
Early Exploration of MIPS Cost and Memory Cost
Trade-off for MediaDSP Media Processor

Johan Eilert, Dake Liu
Dept. of Electrical Engineering

Linköpings Universitet
S-581 83 Link̈oping, Sweden
Email: {je,dake}@isy.liu.se

Abstract— This paper presents an attempt at an early investi-
gation or exploration of the trade-off between MIPS cost and
memory cost. The cost model is an approximation based on
knowledge of the application behavior and algorithm inner loop
costs for the hardware architecture, which consists of a control
processor and a SIMD processor. The application is an H.264
video decoder. Various memory configurations such as double
buffer and other trade-offs between MIPS cost and memory size
are compared.

I. BACKGROUND

Mobile platforms, such as mobile phones, are getting in-
creasingly powerful in terms of memory capacity and compu-
tational power. This opens up new possiblities for new kinds
of services.

Increased performance usually implies higher power con-
sumption with more frequent battery recharges that degrades
the end user experience. Therefore it is important to develop
energy efficient solutions with enough performance and func-
tionality.

Many types of video services such as video calls and
television broadcast reception has emerged. These services are
based on various international standards and it is interesting
to use only one hardware solution for all standards.

The purpose of this work has been to make an early
estimation of the (on-chip) memory requirements and how
memory size can be traded for computational power. Memory
size is an important issue as memories are typically the
largest contributor to chip area and power consumption. Early
estimations are important to get hints early in the design
process before things get too difficult to change.

The rest of this paper is organized as follows: In the next
section, the application is described, followed by a description
of the hardware architecture. After the background informa-
tion, the main work and the results are presented.

A. The H.264 Video Codec Application

The H.264 standard [1] for coding of video frames is used
for delivering video contents to mobile platforms because it
offers high video quality at modest bit rates. This section
describes the basic principles of the standard.

The standard describes how a stream of video frames can be
represented as a storage-efficient bit stream, and how to decode
(restore) the video frames for playback or editing. Encoding

is not explicitly covered, any encoder capable of generating a
bit stream that can be decoded according to the standard is a
valid encoder.

Initially, each original video frame is separated into luma
(gray) and chroma (color) components and these are further
divided into small rectangular macroblocks. Each macroblock
is 16×16 pixels and it can be subdivided further, down
to 16 blocks of 4×4 pixels. The macroblocks are coded
individually, except that a macroblock can use prediction
data from previously decoded macroblocks in the same frame
(spatial prediction, a.k.a. intra-prediction), or from earlier
frames (temporal prediction, a.k.a. inter-prediction).

Spatial prediction uses pixel values on the edges of neigh-
boring blocks to cover the current macroblock or subblock in
different ways.

Temporal prediction uses a small part from an older frame
as prediction data for the current macroblock or subblock. The
location of the source part in the other frame is calculated from
the location of the current macroblock in the current frame,
plus a motion vector. The calculated location is at quarter pixel
resolution, and a 6-tap interpolation filter is used to compute
the intermediary pixels.

The prediction is corrected with a residue signal. The
residue is dequantized and the inverse transform is computed.
The residue is added to the predicted data.

For low bit rates, there can be disturbing blocky artifacts
caused by sharp transitions between the blocks in a frame. A
final low pass deblocking filter is applied that selectively filters
the block edges based on pixel values and several bit stream
parameters.

Finally, the frame is ready and it is put away for later access,
either as prediction data or for display. Frames do not have
to be decoded in playback order, and this enables temporal
prediction from “future” frames.

B. The MediaDSP Architecture

The architecture was designed specifically for H.264 and
other video standards. It consists of four main parts as shown
in Fig. 1. There are two processors, called Spock and Schubert,
and a DMA controller. There is also an external video frame
memory, it is located off-chip because of its size. Spock and
Schubert are very different from each other as described below.

Spock

External memory

DMA

Memory Memory

Schubert

Fig. 1. Simplified view of the MediaDSP architecture.

Spock is a simple single-issue DSP. It is the global coordina-
tor in the system. It is also responsible for scheduling the other
resources, and for creating DMA command lists for the DMA
controller in order to move data between itself, Schubert, and
the external memory.

It has special hardware for accelerating bit-level manipula-
tion such as variable length decoding (e.g., Huffman decod-
ing).

Schubert is a SIMD processor. It has four 16-bit wide data
paths and its main intended function is to do pixel level
computations. Schubert can access up to four consecutive 16-
bit values in a row or a column per clock cycle in its data
memory. Each memory word stores two 8-bit pixels or one
16-bit intermediate value.

The data path in Schubert can perform both four parallel
computations that generates four result as well as reduction
computations that generates a single result from up to eight
data inputs.

C. Mapping the Algorithm to the Architure

Since Spock and Schubert are specialized for different types
of tasks, the mapping of H.264 to the architecture is quite
straightforward.

Spock will do variable length (e.g., Huffman) decoding and
other bit stream level computations.

Schubert will do all pixel-level computations such as de-
quantization, inverse transform, interpolation, and deblocking.
All computations are performed on the smallest picture unit,
a 4×4 pixel block, but the performance figures in this paper
are shown for macroblocks.

