
FLEXIBLE ROUTE LOOKUP USING RANGE SEARCH
Andreas Ehliar

Dept. of Electrical Engineering
Linköping University

S-581 83 Linköping, Sweden
ehliar@isy.liu.se

Dake Liu
Dept. of Electrical Engineering

Linköping University
S-581 83 Linköping, Sweden

dake@isy.liu.se

ABSTRACT

The rising number of entries in an Internet rout-
ing table is placing higher demands route lookup engines.
This paper presents a hardware implementation of a route
lookup engine based on a combination of range search and
linear search. The route lookup engine is constructed us-
ing a pipeline of identical search units. The lookup engine
can be configured with more than one routing table allow-
ing for simultaneous searches in more than one table. The
worst case memory usage is independent of the distribu-
tion of prefixes in the routing table. Updates to the routing
tables are merged together to minimize the number of up-
dating cycles.
KEY WORDS
High Speed Internet, Router, Route lookup, Hardware im-
plementation

1 Introduction

One of the critical components in a high speed router is the
route lookup engine. As the Internet is growing, higher de-
mands are placed on this component. Specifically, the size
of the routing tables and the number of lookups performed
per second is increasing.

The number of prefixes in routing tables on the In-
ternet is increasing all the time. At the time of writing, a
routing table for a typical Internet router can contain over
210000 IPv4 prefixes [1]. There is a clear trend that the
number of prefixes will continue to increase in the future
as well.

The bandwidth of the Internet is also rapidly increas-
ing placing higher demands on the route lookup engine. For
each packet the route lookup engine has to do at least one
lookup. For certain scenarios more than one lookup may
have to be performed using different lookup tables. An ex-
ample of this could be a multicast environment where the
source address has to be validated as a valid sender before
a packet is marked as valid to send.

1.1 Longest prefix match

A network prefix in an IPv4 routing table consists of 32
bits of address information and a length field indicating the
number of significant bits in the address field. A network

prefix is usually written in the form 10.5.3.0/24, where /24
indicates that only the first 24 bits in the IP address are
significant. Associated with each network prefix is a desti-
nation port for packets with a destination address matching
this network prefix.

The route lookup is complicated by the fact that one
destination address can match several prefixes. In this case,
the lookup engine should select the matching network pre-
fix with the highest number of significant bits. This is
called longest prefix match.

As an example, consider a routing table with two pre-
fixes, 10.0.0.0/8 and 10.120.50.0/24. The first entry has 8
significant bits and the second entry has 24 significant bits.
A packet destined for 10.120.50.34 will match both entries
but since the second entry has more significant bits, that
entry should be consulted for the destination port.

1.2 Previous work

There are many algorithms available for longest prefix
match both in software and hardware. In software for ex-
ample, Patricia tries [2] as used in BSD Unix may be used.
Another trie based solution is LC-Tries [3]. A solution
based on range trees is outlined in [4]. A thorough survey
of algorithms for longest prefix match appears in [5].

In hardware one popular method is to use a ternary
content addressable memory (TCAM) [6] for route lookup.
The advantage of a TCAM is ease of use whereas the draw-
back is a high power consumption and a large chip area
compared to a solution that uses SRAM or DRAM. The
TCAM is also deterministic in the sense that the maximal
number of entries that can be stored in a TCAM is known
from the beginning and does not vary depending on the dis-
tribution of prefixes in the routing table.

One hardware based solution utilizes the fact that
most entries in a routing table have 24 significant bits and
use one memory for all 24 bit long prefixes that can index
into another memory if a certain prefix has more than 24
significant bits [7]. This will not work if the routing table
has too many prefixes with more than 24 significant bits.

