A Network on Chip based gigabit Ethernet
router implemented on an FPGA

Andreas Ehliar and Dake Liu
Dept. of Electrical Engineering
Linkoping University
S-581 83 Linkdping, Sweden
{ehliar,dake}@isy.liu.se

Abstract—In this paper we will share the experiences
we have gained from implementing an FPGA-based gigabit
Ethernet router based on the SoCBUS network on chip
architecture. The main reason for this project has been
to test the SoCBUS architecture in a real design in order
to investigate the performance and possible shortcomings.
Another reason is to evaluate how SoCBUS performs in an
FPGA. The results highlights several areas where the FPGA
implementation of SoCBUS can be improved.

I. INTRODUCTION

Networks on Chip (NoC) has been a hot research
topic for a long time and there are many publications
in the area. Most of the publications deal with subjects
like simulation environment, verification, testing, power
consumption, and implementations of core components
like router nodes. However, surprisingly few publica-
tions deal with implementations of entire systems using
a general network on chip architecture. Therefore we
decided to implement a NoC-based system to widen our
knowledge in this area. The system is based on an earlier
case study on an Internet core router with 16 ports with a
full duplex bandwidth of 10 gigabit each. The limitations
of the FPGA board made it necessary to scale the design
down to only 2 full duplex gigabit Ethernet ports. While
this severely limits the usability of the router it will serve
as a test bed for NoC in a real implementation.

Some of the problems that various network on chip
projects are trying to solve are not applicable for an
FPGA. For example, the problem of physically creating
high speed global interconnection in the FPGA has al-
ready been solved by the FPGA vendor.

Other problems addressed by the NoC concept are
very valid in an FPGA as well as in an ASIC. An example
of this is the fact that a high speed crossbar with many
ports does not scale very well, especially if low latency
is desired.

On the other hand, some problems are more difficult
to solve in an FPGA. For example, it is very difficult
to create a high speed crossbar with many ports in an
FPGA if low latency is desired.

The rest of this paper is organized as follows, section II
contains background on the SoOCBUS NoC architecture,

section III describes the FPGA-based implementation,
section IV contains the benchmarking results of the
design, section V contains a discussion of the results,
and finally section VI summarizes the paper.

II. THE SOCBUS NETWORK ON CHIP ARCHITECTURE

SoCBUS is a Network on Chip architecture designed
with simplicity in mind. The transport protocol has been
kept simple leading to small and efficient NoC nodes.
The basis of SOCBUS is a circuit switched network. It
may use either source routing or distributed routing.

A connection is setup in the following way; the source
sends a setup request to the destination which will return
an ACK if it is ready to receive data. If a link required
to reach the destination is locked by another connection
a NACK is returned to the source and the source will
have to try again at a later time.

As soon as a connection has been established, the
sender has an exclusive lock on that channel and may
transmit data at will, without any flow control.

SoCBUS was originally envisioned for ASICs where it
can operate at a clock frequency of 1.2 GHz in a 180 nm
process [1]. The number of data lines in a SoCBUS link is
not defined by the SoOCBUS protocol but can be changed
to match the requirements of the application.

III. THE FPGA-BASED ROUTER PROTOTYPE

The FPGA-based gigabit Ethernet router is based on
an earlier case study which studied a 16 port 10 gigabit
IP router [2]. The case study studied simulations that
were run in the SoOCBUS simulator to benchmark three
different NoC configurations. The final architecture is
shown in figure 1. This design was benchmarked in the
SoCBUS simulator and the architecture could handle up
to 14 Gbit/s per port when using Internet mix traffic
while running SoCBUS at 1.2 GHz with a link width of
64 lines. With minimum size packets, only 2.6 Gbit/s per
port could be handled. The main bottleneck in this case
was the transmission of the requests to the forwarding
table as such small packets are not handled gracefully
by the NoC.

IPP IPP IPP IPP IPP IPP IPP IPP
1 2 3 4 5 6 7 8
®
IPP IPP PP PP |PP |PP |PP IPP
9 10 11 12 13 14 15 16
® ® ® ® ® ® L
FT FT FT FT
1 2 3 4
*« o .
PB PB PB PB PB PB PB PB
1 2 3 4 5 6 7 8
® ® ® ® ® ®
CPU ||| MU
[S S S S S S— —]
OPP ||| OPP ||| OPP ||| OPP ||| OPP ||| OPP ||| OPP ||| IPP
1 2 3 4 9 10 11 12
o
OPP| |OPP| |OPP| |OPP| |OPP| | OPP| | OPP| | OPP
5 6 7 8 13 14 15 16
Fig. 1. The architecture of the earlier case study. IPP means Input

Packet Processor, OPP is an Output Packet Processor, FT is a Forward-
ing Table node, PB is a packet buffer node, MU is a multicast unit and
CPU is the control processor.

