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Abstract: This paper presents the study of modifying a legacy single-issue DSP
processor to provide real-time processing capacity for emerging multimedia applica-
tions. The latest video compression standards such as H.264 and SMTPE VC-1 re-
quire both high computing performance and flexibility which can not be metby legacy
single-issue DSPs. Feasibility of achieving both real-time performance and flexibility
for multi-standard video decoding with HW acceleration is studied and proven.

1 Introduction

Single-issue DSPs are DSPs with one-way data path which have been widelyused in mobile handsets
for voice coding and other applications. Because of the emerging era ofmobile multimedia, more
and more mobile handsets need to support performance demanding multimedia applications. Legacy
single-issue DSPs aimed at voice coding lack computing power for these applications. For small
DSP vendors and handset developers using legacy single DSPs, one feasible way is to attach HW
accelerators for performance enhancement with acceptable cost. This solution can not only shorten
the time-to-market but also lower the design cost.

H.264 (MPEG-4 part 10) [1] and VC-1(WMV-9) [4] are the latest mainstream video compression
standards which provide higher compression ratio while also demanding higher computational ca-
pacity. Although an ASIC design can meet the performance requirements, it lacks the flexibility for
heterogeneous video coding standards.

The remainder of the paper is organized as follows. In Sec.2, the algorithms in H.264 and VC-1
are analyzed and compared. In Sec.3, the profiling and complexity analysis of H.264 and VC-1 are
presented. Sec.4 gives the details of the hardware implementation. Scheduling issues are covered in
Sec.5 and Sec.6 presents the experimental results. Finally, Sec.7 concludes the paper.

2 Algorithm Features and Comparison

2.1 Entropy Decoding

Advanced entropy coding such as VLC (variable length coding) can achieve a high degree of ef-
ficiency in video coding. Although only simple VLC is used in VC-1, the use ofmultiple small
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code tables can also achieve high coding efficiency. In comparison, context adaptive variable length
coding has been adopted by H.264 (baseline profile) which is more complicated.

2.2 Transform

As depicted in Fig.1, in H.264 and VC-1,4 × 4 block based Integer Transform (IT) which only
involves shift and addition without multiplication has been used instead of the traditional Discrete
Cosine Transform (DCT) used in JPEG and MPEG-4. Furthermore, a variable block size transform
is introduced in H.264 and VC-1 because it has been disclosed that transform with larger block
size can also achieve better performance for cases such as a periodical texture. According to this, a
traditional8× 8 block can be subdivided into8× 4, 4× 8 and4× 4 blocks to suit the underlying
data. Details of the transform can be found in [4] and [7].

Figure 1: Integer Transform Figure 2: Interpolation Figure 3: Loop Filter

2.3 Interpolation

An interpolation operation is used to generate intermediate sub-pixel valuesfrom full-pixel values for
high accuracy motion compensation. Both in H.264 and VC-1, the maximumaccuracy is 1/4 pixel.
In H.264, reference blocks as small as4 × 4 are supported while the smallest blocks supported
in VC-1 are8 × 8 because it makes a compromise between motion compensation freedom and
complexity.

As shown in Fig.2, bi-linear and cubic FIR interpolation operations with integer coefficients (3, 4, 9,
5, 20, 18, 53) have been employed by H.264 and VC-1. The limited number of integer coefficients
makes it feasible to use shifts and adders instead of multipliers in order to generate the results for
both standards.

2.4 Reducing Artifacts

Quantization in intra-coded blocks and residues in inter-coded blocks generate discontinuities along
block borders. Both H.264 and VC-1 employ a loopfilter along4 × 4 block borders to eliminate
these discontinuities. The difference is the length of the filter (the number ofpixels updated after



the filtering operation) and the filtering frequency (e.g. rows filtered along the vertical border). The
loopfilter is mainly a multi-tap filter applied to pixels on the edge of4 × 4 blocks in the decoded
frames. In H.264, up to eight pixel values might be required in order toperform a filtering operation
and up to six pixel values might be updated after this operation. In comparison, only two pixel values
will be updated in VC-1.

As is shown in Fig.3 (a), according to H.264, the multi-tap filter is applied to 4 rows (columns) along
4 × 4 block borders. Pixels pairs including (P4,P5),(P3,P6) and (P2,P7)are updated depending on
the filtering strength. As for VC-1 which is depicted in Fig.3(b), the pixel pair (P4,P5) in the third
row is filtered first, and its result determines whether the other three pixel-pairs (those marked in
grey) should be filtered. Thus at most two pixels in each row (column) willbe updated which is less
computationally intensive than that of H.264.

Other features such as the overlapped transform (VC-1) which is a simple 4 × 4 transform applied
to 8× 8 block borders in order to reduce artifacts caused by quantization errors in intra-coding, can
be found in [1] and [4].

