
Design of a Floating Point DSP for
Full Precision MPEG-1 Layer II and III Decoding

Johan Eilert, Dake Liu
Dept. of Electrical Engineering

Linköping University
S-581 83 Linköping, Sweden
Email: {je,dake}@isy.liu.se

Abstract— The purpose of this work has been to design and
evaluate a floating point DSP for MPEG-1 layer II and III audio
decoding. The intention has been to minimize the word length and
memory usage while still satisfying the full precision requirements
for both layer II and III as specified in the standard. This is
compared to one of our previous works where we have only
aimed for a specific word length and the audio quality was not
considered.

A floating point number representation offers a better trade-
off between dynamic range and precision than a fixed point
representation for a given word length. Further, using a floating
point representation means that smaller memories can be used
which leads to smaller chip area and lower power consumption.

The result is a very area and MIPS effective DSP for MPEG-1
audio decoding.

I. INTRODUCTION

The MPEG-1 standard for audio coding [1] describes three
implementation layers called layer I, II, and III, with corre-
sponding increase of complexity and reduction of bit rate. A
decoder that is capable of decoding a certain layer needs very
little modification in order to be able to decode the lower
complexity layers.

In this work we have focused on the last two layers. Layer II
is today used for audio coding in DAB, European digital radio
broadcasting, and layer III has become extremely popular for
storing music on both personal computers and portable music
players due to its high sound quality at low bit rates.

Embedded decoders usually have to use two 16-bit memory
words for each intermediate value to achieve the required
dynamic range with fixed point arithmetic. We have inves-
tigated the feasibility to use a short word length floating
point representation to reduce the memory cost. This would
reduce the memory usage which would have a positive effect
on power consumption and chip area. Another advantage
with floating point arithmetic is that the hardware eliminates
virtually all scaling operations generally associated with fixed
point arithmetic which leads to shorter firmware development
time.

The rest of this paper is organized as follows: The intro-
duction continues with more background information. Then
follows section II with the main motivation behind our work,
and section III with the prestudy phase where we determine the
minimum precision that fulfills the full precision requirement.

In section IV and V the DSP is designed. Finally, section VI
and VII gives our results and conclusions.

A. Decoder Compliance
An important issue is how the quality of an MPEG-1

decoder is tested. This is done by decoding a special bit
stream supplied with the standard and comparing the output
to a reference file also supplied with the standard. The root
mean square of the difference is calculated and the maximum
absolute sample difference is found. From these data the
decoder can be classified as full precision, limited accuracy
or not compliant, depending on whether or not the values are
below certain specified limits.

Naturally, this only tests the decoder for this specific file,
and there is no formal way of evaluating the quality of a
decoder for an arbitrary bit stream.

B. Earlier Work
We have already built a floating point DSP with 16-bit float-

ing point precision in memory [2]. We have also implemented
a layer III decoder for it. It is very data memory efficient,
but it cannot satisfy the full precision requirement because of
the limited precision in memory and registers. It is also not
very program memory efficient since it was based on the RISC
philosophy with as few instructions and addressing modes as
possible in an attempt minimize hardware development and
verification time.

II. MOTIVATION

Our previous work has shown that layer III decoding with a
floating point DSP and 16 bit data words is entirely feasible.
The motivation behind the work presented in this paper was
that we wanted to see if it was possible to extend or improve
this approach on a number of ways.

• The word length should be increased so that the DSP
could achieve full precision on both layer II and III. The
previous work reached only limited accuracy due to its
16-bit memory design restriction.

• The instruction set functional coverage should be in-
creased to allow an efficient implementation of a layer II
decoder, but also other audio decoding algorithms.

• The instruction set and addressing modes should be
improved in general to reduce the program memory size
as well as the MIPS cost.



III. PRESTUDY

As a first step in the design process, we had to find the
required (mantissa) word length necessary to satisfy the full
precision requirement. Secondly, we studied some other audio
coding standards for ideas of new instructions and addressing
modes.

A. Word Length for Full Precision

In our previous work we have analyzed the mantissa and
exponent word length requirements for layer III. A similar
approach has been used for determining the required mantissa
and exponent sizes for layer II.