TABLE 1
THE UTILIZATION OF THE FPGA. LUT REFERS TO THE 4 INPUT
LOOK-UP TABLES THE FPGA CONSISTS OF AND BRAM REFERS TO THE
18 KBIT RAM BLOCKS LOCATED IN THE FPGA FABRIC.

Unit LUT Flip Flops | BRAM
Input module 1139 856 2
Output module 444 271 3
Packet buffer 3395 3470 18
Forwarding table 3234 1745 12
SoCBUS 11565 | 3944 0
Entire design 19047 | 10137 41
Total size of FPGA | 46080 | 23040 120

Unfortunately, it would not be feasible for us to imple-
ment this architecture on any FPGA. Due to the limits
of the Virtex II 4000 FPGA we were using we could
only run SoCBUS at 80 MHz. We selected a SoCBUS
link width of 32 lines instead of the 64 lines originally
envisioned. SoCBUS was used in the distributed routing
mode in this project.

The application was likewise scaled down to only two
full duplex gigabit Ethernet ports due to limitations of
the FPGA but mostly because that is all we had available
on our prototype boards. (It may seem odd at first to
have a router with only two gigabit Ethernet ports but
logically they were used as two separate in ports and
two separate out ports.)

In addition, another goal of this project was to serve
as a test bed for other research projects. To this end, a
programmable packet classifier and a forwarding table
developed at our division has also been incorporated
into the FPGA implementation [3] [4]. A DDR memory-
based packet buffer was also developed specifically for
this prototype.

The final architecture of the FPGA implementation is

PB

OPP OPP
0 1

Fig. 2. The architecture of the FPGA prototype.

35

loss (%)

96 108 120 132 144 156 168 180 192 204 216 228 240 252 264 276 288
packet size

0 I I I
48 60 72 84

Fig. 3. The performance of the router for packet sizes 48, 52,...,288.
The packet size refers to the payload size and does not include the
Ethernet source address, destination address, and CRC. There is no
packet loss for packet sizes larger than 288 bytes.

shown in figure 2 and table I summarizes the FPGA uti-
lization. Note that the numbers for individual modules is
taken from the synthesis report for that particular mod-
ule. Therefore the total size of the design is somewhat
smaller as global optimization can reduce the individual
modules somewhat.

IV. BENCHMARKING OF THE FPGA IMPLEMENTATION

The system was tested and benchmarked in two ways.
At first, iperf was used on two 3GHz Pentium 4-based
computers to benchmark the throughput of the router.
Unfortunately these computers were not fast enough
once the packet size was decreased. Instead, a simple
design was used on to generate traffic and verify that the
traffic arrived correctly. This design was used on FPGA
boards identical to the one the router was running on.

To simplify the testing equipment the router was
benchmarked by sending data from inport 0 to outport
1 and from inport 1 to outport 0. A minimum gap
between packets were used. The result of the benchmark
is summarized in figure 3. As can be seen in the figure,
the performance varies wildly for small packet sizes. The
reason for the large performance differences has not been

fully determined, but the initial spike at 52 byte can be
explained by the fact that the input module allocates
buffer space in chunks of 16 bytes. When going from 48
to 52 byte packets, the input module needs to allocate 4
buffers instead of 3.

V. DISCUSSION

As expected, the NoC architecture made it easy to in-
tegrate the different components and if necessary change
the network design without any big problems. However,
we also experienced a number of problems. Some are
specific to the FPGA solution and some are applicable
to both an ASIC and an FPGA-based solution. Due to
the experiences gained in this project we have some
proposals for future on chip interconnect research.

A. Problems encountered

It is important to realize that the SoCBUS concept
was never intended for an FPGA implementation and
the authors therefore expected some problems in this
particular implementations.

One of the most unexpected results of this project
is that the hardware cost of the NoC router nodes in
the FPGA was higher than expected. About 25% of the
LUTs in the FPGA was used for SoCBUS. On average,
this corresponds to almost 15 LUTs per line. The current
SoCBUS router is not optimized for an FPGA architec-
ture however and we believe that it could be improved.

A bigger problem is the latency of connection setup.
In the case of a small packet it might take as much time
sending the packet as setting up the connection if the
connection was accepted immediately. This is a large
problem if minimum sized packets arrive with minimum
inter packet gap size and the main reason for the packet
loss seen with smaller packets.

Another potential problem is that we have not as yet
looked into how to floor plan the NoC as can be seen in
figure 5. The network on chip nodes are placed relatively
arbitrarily by the placement tool instead of the ordered
architecture seen in figure 2.

