
MediaDSP: An Application Specific
Heterogeneous Multiprocessor SoC

Di Wu, Per Karlstr̈om, Johan Eilert, Andreas Ehliar and Dake Liu
Department of Electrical Engineering, Linköping University, Link̈oping, SE 58183

Email: {diwu, perk, je, ehliar, dake}@isy.liu.se

Abstract— The emerging era of embedded computing de-
mands both high computing power and flexibility to ac-
commodate various applications. This paper presents a new
heterogeneous multiprocessor SoC platform targeted at several
application domains. The platform is scalable and can be
tailored according to various scenarios.

I. I NTRODUCTION

DSP industry has seen the prominent evolution of mobile
and multimedia applications. It is more and more difficult for
single-core DSPs to accommodate new applications that demand
huge computing power. Meanwhile, new multimedia standards are
emerging with a number of legacy standards still existing, which
makes it difficult for customized ASIC design to support. Thus the
concept of multiprocessor SoC (MPSoC) for embedded computing
has emerged as a new design paradigm. However, it also brings
great challenges to designers to make good trade-off among a
number of factors.

An application specific multiprocessor SoC namely MediaDSP
has been proposed by us and the project is still ongoing. The goal
of designing such a platform is to shrink the design space by target-
ing specific application domains and explore the optimal trade-off
in heterogeneous MPSoC designs. The paper is organized in the
following way: The first part briefly introduces targeted application
domains. The second part elaborates the architecture of MediaDSP.
Task partition and scheduling is addressed following this part. Then
the toolchain and performance issues are introduced. The last part
concludes the paper.

II. A PPLICATION DOMAINS

As the technology advances, a new era of consumer electronics
has arrived. Smart gadgets such as mobile phone, MP3 players
and GPS terminals have been ubiquitous in our daily life. It
is believed that more and more multimedia functions will be
integrated into one single terminal which brings a new challenge
to multimedia embedded system design. As illustrated in Figure 1,
multimedia application domain covers various applications ranging
from audio to 3D. Limited by the size, mobile terminals can not
afford the space required by a bunch of ASIC chips designed for
different purposes. At the same time, a lot of applications share
common computational features which make it possible for a single
programmable HW to accommodate them.

A. Audio/Video Compression
MP3 players have already been integrated into mobile phones.

IPTV and mobile TV services are ready to be released in several
countries. However, there are still several barriers for the designers
to cross such as computing power and heterogeneous standards
support. Although the latest video compression technologies can

Fig. 1: Application Coverage of MediaDSP

obtain very high transmission efficiency, the computational com-
plexity of codec also increases dramatically. Meanwhile, there
are quite a few existing coding standards that are supported by
different operators and content providers. Therefore, single chip
solution that supports all existing standards is not only efficient
but necessary.

Audio and video compression generally consists of several steps
such as entropy coding, transform, estimation and other filtering
operations. Entropy coding methods such as variable length coding
(VLC) and arithmetic coding (AC) are used to reduce the entropy
in the transmitted bit stream. The mechanism of transform is
that since human eyes are sensitive only to the lower part of
the spectrum of light, bandwidth efficiency can be achieved by
converting spatial signal into the frequency domain and only
transmitting those located in the lower part of the spectrum.
Other filtering operations such as interpolation (usually involved
in motion compensation for higher accuracy) and deblocking (to
reduce artifacts introduced by intra prediction) are all intensive
vector operations. Traditional scalar DSP can not supply enough
computing power for these operations while it is difficult for ASIC
to keep pace with the change of these algorithms. In order to utilize
the parallelism that exists in audio and video coding, application
profiling needs to be done and programmable hardware needs to
be designed to supply enough performance.

B. 3D Gaming and GUI

N-Gage from Nokia will not be the only mobile phone that sup-
ports 3D gaming and attractive 3D GUI. Compared to traditional
GPU which even consumes more power than CPU, 3D processor
for mobile applications should meet strict constraints in power and
cost. Thus how to accommodate 3D processing power into mobile
terminal is also a challenge.



C. Intelligent Computer Vision
Intelligent computer vision is emerging in areas such as au-

tomotive and surveillance. Applications such as driving-assistant
and anti-collision are playing important roles in next generation
automotive industry. The surveillance industry is driven by the
need of private and national security. Applications such as object
detection, pattern recognition and IP based video transmission are
evolving rapidly. Since most of these applications are hard real-
time, hardware with high performance is needed to processing
collected information in real-time. At the same time, since algo-
rithms are evolving continuously, ASIC with fixed functionality is
not flexible enough, which means programmability is important.
Thus the optimal trade-off among factors such as performance,
flexibility, cost and power consumption needs to be investigated.