Software based solutions based on trees can easily be
adapted to a high performance hardware solution splitting
the tree over several memories in different pipeline stages.
The problem with this solution is that the memory require-
ments for each stage in the pipeline varies depending on the

Normal prefix table Prefix bits
0.0.0.0/0 → Port 1 0
10.0.0.0/8 → Port 2 8
10.10.1.0/24 → Port 3 16
10.10.2.0/24 → Port 4 16
Range table Prefix bits
9.255.255.255 → Port 1 0
10.10.0.255 → Port 2 8
10.10.1.255 → Port 3 24
10.10.2.255 → Port 4 24
10.255.255.255 → Port 2 8
255.255.255.255 → Port 1 0

Figure 1. Prefix table and range table.

> 10.10.1.255

> 9.255.255.255 > 10.10.2.255

21 4

> 10.10.0.255

3

> 10.255.255.255

1

2

Figure 2. A binary range search tree for the prefix table.

distribution of prefixes in the routing table.
There are a number of different solutions to this prob-

lem. The easiest is to accept the problem and analyze the
memory sizes required in the different stages and dimen-
sion them appropriately for typical routing tables [8]. An-
other promising solution is to dynamically allocate mem-
ory via a crossbar to each pipeline stage as proposed in [9].

1.3 Our solution

In this paper we propose a solution based on range search
with a performance limited by the cycle time of SRAM.
An advantage of our scheme is that the maximum number
of prefixes that can be stored in the routing table is known
beforehand and it is not dependant upon the distribution of
prefixes in the routing table. Another advantage of our ap-
proach is that the solution allows for more than one search
table that can be searched simultaneously. In order to bal-
ance the range tree quickly, hardware is used in order to
facilitate memory copying.

The rest of this paper is organized as follows, sec-
tion 2 describes how to perform the longest prefix match
using range search, section 3 describes our hardware based
lookup engine, section 4 describes how to manage the rout-
ing table in our solution, section 5 describes a proof of con-
cept implementation, section 6 describes the performance
of the lookup engine, section 7 describes possible future
improvements, and section 8 provides concluding remarks.

Range table Prefix bits Remarks
9.255.255.255 → Port 1 0
10.9.255.255 → Port 2 8 New
10.10.0.255 → Port 5 16 Modified
10.10.1.255 → Port 3 24
10.10.2.255 → Port 4 24
10.10.255.255 → Port 5 16 New
10.255.255.255 → Port 2 8
255.255.255.255 → Port 1 0

Figure 3. The range table from figure 1 after the addition
of the prefix 10.0.0.0/16 with a destination port of 5.

2 Longest prefix match using range search

The basic idea behind the range search algorithm is to di-
vide the routing table into ranges. For example, a prefix
10.0.0.0/8 can be represented as the range of addresses be-
tween 10.0.0.0 and 10.255.255.255, including the start and
end points. An example of how to transform a table with
prefixes into a range table is given in figure 1. Each entry
in the range table consists of the last address of that range,
the number of significant bits for the prefix responsible for
that particular range, and the destination port. The starting
point of each range is implicit as the next address after the
previous range.

The main idea behind this transformation is that it is
possible to sort the entries in a range table since all bits
in the address field of a range table are always significant.
After this transformation is done, a binary search can be
conducted on the table as illustrated in figure 2.

In the rest of this paper, an entry refers to one line in
the range table whereas a prefix refers to the network prefix
which may correspond to many entries in the range table.

2.1 Adding a prefix to the table

If an IPv4 prefix is added to the routing table a maximum
of two entries has to be added to the range table. One entry
represents the first address in the IPv4 prefix and one entry
represents the last address in the IPv4 prefix. It is therefore
always possible to store N IPv4 prefixes in a range table
with 2N entries. (This means that the capacity of the rout-
ing table can be specified without any reservations based
on the distribution of prefixes.)

However, after adding the start and end address, some
entries located between the start and end of the new prefix
might have to be changed. For example, if we want to add
a prefix 10.10.0.0/16 to the routing table with a destination
port of 5, the routing table will be updated as shown in
figure 3.