3 Profiling and Complexity Analysis

In this paper, the profiling was targeted on H.264 baseline decoding (Similar work can be found
in [3]). The computational complexity (MIPS cost) of different subroutines was studied based on
a software decoder developed on the ISA of a single scalar DSP. Since the MIPS cost ratio varies
largely according to different video sequences and the type of frames(I, P frame), the profiling result
depicted in Fig.4 is just a rough estimation based on several video sequences. However, it clearly
shows that filtering operations such as interpolation and deblocking are themost computational
intensive subroutines both in H.264 and VC-1 decoding. Since VLC (variable length coding) is
bit level manipulation, general DSP instructions can not efficiently handleit. Thus the MIPS cost
of VLC is also high. In order to achieve real-time decoding of a H.264 video sequence in QCIF
(176x144) resolution at 30fps (frames per second), more than 600MHz is required. Note that the
firmware can be further optimized with methods including interleaved memory storage (Sec.4) and
faster VLC table searching which can improve the performance by up to 100%.

The profiling of H.264 decoding covers VC-1. Actually from the comparison in Sec. 2, it is obvious
that H.264 inner-loop operations have higher complexity than those of VC-1.

Figure 4: Complexity Analysis Figure 5: Processor Model



4 HW Implementation

4.1 Processor Model and Interface

As is shown in Fig.5(a), the single-issue DSP core consists of a16 × 16 MAC, an ALU and a
16 × 16b register file. Scalable ports are available for attaching external hardware accelerators. An
accelerator is an external computational unit that can be connected to theDSP core via interfaces.
All accelerators receive instructions from the DSP core through the 24bit wide instruction bus.

There are two on-chip memory banks that be accessed simultaneously by the DSP core and accel-
erators. Data can be transferred between the DSP core and the accelerator via general registers.
Besides this, for a large amount of data such as pixel values, the on-chip memory can be used as the
data buffer between the DSP core and the accelerator. The accelerators can directly access on-chip
memory banks in parallel.

4.2 Design Consideration and 2D Memory

Since the pure software based solution can not provide real-time performance, hardware acceleration
is required. Based on the analysis presented in Sec.3, instruction set based acceleration is proposed.
First, new instructions are designed and the behavior models of the accelerators are implemented in
C and embedded into the scalable cycle-accurate instruction set simulator (ISS) via the API.

For video coding which mainly consists of pixel based operations, the number of pixels that can
be accessed in one cycle determines the computing parallelism that can be achieved, thus in order
to exploit the parallelism exists in pixel level manipulation, a method called 2D memory has been
proposed for parallel memory access which improves the performance in pixel level operations by
adding a small AGU (address generator unit). Pixel data in the frame arestored in both Mem0 and
Mem1 in an interleaved way, which means adjacent pixel data are stored indifferent memories as
shown in Fig.5(b). Two pixel data can be simultaneously accessed (read or write) either vertically or
horizontally. Thus the existing memory of the legacy DSP can be fully utilized.

Because the silicon cost of the DSP core and the logic part of the accelerator is much smaller than
that of the memory banks, memory cost is still a major issue in our design.If the number of memory
banks can be increased to four, which means four pixel data can be accessed simultaneously in one
cycle, the bottleneck between the memory and the Flexible Filter will be eliminated(in case four-
way parallel data path is used). However, this requires further redesign of the single-issue DSP.
Thus in order to make a compromise between design cost and performance improvement, we used
the legacy memory architecture without extending it.

4.3 VLC Co-processor as an Accelerator

Since the single-issue DSP is inefficient in entropy decoding which is mainly bit manipulation,
instructions for bitstream parsing will improve the entropy decoding performance by 3–7 times [6].
By extending the bit manipulation instruction acceleration proposed by [6],an accelerator (VLC Co-
processor) was designed to accelerate the entropy decoding. As is shown in Table 1, the instruction
extension provided by VLC Co-processor covers basic and inner-loop operations in the entropy



coding, which is flexible enough for multiple standards (e.g. the instructionshowzeros returns the
number of leading zeros before the first ’1’ in the bitstream within one cycle, which is very suitable
for searching binary codes of various length with large number of leading zeros).

Instructions Functionality
bitreadreset Initialize the VLC accelerator
showbits Rs/imm, Rt Load bits (number stored in Rs) from bitstream to general register (Rt), without

changing the position of current bit.
getbits Rs/imm, Rt Load bits (number stored in Rs) from bitstream to general register (Rt), and change

the current bit position.
flushbits Rs Change the current bit position
showzeros Rs, imm Count the number of leading zeros before first 1 in the bitstream, no larger than the

immediate value (imm)
packbits Rs Pack code variable length code word into 16bit registers.