III. A RCHITECTURE

MediaDSP explores and utilizes four kinds of parallelism that
exists in the above application domains such as instruction level
parallelism (ILP), data level parallelism (DLP), memory level
parallelism (MLP) and task level parallelism (TLP). As depicted
in Figure 2, MediaDSP is a multiprocessor SoC consisting of a
number of processor cores, memory banks and ASIC acceleratorsif
necessary. All cores are connected to a crossbar on-chip connection
network (OCN) which is controller by a controller. By configuring
the OCN, these cores can be organized into different combinations
targeted at different applications. Till now, two processors namely
Spock and Schubert have been designed for research.

Fig. 2: Architecture of MediaDSP

A. Spock: A Single-Issue DSP
As is shown in Fig.3, Spock is currently a scalar DSP processor

consisting of a16×16 MAC, an ALU and a32×16b register file.
It is responsible for the execution of tasks without high parallelism
that can be utilized by vector machine, such as audio coding and
entropy coding in video compression.

Since traditional scalar DSP processors are inefficient in entropy
coding which is mainly bit manipulation, instructions for bit stream
parsing will improve the entropy decoding performance by 3–7
times [1]. In order to provide fast processing capability of entropy
coding such as VLC and AC, an internal acceleration unit called
EnP [2], [3] is designed and integrated into the datapath of Spock
which enables the full coverage of basic inner-loop operations
used in entropy coding, which is flexible enough for various
existing entropy coding methods involved in heterogeneous video
compression standards (e.g. the instruction showzeros returns the

number of leading zeros before the first ’1’ in the bit stream within
one cycle, which is very suitable for searching binary codes of
various length with large number of leading zeros).

Besides the instruction extension targeted at entropy coding,
conditional execution is supported in Spock in order to reduce the
overhead brought by conditional branches (e.g. jump).

For low-end applications, one Spock core can act as the con-
troller of other cores and the crossbar OCN. It can issue transaction
commands to the DMA controller and initiate the tasks running
on Schubert. Furthermore, Spock can also be designed as a simple
version of superscalar to supply higher computing power for high-
end applications.

Fig. 3: Processor Cores of MediaDSP

B. Schubert: A Microcode based Processor
Schubert is the name of a two issue four-way SIMD architecture

based on microcode. The trade-off between flexibility and silicon
costs is explored by using microcode directly as the program. Since
high parallelism exists in signal processing such as multimedia
and baseband processing, both ILP and DLP need to be explored
in architecture design. Currently Schubert includes one four-way
SIMD datapath and one data shuffling unit (DSU). The DSU is a
single scalar unit which is responsible for branch, address genera-
tion, DMA preparation, data load/store and permutation. Both the
SIMD datapath and the DSU support conditional execution. The
separation of datapath and DSU enables the datapath to continue
data processing while the DSU is preparing the data for next round
of execution, such as load/store and permutation of data stored in
the register file. In case the SIMD datapath is the only one using
microcode, a good trade-off will be achieved.

Two working modes called Customized mode and SIMD mode
are currently supported in the SIMD datapath. In the Customized
mode, customized instructions are issued for irregular operations
optimized for specific operations. For example, the operation most
intensively used in motion estimation is sum of absolute different
(SAD), which can be realized by an instruction mapped to a tree-
based datapath.

The SIMD mode issues general SIMD instructions to the four-
way datapath. Subroutines such as deblocking involve a large
number of branches in inner-loop operations. General branch
execution such as JUMP is not efficient enough to achieve high
performance. In order to achieve DLP and reduce branch penalty,
conditional execution has been adopted by Schubert. Based on the
execution flag, the datapath decides whether it should write the
result back to the register file (to update the destination registers
with the new result) or just skip it. Although with conditional
execution, the cycle cost of certain subroutine is fix which is the



worst case, it is still more efficient compared with the traditional
branch execution because both extra cycles for JUMP are saved
and the data parallelism is exploited along the four-way datapath.

Schubert currently has 64 general-purpose registers, 64bit wide
each, which enables vector operations in different combination
such as four-way 16bit and two-way 32bit vector operations. In
order to load data stored in the off-chip memory, Schubert can
initiate DMA transaction directly.

C. On-chip Memory

Since MediaDSP is targeted at specific application domains,
current design does not include cache. However, the solution with
cache is under benchmarking. In current design, both Spock and
Schubert have their own local program memory. As for local data
storage, Spock has its own data memory and tap memory which
are both scratch-pad. As illustrated in Fig 2, a scratch-pad memory
based memory cluster called 2D memory (Mem0...Mem5) can be
connected to Schubert as its local storage. The connection can be
either fixed or dynamically configurable. In current design, each of
these memories contains four memory banks. The reason is that in
image and video processing, most of the data are two dimensional
which enables high MLP and in the latest video coding standards,
4x4 block is usually the basic data unit to be processed. By
having the 2D memory architecture, four 16bit pixel values can
be access simultaneously from the four memory banks thus the
four-way SIMD datapath can be fed without encountering memory
bottleneck. The DSU is responsible for the prefetch of data from
the external memory to the local storage before the data is needed
by the datapath, thus makes the data movement cycle implicit.

