A Single-lIssue DSP-based
Multi-standard Media Processor for Mobile Platforms

Di Wu, *Tiejun Hu and Dake Liu
Department of Electrical Engineering
Link6ping University, SE-581 83, Liridping, Sweden
diwu@isy.liu.se, hutiejun@huawei.com, dake@isy.liu.se

Abstract: This paper presents the study of modifying a legacy single-issue DSP
processor to provide real-time processing capacity for emerging mudignagplica-
tions. The latest video compression standards such as H.264 andESMTH. re-
quire both high computing performance and flexibility which can not belayé&tgacy
single-issue DSPs. Feasibility of achieving both real-time performardtfexbility

for multi-standard video decoding with HW acceleration is studied and prove

1 Introduction

Single-issue DSPs are DSPs with one-way data path which have been ugddlin mobile handsets
for voice coding and other applications. Because of the emerging emmlofe multimedia, more
and more mobile handsets need to support performance demandiimgexia applications. Legacy
single-issue DSPs aimed at voice coding lack computing power for thpsdieations. For small
DSP vendors and handset developers using legacy single DSPsawilgdd way is to attach HW
accelerators for performance enhancement with acceptable castsdliition can not only shorten
the time-to-market but also lower the design cost.

H.264 (MPEG-4 part 10) [1] and VC-1(WMV-9) [4] are the latest nsiiram video compression
standards which provide higher compression ratio while also demanitjhgricomputational ca-
pacity. Although an ASIC design can meet the performance requitspielacks the flexibility for
heterogeneous video coding standards.

The remainder of the paper is organized as follows. In Sec.2, theithlgsrin H.264 and VC-1

are analyzed and compared. In Sec.3, the profiling and complexitysémaf H.264 and VC-1 are
presented. Sec.4 gives the details of the hardware implementatiorduiogassues are covered in
Sec.5 and Sec.6 presents the experimental results. Finally, Seclddemthe paper.

2 Algorithm Features and Comparison

2.1 Entropy Decoding

Advanced entropy coding such as VLC (variable length coding) caieaela high degree of ef-
ficiency in video coding. Although only simple VLC is used in VC-1, the usenoftiple small

*Tiejun Hu is now with Huawei Technologies.

code tables can also achieve high coding efficiency. In comparisotextadaptive variable length
coding has been adopted by H.264 (baseline profile) which is moreliwaneal.

2.2 Transform

As depicted in Fig.1, in H.264 and VC-1, x 4 block based Integer Transform (IT) which only
involves shift and addition without multiplication has been used instead ofadhéitmal Discrete
Cosine Transform (DCT) used in JPEG and MPEG-4. Furthermorariable block size transform
is introduced in H.264 and VC-1 because it has been disclosed thafotranaith larger block
size can also achieve better performance for cases such as a f@iextigre. According to this, a
traditional8 x 8 block can be subdivided in® x 4, 4 x 8 and4 x 4 blocks to suit the underlying
data. Details of the transform can be found in [4] and [7].

L1 L_1-1.2-64 interpolation @ @ @ @
. e HO®QOHH®
1 -1 -1 1 6-tap FIR: @@@@
122 PSRN |)@ 6 QOO
(a) 4x4 Inverse transform of H.264 Linear: -1 interpolation: @ H.264
17 17 17 17 p=(a+b+1-R)>1 @@
22 10 -10 -22 p=(9a+3b+c+3d+8-R)>>4 @) @2 @3) @|@ (o) (1) (o)
-tap FIR:
0 20| iy gt GEO00TE
p=(-4a+53b+18c-3d + 32 - r) >>
(b) 4x4 Tnverse transform of VC-1 (R,r are rounding control values) (b) VC-1

Figure 1: Integer Transform Figure 2: Interpolation Figure 3: Loop Filter

2.3 Interpolation

An interpolation operation is used to generate intermediate sub-pixel Jednetull-pixel values for
high accuracy motion compensation. Both in H.264 and VC-1, the maxianguracy is 1/4 pixel.

In H.264, reference blocks as small 4s< 4 are supported while the smallest blocks supported
in VC-1 are8 x 8 because it makes a compromise between motion compensation freedom a
complexity.

As shown in Fig.2, bi-linear and cubic FIR interpolation operations with integefficients (3, 4, 9,

5, 20, 18, 53) have been employed by H.264 and VC-1. The limited euoftinteger coefficients
makes it feasible to use shifts and adders instead of multipliers in orden&vage the results for
both standards.