II. T HE WORK

A. Approximations

Some features in H.264 were ignored during this investiga-
tion. The most important parts that were left out are interlaced

video, arbitrary slice ordering, and color processing. It is our
belief that the first two are not very commonly used for
mobile systems, and color processing can be approximated
by multiplying all figures by the appropriate factor (e.g.,1.5

for 4:2:0 chroma subsampling).
It is assumed that all frames are P-frames, that is, they need

to access one old frames for prediction.
The investigation covers Schubert’s memory and MIPS cost

only. Spock is assumed to be always capable of decoding the
bit stream and generating the proper DMA lists and command
lists to Schubert.

B. Memory Size

The first parameter that was studied is the number of
macroblocks that Schubert can hold in its data memory. During
the first part of the computation, that is, everything except
deblocking, each macroblock needs source data such as its
corresponding prediction data and residue data. The prediction
data also needs a small border of surrounding pixels due to
the 6-tap filter that is used.

Memory size of one, two, four, eight, and sixteen macro-
blocks and their source data has been considered in the in-
vestigation. The memory size does not affect the total amount
of pixel work that Schubert must perform, but it does change
how much data can be processed at a time, which affects the
number of task initializations.

C. Double Buffering

Schubert memory can be double buffered to allow si-
multaneous Schubert calculations and DMA transfers. In a
double buffered system, there are actually two memories. One
memory is connected to Schubert and the other memory is
connected to the DMA controller. When both Schubert and
the DMA transfers are finished, the memories switch owners
so that Schubert gets new data to work with while the DMA
can transfer newly calculated results to the external memory
and then fill the memory with new unprocessed data.

Not using double buffering makes all memory available for
Schubert, but Schubert now also has to wait while the DMA
transfers take place. Also, data that is needed in the next
iteration can remain in the memory. This is not the case for
double buffering since the memory will not be accessable by
Schubert in the next iteration, and the needed data will have
to be loaded from external memory again.

D. Optimized Loading

During the prediction step, data from a previously decoded
frame is needed. This data can be loaded in a memory efficient
way, which costs more for Schubert to access in terms of
address calculations, or in a more memory inefficient way that
enables cheaper address calculations.

The less memory efficient method loads a 9×9 block for
each predicted 4×4 block. The extra pixels are needed for the
6-tap interpolation filter.

Operation Cost/MB Setup cost
Dequantization, inverse
transform, interpolation 1954 cycles 26 cycles
Address calculations 80 cycles 0 cycles
Deblocking 1760 cycles 10 cycles
DMA transfer 64 cycles 10 cycles

TABLE I

CYCLE COST PER MACROBLOCK FOR VARIOUS OPERATIONS.

The memory optimized method assumes that most of the
extra pixels can be shared by neighboring blocks, and it can
thus load fewer pixels in total. It loads 21×21 pixels for one
macroblock, which includes the border for the interpolation
filter.

E. Cost Model

The costs for various operations by Schubert and the DMA
controller are given in Table I. The setup cost is paid once
for each iteration, and the total setup cost will decrease as
the memory size increases since a larger memory allows more
useful work per iteration. The address calculation part is only
included when the optimized load option is used for prediction
data.

The memory size and transaction sizes are given by the
memory configuration: the number of macroblocks, whether
double buffering is used or not, and whether optimized load
of prediction data is used or not.

A single macroblock occupies16 × 16 = 256 bytes, but
the prediction data and the deblocking data need extra border
pixels as described earlier, and the residue data also needsto
be included. In the case with room for one macroblock in the
memory, the memory requirement is approximately 800 bytes.

III. R ESULTS AND FUTURE WORK

A small computer program was written for calculating the
expected MIPS cost for decoding a CIF resolution (352×288)
video stream with 30 frames per second, using various memory
configurations, and with the restrictions and approximations
mentioned above. The result is presented in Fig. 2 which shows
MIPS cost vs. memory cost for all combinations listed above.

The results show that the single memory configurations will
spend more MIPS than the double buffered configuration. This
is not surprising since Schubert is wasting cycles waiting for
the DMA transactions to finish.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 42 43 44 45 46 47 48 49 50

Single buffer, unoptimized load
Single buffer, optimized load

MIPS cost

M
em

or
y

co
st

 (
by

te
s)

Double buffer, optimized load
Double buffer, unoptimized load

Fig. 2. MIPS cost vs. memory cost for various memory configurations. The
bottom-most marker in each category shows the situation for onemacroblock,
the next marker above it is for two MBs, then four, eight, and sixteen MBs
closest to the top.

For the double buffered configurations, the one with op-
timized load consumes more cycles because Schubert has to
spend more time with address calculations. This is the opposite
result from the single memory configuration where it is faster
to load less data.

In all cases, the MIPS cost goes down when the number of
macroblocks is increased because the overhead from initial-
ization is reduced.

The results show that the MIPS cost does not vary that much
with memory size, as long as double buffering is used.

As more details are known about the system, the cost
model can be updated and the results will be more accurate.
Eventually, the cost model should include Spock and the DMA
controller.

REFERENCES

[1] ITU-T recommendation H.264, “Advanced video coding for generic
audiovisual services”