Generally there are two memory organization modes for
parallel architectures: shared memory and distributed memory.
For the sake of simplicity and efficiency, currently MediaDSP
employs a physically distributed and logically shared memory
organization with single program flow. Shared memory means
that, though each core has its own local storage, there is only
one addressing space. Thus the address of data stored in the local
storage needs to be explicitly mapped to the global address space.

D. On-chip Network (OCN)

Originally, OCN is a crossbar network connecting the processor
cores, on-chip memories and the DMA controller. Physically, data
bus and control bus are separated in order to make the design
simple. The OCN is configured during the initialization of the
platform by the central controller (e.g. a Spock processor). During
the configuration, one 2D memory is connected to a processing
core and the connection can be fixed during the run-time or be
reconnected to another core during the run-time under the control
of controller. Thus it enables two modes: processor cores with
dedicated local storage and those with dynamically connected local
storage.

According to different applications, the OCN can be configured
to enable different multiprocessor architectures. For example,
Fig. 4 illustrates the case that several processor cores are connected
in a chain. Other modes such as parallel and combinational modes
are similar while the cores are differently connected. In the chained
mode, if each core has its dedicated local storage, then data need to
be transfer from the current core to the next core via DMA or ping-
pong buffer, which will introduce a large amount of data swapping.
Instead, if a 2D memory can be dynamically reconnected to another
core when the current core finishes processing data stored in this
memory, data swapping can be avoided. To be noted is that the
dynamic reconnection might also bring extra overhead. It is still

under investigation which mode is more suitable for a certain
application.

Fig. 4: Vertical Connection

For high-end applications, a large number of cores need to be
connected. Therefore the OCN should be scalable. From our expe-
rience, single layer crossbar is only suitable for connecting small
number of cores. Multi-layer interconnection network-on-chip with
low latency and necessary scalability is under investigation by us.
Our research is focus on latency hiding and low cost rather than
flexibility.

E. DMA
The intelligent DMA with low silicon cost with our unique

adaptive rate control features is responsible for swapping data
between on-chip memories and the off-chip memory. It supports
both burst and sporadic read/write modes. In current design, both
Spock and Schubert can initiate DMA transactions to any global
address. In the parallel mode, the DMA is also responsible for
moving data from the local storage of one processor to that of
another processor. There are several parallel channels in the DMA
controller and DMA requests received will be added to one of
request queues with different priority. Thus the DMA controller
can provide QoS to tasks requiring low latency. Ways to expose
the memory access cost during the early design stage is another
focus of our research.

IV. TASK PARTITION AND SCHEDULING

In the early design, MediaDSP has a centralized architecture.
The controller dispatches control information which is called
control packet to each processor and initiates the task to be
executed on each processor by assigning starting address in the
local program memory of each processor.

Fig. 4 illustrates the tasks partition and data flow when mapping
H.264 decoding to the MediaDSP platform. The design consists of
six cores. Entropy decoding is mapped to one Spock processor and
vector operations such as transform, interpolation and deblocking
are mapped to three Schubert processors.

V. TOOLCHAIN

Since the number of processor cores and accelerators integrated
into MediaDSP can be large, the design and verification complexity
might increase rapidly. At the same time, how to program a mul-
tiprocessor SoC is another big challenge. Thus the design of both
simulator and compiler is prominently important in MediaDSP
design.



A. Simulator Framework

When designing the simulator for MediaDSP, several factors
need to be considered carefully. Since the design complexity of the
targeted architecture is increasing dramatically, it is a challenge to
maintain high simulation speed while exposing necessary details.
The second issue is simulator scalability. Since different design
solutions will contain various numbers of processor cores and
memory architectures, it is important that a legacy simulator can be
easily tailored or expanded for the new solution or to incorporate
components from other vendors in order to save investment and
time-to-market.

Two simulator frameworks have been proposed and designed by
us. The first framework is block based design using C++, in which
instructions can be mapped to different blocks. This simulator
framework supports modeling with different level of abstraction,
which makes it scalable from modeling single processor to the
whole MPSoC. Limited by the number of pages, only the second
one which is a SystemC based simulator framework will be
described in details as it follows.

Recently, both the academia and industry have realized the im-
portance of establishing a standard simulation library that supports
simulation with different level of abstraction. SystemC [4] is ba-
sically a C++ library for modeling and simulation from RTL level
to high abstractive level targeted at hardware/software codesign.
By adopting the latest methodology of HW/SW codesign such as
transaction level modeling (TLM) [4], a SystemC based simulator
framework with different level of abstraction is under development
targeted at MediaDSP and other MPSoC platform. The framework
consists of core simulator, communication simulator and MPSoC
simulator.