2.4 Reducing Artifacts

Quantization in intra-coded blocks and residues in inter-coded blocksaerdiscontinuities along
block borders. Both H.264 and VC-1 employ a loopfilter alang 4 block borders to eliminate
these discontinuities. The difference is the length of the filter (the numbgixels updated after

the filtering operation) and the filtering frequency (e.g. rows filteredgatbe vertical border). The
loopfilter is mainly a multi-tap filter applied to pixels on the edgetof 4 blocks in the decoded
frames. In H.264, up to eight pixel values might be required in ordpetéorm a filtering operation
and up to six pixel values might be updated after this operation. In casgpaonly two pixel values
will be updated in VC-1.

As is shown in Fig.3 (a), according to H.264, the multi-tap filter is applied twér(columns) along
4 x 4 block borders. Pixels pairs including (P4,P5),(P3,P6) and (Pafe7)pdated depending on
the filtering strength. As for VC-1 which is depicted in Fig.3(b), the pixet (a&4,P5) in the third
row is filtered first, and its result determines whether the other three piied-those marked in
grey) should be filtered. Thus at most two pixels in each row (column)pwilipdated which is less
computationally intensive than that of H.264.

Other features such as the overlapped transform (VC-1) which is desitmp 4 transform applied
to 8 x 8 block borders in order to reduce artifacts caused by quantizatiorsénrtra-coding, can
be found in [1] and [4].

3 Profiling and Complexity Analysis

In this paper, the profiling was targeted on H.264 baseline decoding (Bivolk can be found
in [3]). The computational complexity (MIPS cost) of different sulinoes was studied based on
a software decoder developed on the ISA of a single scalar DSP. Sm&8/HS cost ratio varies
largely according to different video sequences and the type of fréifeframe), the profiling result
depicted in Fig.4 is just a rough estimation based on several video sexguerowever, it clearly
shows that filtering operations such as interpolation and deblocking an@dke computational
intensive subroutines both in H.264 and VC-1 decoding. Since VLOaptr length coding) is
bit level manipulation, general DSP instructions can not efficiently haihdEhus the MIPS cost
of VLC is also high. In order to achieve real-time decoding of a H.264o/islequence in QCIF
(176x144) resolution at 30fps (frames per second), more thakB@0ds required. Note that the
firmware can be further optimized with methods including interleaved mgstorage (Sec.4) and
faster VLC table searching which can improve the performance by upG#ol

The profiling of H.264 decoding covers VC-1. Actually from the conmaar in Sec. 2, it is obvious
that H.264 inner-loop operations have higher complexity than those ef.VC

V7 e /7
Complexity (MIPS) ratio of %\‘\va A N
H.2%4 baiéline d)ecoder RF Sl?)gsl; fs;tar &\{*\\\Q\& R\Q\\.\\\i\\s\&
(Average of several sequence, LGR] 1
CIF, 30fps) 1 ;
[CAVLC §
[JInverse Quantiza- Q _ Flexible
tion
M Inverse Transform 5 -
E Inva Preicion o] | [e
[Inter Prediction ID
(Interpolation)
Deblocking
[l Other
Interrupt
[t
call
. 2D Memory:
Bij| o oD Memony

Figure 4. Complexity Analysis

(a) System-on-chip Architecture

(b) 2D Memory

Figure 5: Processor Model

4 HW Implementation
4.1 Processor Model and Interface

As is shown in Fig.5(a), the single-issue DSP core consists &f & 16 MAC, an ALU and a
16 x 160 register file. Scalable ports are available for attaching external haedweaelerators. An
accelerator is an external computational unit that can be connected BiSfeore via interfaces.
All accelerators receive instructions from the DSP core through thi¢ @étte instruction bus.

There are two on-chip memory banks that be accessed simultanegusly DSP core and accel-
erators. Data can be transferred between the DSP core and the @torelé general registers.
Besides this, for a large amount of data such as pixel values, theipmeimory can be used as the
data buffer between the DSP core and the accelerator. The acca@atodirectly access on-chip
memory banks in parallel.

4.2 Design Consideration and 2D Memory

Since the pure software based solution can not provide real-time peniae, hardware acceleration
is required. Based on the analysis presented in Sec.3, instructiorseetdxzceleration is proposed.
First, new instructions are designed and the behavior models of the i@toedeare implemented in
C and embedded into the scalable cycle-accurate instruction set simi&8dria the API.