Another problem is that the chosen architecture leaves
no guarantees about performance. While it is possible
to schedule SoOCBUS connection setup and teardown to
guarantee a certain level of performance this is hard to
do in an IP router where the performance is heavily
dependent upon the pattern of the incoming traffic. This
is in contrast with for example a base station where the
task load can be known beforehand making it possible
to schedule SoCBUS transaction to handle the worst case
load [5].

Finally, the chosen architecture does not scale grace-
fully as can be seen in figure 3. The performance oscil-
lates wildly between different packet sizes once the NoC
is starting to get congested. Further study of the network
is required to understand this behavior.

Fig. 5. The floorplan for the SOCBUS part of the FPGA implementa-
tion. SoCBUS is scattered arbitrarily and is placed together with other
logic.

B.

Future possibilities There are two features that has not
been used in the current design. The first is speculative
sending of data, i.e., sending data before an acknowl-
edgement that the connection setup is successful has
been received. If a negative acknowledgement on the
connection setup is received the data will have to be
resent.

Another feature is an extension to SOCBUS specifically
intended for short packets that can be transmitted in only
one clock cycle. This would be ideal for requests to and
from the forwarding table.

To summarize this project, we do not believe that
the current implementation of SoCBUS is well suited
to FPGAs, instead another NoC architecture should be
developed to match the opportunities and constraints
of current FPGAs. For example, they should take into
account the wiring structure of FPGAs. It could also
be argued that since an FPGA cannot contain a large
number of IP cores, a NoC is not necessary to connect
them together. This argument however does not take into
account that it is hard to create a low latency cross bar
with many high speed ports in an FPGA. On the other
hand, the limited number of cores in an FPGA means
that the NoC does not need to be able to scale very well
as the number of network nodes increases.

It could therefore make a lot of sense to use a NoC
in a rather conservative configuration, acting as a bridge
between local crossbars of tightly connected cores. The
NoC would in this case consist of very few nodes be-
cause the majority of the communication would happen
in the local crossbars. This is illustrated in figure 4. The
local crossbars could use either traditional protocols for
on chip interconnect such as AMBA, CoreConnect, or
slightly modified versions of these. The advantage is that
most communication would not need to be aware of the

Crossbar

v}
@
-]

Accelerator
Memory

Memory

Crossbar

v}
@

Accelerator
Memory

Memory

Accelerator Accelerator

Crossbar

Memory Memory

[22)
o<}
@
o~ v

Memory Memory

> 1
s 1
L Tow
1
g : Memory
S 1 Areas with tight communication
: and low latency requirements.
1
1
1
T e emememememmmm-——-
:
5 1 NoC links used for
2 : latency tolerant bulk
8 1 transfers or non
: CPU performance critical
A 1 control signalling.
’ 1 4

Fig. 4. A conservative NoC approach where the NoC is used to connect crossbars using more traditional bus protocols.

NoC transport protocol at all and does not need to take
the higher latency inherent in the NoC into account.

VI. CONCLUSIONS

In this paper we have investigated an IP router imple-
mented using the SoCBUS network on chip architecture.
Our experience during this project shows that a NoC
designed for an ASIC does not map very well to an
FPGA. The largest problem encountered is the latency in-
volved in connection setup and tear down which caused
drastically reduced performance when small packets
were used.

On the other hand, there exists an opportunity to
design a NoC suited to FPGA applications. This NoC
should be optimized for the FPGA structure. However,
since the number of cores on an FPGA will be quite
limited compared to an ASIC, the NoC does not have
to scale as well as an ASIC-based NoC.

ACKNOWLEDGEMENTS

Many thanks to Tobias Borslehag and Daniel Ferm for
their valuable work on this project.

REFERENCES

[1] S. Sathe, D. Wiklund and D. Liu, “Design of a switching node
(router) for on-chip networks”, ASIC, 2003. Proceedings. 5th Inter-
national Conference on, vol. 1, 2003.

[2] J. Svensson, “Design of a core router using the SoOCBUS on-chip
network”, Master’s thesis, Linkoping University, 2004.

[3] T. Henriksson, Intra-Packet Data-Flow Protocol Processor, PhD thesis,
Linkoping University, May 2003.

[4] A.Ehliar and D. Liu, “Flexible Route Lookup Using Range Search”,
Communications and Computer Networks, IASTED International Con-
ference On, 2005.

[5] D. Wiklund and D. Liu, “Design, mapping, and simulations of a
3G WCDMA /FDD basestation using network on chip”, Proc of the
International workshop on SoC for real-time applications, 2005.