If a prefix with L significant bits is added to the rout-
ing table, all entries between the start of the range and the
end of the range need to be updated with a new destination
port if the prefix they belong to have less than L prefix bits.
At the same time, the prefix bits of the updated entries are

Range table Prefix bits Remarks
→ Deleted

10.9.255.255 → Port 1 0 Modified
10.10.0.255 → Port 5 16
10.10.1.255 → Port 3 24
10.10.2.255 → Port 4 24
10.10.255.255 → Port 5 16

→ Deleted
255.255.255.255 → Port 1 0

Figure 4. The range table after deleting 10.0.0.0/8.

set to L.
If a prefix (with L significant bits) is updated with a

new destination, all entries between the the first and last en-
try of this prefix, including the last entry has to be updated
if the prefix bits of this entry is set to L.

Similarly, the deletion of a prefix is managed by re-
moving the start and end of the range (unless they are in
use by another prefix) and modifying the prefix length and
destination port of all entries inbetween to correspond to
the correct prefix. This is illustrated in figure 4.

3 Hardware solution

Searching for the destination port for a given address is just
a matter of finding the first entry in the table where the ad-
dress is larger than or equal to the given address. However,
a linear search is not feasible for anything but the smallest
routing table. To increase performance it is possible to per-
form a binary range search as illustrated in figure 2. The
drawback of this approach is that larger and larger mem-
ories are needed for each stage in the pipeline making the
floorplanning cumbersome.

In this paper we propose a solution that utilize at first
a small binary range search to narrow the search unit and
after that perform a linear search in a number of identical
search units. The basic idea is illustrated in figure 5 and
the contents of a search unit is shown in figure 6. In prac-
tice, the search unit memory is synchronuous and for per-
formance reasons flip flops might be added after the mem-
ory and before the comparator. For clarity, these details
are omitted in this paper but they are present in our RTL
implementation.

The search units responsible for the pipelined linear
search contain a small memory with a number of routing
entries in it. The unit responsible for the initial range search
will pass an index to the linear search unit which points to
one entry in the linear search unit’s memory.

Suppose that an application need to perform not only
one but two types of searches per packet. For example a
router that need to perform some sort of QoS depending on
the source address. This could be solved by constructing
two pipelines as described above. However, the require-
ments on the amount of entries in the source address table
and the destination address table is likely to vary widely

Search
Unit
Search
Unit

Range
Search

Search
Unit

Search
Unit

Figure 5. An illustration of the search pipeline. The range
search unit narrows the search and the search units perform
the linear search.

SearchIP < IP
>

Index

SearchIP

IP

0
1

Destination

Found

DestPort

Range
Table
Memory

Figure 6. Outline of a search unit. The found signal is set
to 1 once a valid destination has been found. (The parts
that are responsible for updates of the range table has been
omitted for clarity.)

depending on where the application is installed. It would
be desirable to be able to allocate memory for each pipeline
from a common pool.

One way to allow this dynamic memory allocation is
shown in figure 7. The idea is to construct another range
search unit and install muxes in the search unit pipeline
so that each search unit can be allocated to any pipeline.
This can of course be generalized to more than two search
pipelines as well.

4 Management of the range table

The linear search part of the combined search pipeline is
logically a matrix with M columns and R rows. Each el-
ement of the matrix contains a range entry. A row corre-
sponds to one of the search units in figure 6 and a column
corresponds to one memory position in the search units.
Each search unit has a hard coded number that contains its
position in the pipeline. These commands are used to man-
age the range table:

• WRITE(m,j,ENTRY) Write ENTRY to memory po-
sition m if the search unit number is j.

• READ(m,j)Read out the entry stored in memory po-
sition m if the search unit number is j.

• NEWRANGE(m,ENTRY) Update the binary range
search table in position m with ENTRY.

Range
Search

Range
Search

Search
Unit

Search
Unit

Search
Unit

Search
Unit

Figure 7. The architecture as extended to two parallel
searches with a pipeline dynamically partitioned to differ-
ent search units.