For video coding which mainly consists of pixel based operations, thebauof pixels that can
be accessed in one cycle determines the computing parallelism that cahiéeed, thus in order
to exploit the parallelism exists in pixel level manipulation, a method called 2Bang has been
proposed for parallel memory access which improves the perfarenianpixel level operations by
adding a small AGU (address generator unit). Pixel data in the fram&t@ed in both MemO and
Meml in an interleaved way, which means adjacent pixel data are stotiffieirent memories as
shown in Fig.5(b). Two pixel data can be simultaneously accessatidreerite) either vertically or
horizontally. Thus the existing memory of the legacy DSP can be fully utilized.

Because the silicon cost of the DSP core and the logic part of the adoelsranuch smaller than
that of the memory banks, memory cost is still a major issue in our dei$idn@ number of memory
banks can be increased to four, which means four pixel data carcbsesatl simultaneously in one
cycle, the bottleneck between the memory and the Flexible Filter will be elimirjatese four-
way parallel data path is used). However, this requires further redesithe single-issue DSP.
Thus in order to make a compromise between design cost and penfcgrimaprovement, we used
the legacy memory architecture without extending it.

4.3 VLC Co-processor as an Accelerator

Since the single-issue DSP is inefficient in entropy decoding which is mainlpndnipulation,

instructions for bitstream parsing will improve the entropy decoding pedace by 3—7 times [6].
By extending the bit manipulation instruction acceleration proposed bgujgccelerator (VLC Co-
processor) was designed to accelerate the entropy decoding. Asvis shdable 1, the instruction
extension provided by VLC Co-processor covers basic and innerdperations in the entropy

coding, which is flexible enough for multiple standards (e.g. the instrustimwzeros returns the
number of leading zeros before the first "1’ in the bitstream within onéegyehich is very suitable
for searching binary codes of various length with large number of |gazénos).

Instructions Functionality
bitreadreset Initialize the VLC accelerator
showbits Rs/imm, Rt| Load bits (number stored in Rs) from bitstream to generakteg(Rt), without
changing the position of current bit.
getbits Rs/imm, Rt | Load bits (number stored in Rs) from bitstream to generakteg(Rt), and change
the current bit position.
flushbits Rs Change the current bit position
showzeros Rs, imm | Count the number of leading zeros before first 1 in the bitetre® larger than the|
immediate value (imm)
packbits Rs Pack code variable length code word into 16bit registers.

Note: imm—-immediate value, Rs—source register, Rt—destmegigister

Table 1: VLC Instruction Set

v
decoded Variable length coming
bits code word to fetch bits
00[100100100001 GREG ! '
[101100] 1001001000 | ‘
decoding bit pointer bit pointer encoding| |
‘ (after showbits) (after getbits) Code|word n Code word n+1 - |
\ [1001001000 |GREG|| 2 [101100] 1001001000 | 3 _Barrel | Shiffer \
packed 16 bits to be packed coming| ‘- = e
(a) showbits &getbits bits . bits GREG GREG
(b) packbits
Figure 6: VLC Stream Flow Figure 7: VLC Processor

Fig.6 gives a description of VLC stream flow. The block diagram of VL@dessor is shown in
Fig.7. As the VLC sample code depicted in Fig.8 shows, the pointer oéwuhbit in the stream is
not updated until the matched codeword is found in the table, which hagffiglency for matching
codeword with variable length.

LZHdz:(;Oi] Filtering Features

;load bits (num=gr0) Subroutine H.264 VC-1

sfrom stream to grl Numof | Tap | Numof Tap
showbits gr0,grl taps Coeffs taps Coeffs
;look for matched entry, Integer Trans(4x4) 4 1,2 4 10,17,22

; if matches set flag=1 Integer Trans(8x8) 4 N/A 4 12,16,15,9,4,6
Ikup tab(gr0),gr! Interpolation 2,6 1,5,20 2,4 1,2,3,6,9,18,53
if azqtjug?f ‘Pffie“lo t Loop Filter 45 123 4 2,5
supdate bit pointer to stream

flushbits gr0 Overlapped Trans N/A 4 1,7

Figure 8: VLC Sample Code Table 2: FIR Filtering in Subroutines

4.4 Flexible Filter as an Accelerator

An accelerator called the Flexible Filter has been designed for multi-tap F&Rrfg operations.