Our own behavior model in C++ for layer III was extended
to handle layer II in order to get a deep understanding of this
part of the standard. It was also changed to use two special
floating point data types for memory and register, respectively,
with bit accurate simulations of the intended hardware for
arithmetic operations. With this it was possible to study the
impact of different mantissa sizes on the decoder output.

The required mantissa for layer III was 18 bits in general
purpose registers and 16 bits in memory. The register width
is larger because the registers are also used as accumulators.
Layer II on the other hand required 22 bit mantissa in registers.

It should be noted that the layer II compliance test is much
tougher on the decoder than the layer III compliance test.

The exponent range was not changed from our earlier
work since only the mantissa affects the precision of the
computations. It is still five bits for memory values and six
bits for register values. Layer II in fact uses a smaller number
range than layer III.

B. Other Audio Coding Standards

In order to improve the flexibility and the generality of
the DSP, a number of other standards for audio coding were
studied to get ideas for new instructions and addressing modes.

• The source code of an AAC decoder [3] was studied.
• The AC-3 standard [4] was studied.
• The SBC standard [5] was studied.
The conclusion was that it would be necessary to support

large MDCT (modified discrete cosine transform). This can
be implemented using FFT and consequently a bit-reversed
addressing mode was added to speed up this operation. SBC
is very control intensive, but overall not very computationally
expensive.

IV. DSP DESIGN

When the exponent and mantissa word length requirements
were known, the actual DSP could be designed.

A. Data Types and Registers

Similar to our previous work, the DSP has three native data
types.

• Integer and pointers (22 bits).
• Floating point value in register (29 bits).

Memory Word

021

021

021

General Purpose Register

28 0

High Part Low Part

22 21

Long Floating Point Data
Exponent Mantissa

28 27 22

Short Floating Point Data

021

Exponent Mantissa

20 16 15

Integer Data
Integer

Sign

Sign

Fig. 1. The native data types of the DSP. The widths of the general purpose
registers and a memory word are also shown for comparison.

• Floating point value in memory (22 bits).
The data types are represented graphically in Fig. 1. Note

that the memory is 22 bits wide.
All signal processing operations work with the longer float-

ing point data type, and there is a special instruction to round
and truncate a value down to the shorter floating point format.
The shorter form is used for values in memory and there is no
direct hardware support for storing a long floating point value
in memory.

The entire programmer accessible register set is shown in
Fig. 2. The general purpose registers are used for storing
intermediate values during calculations. Integers and point-
ers use only the low part and the upper part is generally
not affected by integer instructions. Note that there are no
accumulator registers. The general purpose registers are used
for this purpose.

Further, there are loop registers for zero overhead loops and
address generator registers.

B. Address Generator

An important part of a DSP is the address generator. Spe-
cialized addressing modes can often give a huge performance
increase since they can potentially eliminate many instructions
related to address calculations from the kernel loops.

After careful study of our C++ behavioral layer II and
layer III code, it was concluded that the algorithms chosen in
our decoder would need no more than four dedicated address
registers.

The following addressing modes are available:
• Address register indirect, with optional post-increment or

decrement, or increment by other amount specified in step
register. There is also an option for modulo addressing
with the top and bottom registers that specify the last
and the first address of a circular buffer, respectively.



r15
r14

r12
r13

r11
r10

r0
r1
r2
r3
r4
r5

r9
r8

r6
r7

a0
a1
a2
a3

s0
s1
s2
s3

t0
t1

b0
b1

16 General Purpose Registers
High Part Low Part

fcr

Loop Control Registers
lstart
lend
lcount

pc
Program Counter

4 Address Registers

4 Step Registers

2 Top Registers

2 Bottom Registers

021

21* 0

021*

28 22 21 0

21* 0

021*

21* 0

021*

Flags and Control Register

Fig. 2. Programmer accessible registers.

22

22

29

29
29

29

29

29

29

29

Result Mux

22

22

22

22

1822

Branch Unit

Integer ALU

FP Adder

FP MultiplierO
pe

ra
nd

 S
el

ec
tio

n
FP

 S
ho

rt 
to

 L
on

g

Op A

Op B

Register File

Address
Generator
Unit

Data Memory
Peripherals

Memory
Constant

PC and Loop Control
Instruction Fetch

HW Stack (8 levels)

Instruction Decode
Issue Logic
Pipeline Control

Memory
Program

Fig. 3. The principal data flow in the DSP.