An ENTRY consists of three fields, an IP address, a
prefix length and the destination port for destination ad-
dresses that are less than or equal to the IP address. The
prefix length field is not required for searching the table
but it will make management of the table easier.

In addition, the linear search pipeline will not func-
tion correctly unless all entries in one column are sorted
with the smallest value located in row 1. This represent a
problem once the routing table has to be updated. In order
to insert an entry, a potentially very large number of entries
have to be rearranged. To improve the situation, five new
commands are added to the search units to improve update
performance.

• READCOL(m) Read out memory position m to the
output flip flops of the search unit.

• FORWARD(m,j,k) Write the data from the output
flip flops of the previous search unit to memory po-
sition m if the search unit number is greater than or
equal to j and less than or equal to k.

• BACKWARD(m,j,k) Write the data from the output
flip flops of the next search unit to memory position m
if the search unit number is greater than or equal to j
and less than or equal to k.

• WRITECOL(m) Write the data from the output flip
flops of this search unit to memory position m.

• CHANGECOL(m,j,k,len,newlen,p) If len is
equal to the prefix length in the output flip flops of
the search unit, change the destination port in memory
position m to p and the prefix length to newlen. The
search unit number has to be larger than or equal to j
and smaller than or equal to k.

The logic necessary to support these commands is
outlined in figure 8. By combining READCOL with the
other commands it is possible to shift an entire column for-
ward or backward using only two commands or move the
entire contents of one column to another column. For ex-
ample, if an entry is supposed to be inserted into column
i, row j, and the nearest free slots are located at the end of
column i+1, the following commands have to be executed:

1. tmp = READ(i,R) Read out the last entry in col-
umn i.

Memory Memory

Commands

Data Data feedback from next stage

Mux
Output
Mux

Figure 8. An outline of the updating logic of a search unit.

2. tmp2 = READ(i,R-1) Read out new range limit
in column i.

3. READCOL(i+1) Prepare for the FORWARD com-
mand.

4. FORWARD(i+1,1,R) Shift column i+1 forward
one step.

5. WRITE(i+1,1,tmp) Update first entry of column
i+1 with this value.

6. NEWRANGE(i,tmp2) Update the binary range
search table with the new end of column i.

7. READCOL(i) Prepare for the FORWARD command.

8. FORWARD(i,j,R) Insert space for the entry in col-
umn i at row j.

9. WRITE(i,j,ENTRY) Insert the entry at position j
in column i.

Other examples of these commands are illustrated in
figure 9.

4.1 Changing entries in the range table

In order to update the range table efficiently it is better to
update the range table with a large number of prefixes si-
multaneously. In this way the number of cycles used for
updating is reduced. The main idea is also to perform up-
dates in an incremental fashion so that it is possible to tem-
porarily halt an update if a search request is issued to the
lookup engine.

As a first example we will consider only the case
where destination ports for prefixes are changed. As out-
lined in section 2.1, it is necessary to search the range ta-
ble between the first address of the network prefix and the
end address of the prefix address and change the destina-
tion port of all entries with the same prefix length as that
of the updated prefix. This can be accomplished using a
combination of READCOL and CHANGECOL commands

Assume that the first address of the prefix has been
added at memory position m in search unit j and that the

1

2

3

4

5

1 3 4 5 6 72 8 M

Figure 9. The data movements as a result of the follow-
ing commands: READCOL(1);FORWARD(1,3),
READCOL(3);BACKWARD(3,3),
READCOL(5);WRITECOL(8).

end address is added to memory position n in search unit
k.

1. READCOL(m) Prepare for CHANGECOL.

2. CHANGECOL(m,j+1,R,len,len,p) Change all
entries below the first address.

3. For every column, i = m + 1,m + 2, . . . , n − 1, be-
tween the start address and the end address:

• READCOL(i) Prepare for CHANGECOL.