Since according to the media processing, many subroutines compriER diltering operations,

high parallelism exists and can be utilized for acceleration. The interpolatibi2®4 and VC-1

consists of half-sample and quarter-sample operations, which aréymaitti-tap filtering opera-

tions (up to 6 taps). Also integer transforms such as4 integer transforms angl x 8 transforms

comprise of 4-tap filtering operations. Subroutines that consist of fifejperations with different
number of taps are shown in table 2. Both 6-tap and 4-tap filtering opeiatrnctions have been
adopted by the instruction extension.

The data path of the Flexible Filter depicted in Fig.9 has four pipeline stagms$stiog of config-
urable filter taps and an arithmetic logic unit (ALU). During implementation ef ¢bnfigurable
filter taps, different solutions have been compared. In the latest viodiog standards, in order
to reduce the computational complexity, multiplications with small constarificieats have been
widely adopted. Thus multiplications in most subroutines except the inegraetization can be
realized as a network of shifts, adders and subtractors which is caltéidwable tap unit (CTU)
here. Instead of using four 16bit multipliers, we used four CTUs as fédtges. Compared with a
16bit multiplier, the gate count of a configurable tap unit is only half whidiiees both flexibility
and silicon efficiency. As depicted in Fig.9, there are six taps, the patireected to IR0 and IR5
can be seen as taps with coefficient ’1’. Paths connected to IR1—-4RZTays that can be configured
by instructions. Each of these four taps consists of components stdichragifts, three adders (or
subtractors). Within each CTU, the input value is left shifted with diffestifting depth and then
added to realize the multiplication by constant coefficients.

Two working modes called Customized mode and SIMD mode are supdartee Flexible Filter.
In the Customized mode, customized instructions are issued for irrezpeaations which are opti-
mized for specific applications such as H.264. And the SIMD mode igmresral SIMD instructions
to the four-way data path. It has higher flexibility for various standaiitis kmwer performance. The
instruction extension for the Flexible Filter is shown in Table 3.

4.4.1 Local Storage

Since only two data in the memory can be accessed simultaneously, teenperte bottleneck
exists between the Flexible Filter and the memory. For high performangsdfiaient local storage

is necessary to avoid the bottleneck of data exchange between the FlakéeRd the memory.

In our design, a register file with x 9 16bit registers (LR) is adopted. Besides the LR, there
are six 16bit input registers (IR). With the local register file, for subimas such as bi-directional
interpolation, intermediate values can be stored locally without data swabpgingen the memory
and the Flexible Filter. The IRs are connected in a line, thus input data opagate from the left

to the right while a new value is loaded into the left-most IR thus to minimize dataferabetween
the accelerator and the memory.

4.4.2 Conditional Execution

Subroutines such as deblocking involve a large number of branchesinlivop operations. General
branch execution such as JUMP is not efficient enough to achieve kigbrmance. In order to
achieve data level parallelism and reduce branch penalty, conditioealtton has been applied to

the Flexible Filter. Based on the execution flag, the data path decides witetheuld write the
result back to the register file (to update the destination registers with thessew) or just skip it.
Although with conditional execution, the cycle cost of certain subroutineig/ffiich is the worst
case, it is still more efficient compared with the traditional branch exeatdterause both extra
cycles for JUMP are saved and the data parallelism is exploited along tlag data path.

P NN D
Instructions Functionality
TAP6 6-tap filtering operation
TAP4 4-tap filtering operation
PADD 4 way addition per cycle
PSUB 4-way subtraction per cycle
CMPXX CE (conditional execution)
FPOP CE stack pop
Coeff Register FPUSH CE flag stack push
(a) Configurable Tap Unit FCLR CE flag stack clear
(CTU) ALU
(b) Flexible Filter
Figure 9: Flexible Filter and CTU Table 3: Instructions of the Flexible Filter

4.4.3 Algorithm Mapping

A piece of assembly code (depicted in Fig.10) for H.264 half-pel imtetjon is shown in order to
explain how the instruction TAP6 (mode0Q) works. As it can be seen frend#ia flow depicted
in Fig.11, six full-pel values (a0...a5) are loaded to the IRs in the firgetleycles (two values in
each cycle from the 2D memory) and then issued along the data path dégileléFilter, receiving
6-tap filtering, scaling and rounding operations in three pipeline stages. g&herated half-pel
value (b0) is stored in the LRs as the output. The taps (CTU) have bediguwed to generate
multiplication coefficients (multipliers such as -5 and 20) for filtering openatfeor example, as it
has been depicted in Fig.11, when counting from the left, the first anthlasthave coefficient '1'.
The second tap has the coefficient '5’ which is generated by configytiia shift s2 to left shift 2
bits and s3 to be bypassedl X a = a << 2 + a) while the left-half part of the tap (including sO
and s1) is disabled.