• Absolute address.
• General purpose register indirect which is useful if the

address registers are already allocated for other purposes.
• Indexed, address register plus general purpose register.

This is used for implementing offset adressing. The offset
is loaded into the general purpose register.

• Indexed, with bit-reversed addressing for FFT which is
used for implementing (large) MDCTs.

The first two modes given above can be used for se-
lecting memory operands for most arithmetic instructions.
The remaining modes are restricted to only load and store
instructions.

V. MICRO-ARCHITECTURE

A. Data Flow

The main data flow in the DSP can be seen in Fig. 3.
The output from the floating point multiplier is fed back into
the floating point adder for efficient implementation of the
common multiply-and-accumulate operation.

IDIF

IF ID MA

IF ID EXMA

IF ID MA FX1 FX2 FX3

EX

MAIDIFFP Instructions

Integer Instructions and Memory Load

FX4

Branch Instructions

(e.g. FMAC)

Memory Store

FP Instructions with Two Operations

FX1 FX2

LEGEND: Instruction Fetch
Instruction Decode and Register File Access
Memory/Peripheral Access
Execute
FP Execute

IF
ID
MA
EX
FXn

occurs after the last stage of each instruction.
Register File Writeback, where applicable,

Fig. 4. Pipeline stages for different types of instructions.

The memories are located before the arithmetic units in
order to enable memory operands without explicit load in-
structions which had proved to be one of the bottlenecks of
our old design. The alternative approach with load instructions
executed in parallel with other instructions could not be used
since our register file only has one write port.

B. Data Path Pipeline

The DSP pipeline is shown in Fig. 4.
Our earlier work had used five pipeline stages for the

floating point part, partly to make sure that the design could
run at full speed on the FPGA board we had available at that
time. This put high pressure on the programmer to schedule
floating point code properly to gain maximum performance.

The number of pipeline stages was now reduced to two.
The integer data path has full result forwarding in order to
eliminate all pipeline latencies.

VI. RESULTS

A. Performance Evaluation

Some of the most computationally heavy decoder functions
in layer III have been implemented. The new DSP uses fewer
executed instructions for all implemented functions, and in
all cases significantly shorter program code since the code
for the previous DSP often had to be completely unrolled for
maximum performance.

The main reason for the improvements are the improved
addressing modes and a few instructions that did not exist on
the old architecture.

MIPS cost estimations are less than 12 MIPS for decoding
of a typical layer III audio stream (stereo, 128 kbps) at full
audio quality. This compares well to our earlier work which
used 15 MIPS and did not achieve full precision.



B. Memory Usage

A conservative over-estimation of the program and constant
memory size is 80 kbits, and the data memory size is less
than 130 kbits. On top of this we have some input and output
buffering memories of approximately 32 kbits.

VII. CONCLUSIONS AND FUTURE WORK

We have designed a floating point DSP capable of decoding
layer II and III that conforms with the full precision classifica-
tion specified in the MPEG-1 standard. It performs very well
compared to our earlier layer III implemention, both regarding
MIPS and memory usage.

It also compares well to other DSPs, for example one
commercial solution with an ADSP-218x uses nearly twice
as much memory and twice as many MIPS [6].

Memories are the major contributors to silicon area for this
application, and we have shown that floating point can be used
to reduce the size of the memories.

REFERENCES

[1] ISO/IEC, “Information Technology — Coding of Moving Pictures and
Associated Audio for Digital Storage Media at up to About 1.5Mbit/s,
Part 3: Audio”, 1993

[2] Eilert, J. and Ehliar, A., “Using Low Precision Floating Point Numbers
to Reduce Memory Cost for MP3 Decoding”, Proc of the IEEE Int’l
Workshop on Multimedia Signal Processing (MMSP), Siena, Italy, Sep.
2004

[3] Source code of the “Freeware Advanced Audio (AAC) Decoder”, avail-
able at, http://www.audiocoding.com

[4] Advanced Television Systems Committee, “Digital Audio Compression
(AC-3), Revision A”, 2001

[5] Bluetooth Audio Video Working Group, “Advanced Audio Distribution
Profile Specification”, 2003

[6] 16-bit Fixed Point MP3 Codec IP,
http://www.digiwell.com.tw/image/Brochure-MP3Codec.pdf


