significantly increased
compared to the traditional implementation which needs
2 �R � C cycles.

VI.2. Hardware Cost

The number of memory cells needed in the traditional im-
plementation is equal to the largest block size that should
be supported. For the new architecture the number of
rows/columns in the matrix must both be equal to the largest
number of rows/columns that should be supported (Note
that these two values may not come from the same mode).
When the same hardware is used for both interleaving and
deinterleaving, both the number of rows and the number
of columns will be equal to the largest number of rowsor
columns supported (because the role of rows and columns
are swapped for deinterleaving). This means that the num-
ber of memory cells (bits) is larger in the new architecture,
but still in the same order of magnitude. This increase is
however compensated by the fact that the address decod-
ing logic is much smaller in the new scheme due to the
smaller number of addresses.

A considerable part of the area in the old architec-
ture is occupied by the LUT, which needs one entry per
bit. The corresponding hardware in the new architecture
only needsat mostone entry per row and column to store
permutation modes (often the same mode is used forall
rows/columns). This means that the extra area for each
scheme that needs to be implemented is much smaller in
the new architecture as long as the permutation blocks do
not become significantly larger.

The weak link is the implementation of the permuta-
tion blocks. Implementing a small number (such as 8 or
16) of fixed patterns is no problem. E.g. in the implemen-
tation described in section VII each permutation block
consists of 18 4-to-1 multiplexers. However, attempts to
make a more general permutation block (something like a
general crossbar switch) to support future standards will
cause problems both in terms of critical path, area and
control.

VI.3. Power consumption

The new architecture is not only superior when it comes
to speed. It will also consume significantly less power.
There are several reasons for this:

1. Most of the energy is consumed in the data mem-
ory. The new architecture needs more memory cells
than the traditional one, but since rows/columns that



are not needed are deactivated, the number ofac-
tive memory cellsare the same in both solutions.
Furthermore the address decoding is much simpler
in the new architecture since only one address per
row/column is needed instead of one per bit. Hence
the power needed for decoding each bit is smaller.

2. The ROM holding the interleaving sequence in the
old scheme consumes significant power. It becomes
rather large if multiple interleaving schemes have
to be supported. (The control LUT in the new ar-
chitecture is very small compared to the sequence
ROM)

3. More power is also consumed, for example in the
control logic, in the old scheme simply because it
has to run for many more clock cycles.

4. Since the new architecture completes the interleav-
ing in fewer clock cycles it can run at a lower clock
frequency. This may make it possible to reduce
power consumption by lowering the supply voltage.

Again the place where the new implementation may
lose power is if the permutation units get very complex.

VII. Implementation Results

An interleaver/deinterleaver for 802.11a was implemented
using both the new and the traditional architecture. This
interleaver handles four different schemes, as described in
section III The block size is up to 16x18=288 and four
different row/column permutation schemes are needed.

The two architectures were implemented in VHDL and
synthesized for a 130 nm standard cell library from UMC.
The data memory cells are based on latches from the stan-
dard cell library. A more efficient solution may be possi-
ble using e.g. an SRAM-like approach (not achievable us-
ing standard cell design). However, our implementations
still demonstrate the difference between the two architec-
tures. Furthermore the advantages of using special mem-
ory design techniques are limited for memories as small
as these. The implementation results are shown in table 3.

Feature old arch. new arch.
BPSK cycle count 96 cycles 19 cycles
64-QAM cycle count 576 cycles 34 cycles
Approx. max freq. 250 MHz 500 MHz
Data memory area 0.0136 mm2 0.0120 mm2

Other area 0.0076 mm2 0.0021 mm2

Total area 0.0212 mm2 0.0141 mm2

Table 3: 802.11a interleaver implementation results

No pipelining was used at all. This gives a very long
critical path for the old architecture (from the address counter
through both sequence memory and data memory). With

appropriate pipelining the two implementations should run
at approximately the same clock frequency.

Note that the data memory area is smaller for the new
architecture although it has more cells (18x18 vs. 16x18).
This is due the large address decoder in the old architec-
ture.

The difference in area not occupied by data memory is
due to the sequence memory (ROM; 0.0064 mm2) in the
old architecture.

VIII. Summary and Conclusions

Two ways of implementing interleavers have been pre-
sented. In the traditional bit memory based interleaver,
bits are written to a sequential memory one at a time and
then read out one at a time in a different order. A look-up
table stores the read-out order.

The new implementation presented is based on a spe-
cial matrix memory into which complete rows/columns
can be read/written in one clock cycle.

The new implementation has a much higher perfor-
mance, lower power consumption and is also more suit-
able for use together with a programmable processor. How-
ever it is not as general as the traditional implementation
for which any interleaving scheme can be implemented by
changing the contents of the LUT.

The advantage of using the new implementation is largest
if only a small number of previously known row and col-
umn permutations are needed. In that case the area is
about the same as for the traditional implementation al-
though the performance and power consumption is a lot
better.

References

[1] H Heiskala & J T Terry,OFDM Wireless LANs: A
Theoretical and practical guide, Sams Publishing,
2002.

[2] Shu Lin & Daniel J Costello Jr,Error Control Coding:
Fundamentals and Applications, Prentice-Hall, 1983

[3] IEEE 802.11a,Wireless LAN Medium Access Con-
trol (MAC) and Physical Layer (PHY) specifications
High-speed Physical Layer in the 5 GHz Band, 1999.

[4] ETSI TS 101 475,Broadband Radio Access Networks
(BRAN); HIPERLAN Type 2; Physical (PHY) layer,
2001.