The ALU is used to perform scaling and rounding operations. Since therdéne IRs can propagate
to the right, in the coming three cycles, three new pixel values (a6..aa8pe shifted into the IRs
to generate three new half-pel values (b1...b3). The advantagaapcbpagation in the IRs is that
five out of six old full-pel values can be reused in the calculation of nalttgel value without being
reloaded. Thus only one new full-pel value needs to be loaded evels. ¢yor example, in order to
generate b1, only a6 needs to be loaded, while a5...al just need tited &hthe neighboring IR
on the right.

;Mutiple modes are defined for tap6 instruction.
;For exampe, mode(0) is one directionaly half-pel
sinterpolation in H.264.

;Firmware code of interpolation

;load coordinates (x,y) of up-left corner
Idpos grd,gr5

;load 6 pixel values in a row to IR

sfirst operand (0:horizontally; 1:vertically)
1d2ir 0,4

1d2ir 0,2

1d2ir 0,0 ¥ |

;1r[0][0] =((a-5b+20c+20d-5e+f)+16)>>5 Labit

sir[i]=ir[i-1], ir[0]=new pixel value k\ Coeff Register

sinstruction of 3 pipeline stages \abit

(ap6 H{0][0], mode(0) Wk bl b o] e

tap6 Ir[0][1], mode(0)@ @ ¢ 32t LACC] :; ALU

tap6 Ir[0][2], mode(0) ? [Sbit |]

tap6 Ir{0][3], mode(0). halfpelvalue full-pel value b0
Figure 10: Sample Code Figure 11: Data Flow of TAP6 (mode 0)

5 Scheduling

In our solution, the DSP core works as the task manager. It issuesdexrténstructions to the
accelerator in the same way as it issues core instructions. Thus the gataddacy problem is
avoided. Since tasks are executed sequentially, the implementation is amieh @mpared with
multi-core solutions. Scheduling of the accelerated solution is depicted ibh2Fig.

CDSP Init PERI Interp deblocking
ore] | i " 1] T

MA O .
ve|

FF | |

Time

1. Init (Initialization); ED (Entropy Decoding); Deq (inverse quantization);
IIT (inverse integer transform); Interp (Interpolation); A/V (Audio/Voice)
2. M/A (MAC/ALU of the DSP core); VLC (VLC Co-processor); FF(Flexible Filter)

Figure 12: Scheduling of the DSP Core and Accelerators

6 Experimental Results

Based on the cycle-accurate simulator, the performance improvesshigved by the hardware
acceleration was evaluated. Since the complexity of H.264 baseline frafiléo mention main
profile) is higher than VC-1 (1.5 times or so), the benchmarking was petjormed based on
H.264 decoder. However, all intensive inner-loop operations in \@gebding have been covered by
the instruction acceleration (actually they are similar while simpler compaitedthwose of H.264)
which means VC-1 real-time decoding with even higher resolution cangposted as well.

Five video sequences with different scenarios have been coded2ty lHaseline profile encoder
in CIF (352x288) resolution at the frame rate of 30fps. They are asetdst sequences for the
benchmarking. As shown in Fig.13, sequences with difference sosrexert different computa-
tional requirements on the decoder. For example, the sequence Adgythida lowest computational
complexity because its scenario is a news reporter sitting in front of thereawithout dramatic
movement which means the number of residues coded in entropy csdémall and in motion
compensation, a lot of blocks can be simply copied without interpolatiorus Thhas the lowest
MIPS costs both in VLC decoding and vector processing among fivedgaeaces. While the se-
quence Coastguard has the highest computational complexity becasserigsio is a boat sailing
along the river with relatively high motion. For all these test sequeneattime H.264 decoding
performance of CIF resolution (35288, 30fps) together with audio decoding (roughly 30MIPS)
can be achieved at 150 MHz working clock frequency with hardwagelaration proposed by us.
Even compared with the optimized software implementation mentioned in,3ke.Berformance
with hardware acceleration is more than eight times higher.