• CHANGECOL(i,1,R,len,len,p)

4. READCOL(m) Prepare for CHANGECOL.

5. CHANGECOL(m,1,k,len,len,p) Change all
entries above the end address.

In the worst case, we need to consider every column.
By updating several prefixes at once we can drastically re-
duce the impact of the worst case since we can avoid over-
lapping CHANGECOL commands. If for example the des-
tination port of 10.0.0.0/8 and 10.10.0.0/16 are modified,
it is not necessary to perform the CHANGECOL responsible
for 10.0.0.0/8 on the columns located between the start and
end of 10.10.0.0/16 because those columns cannot contain
any entries belonging to 10.0.0.0/8.

Each modification can introduce a maximum of two
regions with change commands. A region can span sev-
eral columns but the maximum number of such spans is
limited by the number of columns. The maximum number
of CHANGECOL commands required by n prefix updates is
thus 2n+2M where M is the number of memory positions
in a search unit.

4.2 Removing prefixes from the table

Deleting an entry is not a problem, it is only a matter of
shifting the entries below the removed entry one step back-
ward with READCOL/BACKWARD and possibly issuing a
NEWRANGE command if the last entry in a column was re-
moved. Since all ranges belonging to the deleted prefix
now belong to another prefix, the prefix length and destina-
tion ports must be changed accordingly. This is done using
READCOL and CHANGECOL as described in the previous
section.

4.3 Adding prefixes to the table

Inserting entries is a problem however. The worst case
for inserting one entry involves shifting a large number
of entries around. For example, if an entry has to be
added in column 1 and the nearest free slot is located in
column M , up to M READCOL/FORWARD/WRITE com-
mands has to be inserted into the pipeline. If we want to
add up to R − 1 entries, a maximum of (M) · (R − 1)
READCOL/FORWARD/WRITE commands have to be exe-
cuted.

However, as soon as R FORWARD commands have
to be executed on one column, this means that the entire
column is supposed to be moved to the next column. It is
now possible to replace the READCOL/FORWARD/WRITE
commands with a single READCOL/WRITECOL pair. This
means that there will never be a need for more than R −
1 READCOL/FORWARD/WRITE commands per column.
This will drastically reduce the worst case for additions to
the table. The worst case behavior using these commands
are still not very good and if an update approaching worst
case behavior is encountered it might make sense to simply
rewrite the entire routing table.

5 Implementation

We have implemented a C model of this system to ver-
ify that the concept works. We also implemented an RTL
model of the lookup engine described in this paper and
tested it on an FPGA board with a Virtex-II 4000. The
maximum clock frequency obtained on the FPGA was
100 MHz but an ASIC based solution based on a modern
process should be much faster.

6 Performance

One search or update command can be inserted into each
pipeline at each clock cycle. This means that the perfor-
mance of our proposed solution will be similar to other
SRAM based solutions that are limited by the frequency
of on-chip SRAM. As an example, if a clock frequency of
500 MHz is used, a router with 16 x 10 gigabit ports can
be managed by our lookup engine (assuming a minimum
packet length of 40 bytes).

However, since the architecture is intended for an
application where several searches are issued simultane-
ously to the lookup engine a straightforward comparison
with other solutions supporting only one search at a time is
somewhat misleading.

The memory consumption for a routing table capable
of storing 250000 IPv4 prefixes with a destination port field
of 12 bits will be 25 Mbit. If the memory in the search unit
contains 8192 entries, 61 search units will be required to
store this table. The total latency of this lookup engine will
be 61 cycles plus approximately 26 cycles for the initial
binary range search.

7 Discussion and Future Work

There is a tradeoff between the search unit memory size and
the length of the pipeline that has to be decided upon. If the
pipeline is longer, updates are typically cheaper whereas
the area and power consumption will increase as more
memories are added. Smaller memories also mean that the
partitioning of memory to each search pipeline can be done
with a finer granularity. Smaller memories are also faster
than larger memories.