1) Core Simulator: Two versions of core simulators have
been designed both for Spock and Schubert. In the functional
simulator, different number of cycles will be assigned to each
instruction without considering too much detail such as pipeline
stall. In the performance simulator which is cycle accurate, RTL
level SystemC is used to expose the features of hardware design.
The functional simulator is roughly 2-3 times faster than the core
simulator.

2) Communication Simulator:During our development of
a high-performance embedded multi-core platform for multime-
dia, the behavior of independent core is rather deterministic and
relatively simple while the communication among different cores
and memory access pattern have become the most difficult and
performance dominant issues. In order to efficiently simulate the
communications behavior of multi-core platform, SystemC TLM
was adopted to enable the exchangeability of modules between
different levels of abstraction. For example, during the early design
stage, the communication simulator exposes the data movement
and memory access features. By using TLM modeling, commu-
nication can be separated from the behavior model of each core
which enables higher level abstraction. In the later development
stage, the RTL level modeling of OCN and DMA will expose the
behavior of communication with cycle-accuracy.

3) MPSoC Simulator:When the functional core simulator
is integrated with the communication simulator, an MPSoC sim-
ulator will be available for functional verification. And when the
performance core simulator is integrated with the communication
simulator with lower level abstraction, it will enable cycle-accurate
simulator of the whole MPSoC. Since the simulator is based on
SystemC and modular design, it is scalable and requires little
effort to accommodate components from other vendors that are
developed in SystemC.

B. Compiler
As the number of heterogeneous processors integrated into an

MPSoC increases, it has become a great challenge to design a good
compiler. In MediaDSP project, both instruction level compilers
and task compiler are under development. During the early stage,
tasks are manually partitioned and mapped to different processors
based on the knowledge of the programmer. Those tasks that
are not computationally intensive will be mapped to Spock and
compiled by a C compiler targeted with Spock. Intensive inner
subroutines such as entropy coding operations executed in Spock
and vector operations in Schubert will be manually written in
optimized assembly code and embedded in the C code. Finally
the compiler will cross compile the whole program.

During the second stage, though tasks will still be manually
partitioned. However, partitioned C code on each processor will be
compiled by Spock compiler and Schubert compiler into objects
and be linked by the linker of controller (e.g. Spock).

The ultimate goal of compiler design is to provide both task
compiler which automatically partitions tasks and processor com-
pilers that compile the partitioned tasks into executables. In order
to reach this goal, parallel programming model such as OpenMP
[5] and vectorization technologies are to be further investigated
and adopted.

VI. PERFORMANCE OFSIMPLE BENCHMARKING

Based on the cycle-accurate Spock and Schubert core simu-
lators, benchmarking of video (H.264 baseline) and audio (OGG
Vorbis) coding has been done. The video benchmarking is based on
several sequences with difference scenarios and result shows that
the combination of one Spock and Schubert can support real-time
H.264 decoding at CIF resolution (352×288, 30fps) together with
audio decoding (roughly 30MIPS) at 150 MHz working frequency.
By having more Spock and Schubert connected to the OCN,
decoding capacity of HDTV (1920x1080) can be expected. How-
ever, since the communication and MPSoC simulator is still under
development, the overall system performance will be benchmarked
later.

VII. C ONCLUSION

This paper presents a brief introduction of the ongoing Media-
DSP project initiated by us. MediaDSP platform is not just an
implementation but rather a way to expose problems in multi-
processor HW/SW codesign and provide us the opportunities to
tackle down those problems. Application based case study ensures
that our research is not only based on hypothesis but solid ground.
The design of MediaDSP is not fixed, instead it will keep evolving
driven by the knowledge accumulated by us.

MediaDSP project is supported by STRINGENT program from
SSF.

REFERENCES

[1] Berekovic, M.; Stolberg, H., Kulaczewski, M., Pirsch, P.; M?ller, H;
Runge, H.; Kneip, J.; Stabernack, B.,Instruction Set Extension for
MPEG-4 Video, Journal of VLSI Signal Processing, Volume 23,issu 1,
27-49(1999)

[2] Wu, D.; Hu, T.; Liu, D., A Single Issue DSP based Multi-standard
Media Processor for Mobile Platform, 8th Workshop of Parallel
Systems and Algorithms, ARCS 2006

[3] Flordal, O.; Wu, D.; Liu, D.,Accelerating CABAC Encoding for Multi-
standard Media with Configurability, IEEE Reconfigurable Architec-
tures Workshop 2006

[4] Website of SystemC Community (http://www.systemc.org/)
[5] Website of OpenMP API (http://www.openmp.org/)