MIPS Cost (H.264 Baseline)

Applications Standards
B Loopfilter Voice AMR, G.723, G.729
[éetstrength MPEG Layer-3 (MP3),
W 1nterpolation Audio MPEG AAC (Advanced
Drres Audio Coding), OGG
Eg::::;*:g:zr Image JPEG, JPEG2000
B Video Motion JPEG, MPEGA4,

H.264, VC-1

Forman Akiyo Coast News Car-
guard phone

Figure 13: Total MIPS Cost of H.264 Baseline Decoding Table 4: Application Coverage

7 Conclusion

Because of the parallel data path (though without multipliers), the Flexibler ity well ex-
ploits the parallelism in filtering based operations. Its estimated gate countmor®than 30K
gates. When synthesized with UMZ18um process the silicon cost of the accelerators is less
than0.5mm?. It provides enough flexibility for the latest standards such as H.284/&k1 with
small silicon area (compared to 4-way SIMD with x 16 multipliers which has been elaborated
in Sec 4.4). At the same time, since general multiplication is avoided, looyeepconsumption is
achieved which is more important for mobile applications with limited batteraciyp

In this paper, a programmable solution has been proposed for memtiasging. The program-
mable single-issue DSP processor works as the task manager amsddss intensive tasks. The
low-cost and configurable accelerators perform computational intetasks with high parallelism.
Real-time decoding performance can be achieved at resolution whigghighough for all mobile
terminals. The memory of the legacy DSP is fully utilized with parallelism. It In@sn proven
that the solution of a single-issue DSP processor plus low-cost adoeteiia media processing is

not only practical but also advantageous in time-to-market and silicen déW reusability has
also been explored and it has been proven that configurable atosaran accommodate different
computing tasks with similar computing and data access patterns.

As it is depicted in Table 4, since the single-issue DSP was originally desfgnedice coding,
most of the voice coding standards are already supported. With the ®¢&lesator, it well supports
the current audio coding standards such as MP3 and OGG. Besideteli&ideo coding standards
such as H.264 and VC-1 which have the highest computational complettigr legacy image and
video coding standards such as MPEG4 and JPEG are supported aenvbelinoticed is that though
the JPEG2000 coding is supported, it is not in real-time, because it isadignesed for compressing
stillimages captured by the camera which can take several secongswith the low-cost hardware
acceleration, the legacy single-issue DSP platform covers most of tserdasétimeida applications
for mobile terminals.

8 Future Work

Since the Flexible Filter also supports 4-way SAD (sum of absolute diffejevperations, a video
(e.g. H.264) encoder can be implemented together with the decodér efmbles video conference
at lower resolution (e.g. QCIF). This part will be included in our futuiky

References

[1] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEGYT-G050,Draft ITU-T Rec-
ommendation and Final Draft International Standard of Joint Video 8jpation (ITU-T Rec.
H.264 ISO/IEC 14496-10 AVCMarch 2003.

[2] Ostermann, J.; Bormans, J.; List, P.; Marpe, D.; Narroschke Pereira, F.; Stockhammer,
T.; Wedi, T.,Video coding with H.264/AVC: tools, performance, and complegitscuits and
Systems Magazine, IEEE, Volume: 4, Issue: 1, First Quarter 2004

[3] Horowitz, M.; Joch, A.; Kossentini, F.; Hallapuro, Ad.264/AVC baseline profile decoder com-
plexity analysis Circuits and Systems for Video Technology, IEEE Transactions olunvé:
13, Issue: 7, July 2003

[4] Sridhar Srinivasan, Pohsiang (John) Hsu, TomHolcom b, Kihakerjee, Windows Media
Video 9: Overview and ApplicationSignal Processing: Image Communication, ELSEVIER,
2004

[5] Karsten Sihring.H.264/AVC Software Coordinatigihttp://iphome.hhi.de/suehring/tml/)

[6] Berekovic, M.; Stolberg, H., Kulaczewski, M., Pirsch, P.olNér, H; Runge, H.; Kneip, J.;
Stabernack, Blnstruction Set Extension for MPEG-4 Video, Journal of VLSI Signat@ssing,
Volume 23,issu 1, 27-49(1999)

[7] Malvar, H.S.; Hallapuro, A.; Karczewicz, M.; Kerofsky, LLow-complexity transform and
guantization in H.264/AVXCircuits and Systems for Video Technology, IEEE Transactions on,
Volume: 13, Issue: 7, July 2003