As a comparison to CAM memories that are com-
monly used in commercial solutions, our solution has
longer latency for lookups but smaller power consumption
due to the usage of SRAM instead of specialized CAM
memories. A drawback of this architecture as compared
to a CAM memory is that it is expensive to add prefixes
to the routing table one prefix at a time. This is mitigated
by merging requests and adding them simultaneously. The
worst case performance of additions to the routing table can
still be quite low because the entire routing table has to be
rewritten.

The architecture can be extended to allow other ad-
dress formats than IPv4. IPv6 could be supported either by
increasing the width of the memories or by storing the IPv6
addresses in several consecutive pipeline stages. Other ad-
dress formats like MPLS or Ethernet addresses could easily
be added by allowing for routing tables with exact matches
only. Finally, a more flexible architecture for interconnec-
tion than the mux based interconnection in figure 7 should
be investigated.

Another thing that would be interesting to investigate
is if other lookup engines could benefit from specialized
hardware to ease routing table updates. We also propose
that a specialized small CPU should be added to this sys-
tem that handles the updates to the routing table in order to
offload the main CPU in the router.

8 Conclusions

The architecture has a number of important features. It
is SRAM based and limited by the speed of embedded
SRAMs.

The main advantages are the usage of specialized
hardware to reduce the cost of keeping the range tree bal-
anced and the possibility of issuing more than one search
request simultaneously to this table.

The address format can be extended to support both
IPv4, IPv6, Ethernet addresses, and MPLS although only
IPv4 has been tested in an RTL model. The memory usage
of the architecture is deterministic regardless of the distri-
bution of the routing prefixes. The execution time for up-
dates to the routing table is limited to a reasonable upper
bound by merging updates and performing them simulta-
neously. The design can be scaled by adding more search
units or increasing the memory size of a search units. Fi-
nally, the design is suitable for a system with several lookup
tables where it is important to be able to perform searches
in parallel without having to waste memory.

References

[1] Growth of the BGP table - 1994 to Present
http://bgp.potaroo.net/

[2] Sklower, K, A Tree-Based Packet Routing Table for
Berkeley UNIX, USENIX Conference Proceedings,
Dallas, TX, 1991, 93-104

[3] Nilsson, S.; Karlsson, G., IP-address lookup using LC-
tries, Selected Areas in Communications, IEEE Journal
on, Vol.17, Iss.6, Jun 1999, 1083-1092

[4] Subhash Suri; Varghese, G.; Warkhede, P.R., Mul-
tiway range trees: scalable IP lookup with fast up-
dates Global Telecommunications Conference, 2001.
GLOBECOM ’01. IEEE, Vol.3, 2001, 1610-1614

[5] Ruiz-Sanchez, M.A.; Biersack, E.W.; Dabbous, W.,
Survey and taxonomy of IP address lookup algorithms
Network, IEEE, Vol.15, Iss.2, 2001, 8-23

[6] Fast routing table lookup using CAMs McAuley, A.J.;
Francis, P. INFOCOM ’93. Proceedings.Twelfth An-
nual Joint Conference of the IEEE Computer and Com-
munications Societies. Networking: Foundation for the
Future. IEEE, Vol. 3, 1993, 1382-1391

[7] Gupta, P.; Lin, S.; McKeown, N., Routing lookups
in hardware at memory access speeds, INFOCOM
’98. Seventeenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceed-
ings. IEEE, Vol.3,1998,1240-1247

[8] Tomas Henriksson and Ingrid Verbauwhede, Fast IP
address lookup engine for SoC integration, Proceed-
ings of Design and Diagnostics of Electronics, Circuits
and Systems, Brno, Czeck Republic, 2002, 200-210

[9] Florin, B.; Rajgopal, S.; Lun-Bin, H.; Richards-
son, N., A scalable IP lookup ASIC for OC-768
links, 3rd Workshop on Application Specific Proces-
sors,Stockholm, Sweden, 2004, 35-40