Note: imm–immediate value, Rs–source register, Rt–destination register

Table 1: VLC Instruction Set

Figure 6: VLC Stream Flow Figure 7: VLC Processor

Fig.6 gives a description of VLC stream flow. The block diagram of VLC Processor is shown in
Fig.7. As the VLC sample code depicted in Fig.8 shows, the pointer of current bit in the stream is
not updated until the matched codeword is found in the table, which has highefficiency for matching
codeword with variable length.

Figure 8: VLC Sample Code

Filtering Features
Subroutine H.264 VC-1

Num of Tap Num of Tap
taps Coeffs taps Coeffs

Integer Trans(4x4) 4 1,2 4 10,17,22
Integer Trans(8x8) 4 N/A 4 12,16,15,9,4,6

Interpolation 2,6 1,5,20 2,4 1,2,3,6,9,18,53

Loop Filter 4,5 1,2,3 4 2,5
Overlapped Trans N/A 4 1,7

Table 2: FIR Filtering in Subroutines



4.4 Flexible Filter as an Accelerator

An accelerator called the Flexible Filter has been designed for multi-tap FIR filtering operations.
Since according to the media processing, many subroutines comprise ofFIR filtering operations,
high parallelism exists and can be utilized for acceleration. The interpolation inH.264 and VC-1
consists of half-sample and quarter-sample operations, which are mainly multi-tap filtering opera-
tions (up to 6 taps). Also integer transforms such as4 × 4 integer transforms and8 × 8 transforms
comprise of 4-tap filtering operations. Subroutines that consist of filtering operations with different
number of taps are shown in table 2. Both 6-tap and 4-tap filtering operationinstructions have been
adopted by the instruction extension.

The data path of the Flexible Filter depicted in Fig.9 has four pipeline stages consisting of config-
urable filter taps and an arithmetic logic unit (ALU). During implementation of the configurable
filter taps, different solutions have been compared. In the latest video coding standards, in order
to reduce the computational complexity, multiplications with small constant coefficients have been
widely adopted. Thus multiplications in most subroutines except the inversequantization can be
realized as a network of shifts, adders and subtractors which is called configurable tap unit (CTU)
here. Instead of using four 16bit multipliers, we used four CTUs as filtertaps. Compared with a
16bit multiplier, the gate count of a configurable tap unit is only half which achieves both flexibility
and silicon efficiency. As depicted in Fig.9, there are six taps, the paths connected to IR0 and IR5
can be seen as taps with coefficient ’1’. Paths connected to IR1–IR4 are CTUs that can be configured
by instructions. Each of these four taps consists of components such asfour shifts, three adders (or
subtractors). Within each CTU, the input value is left shifted with differentshifting depth and then
added to realize the multiplication by constant coefficients.

Two working modes called Customized mode and SIMD mode are supported in the Flexible Filter.
In the Customized mode, customized instructions are issued for irregularoperations which are opti-
mized for specific applications such as H.264. And the SIMD mode issuesgeneral SIMD instructions
to the four-way data path. It has higher flexibility for various standards with lower performance. The
instruction extension for the Flexible Filter is shown in Table 3.

4.4.1 Local Storage

Since only two data in the memory can be accessed simultaneously, the performance bottleneck
exists between the Flexible Filter and the memory. For high performance, an efficient local storage
is necessary to avoid the bottleneck of data exchange between the Flexible Filter and the memory.
In our design, a register file with4 × 9 16bit registers (LR) is adopted. Besides the LR, there
are six 16bit input registers (IR). With the local register file, for subroutines such as bi-directional
interpolation, intermediate values can be stored locally without data swappingbetween the memory
and the Flexible Filter. The IRs are connected in a line, thus input data can propagate from the left
to the right while a new value is loaded into the left-most IR thus to minimize data transfer between
the accelerator and the memory.

4.4.2 Conditional Execution

Subroutines such as deblocking involve a large number of branches in inner-loop operations. General
branch execution such as JUMP is not efficient enough to achieve high performance. In order to
achieve data level parallelism and reduce branch penalty, conditional execution has been applied to



the Flexible Filter. Based on the execution flag, the data path decides whetherit should write the
result back to the register file (to update the destination registers with the new result) or just skip it.
Although with conditional execution, the cycle cost of certain subroutine is fix which is the worst
case, it is still more efficient compared with the traditional branch execution because both extra
cycles for JUMP are saved and the data parallelism is exploited along the 4-way data path.

Figure 9: Flexible Filter and CTU

Instructions Functionality
TAP6 6-tap filtering operation
TAP4 4-tap filtering operation
PADD 4 way addition per cycle
PSUB 4-way subtraction per cycle
CMPXX CE (conditional execution)
FPOP CE stack pop
FPUSH CE flag stack push
FCLR CE flag stack clear

Table 3: Instructions of the Flexible Filter

4.4.3 Algorithm Mapping

A piece of assembly code (depicted in Fig.10) for H.264 half-pel interpolation is shown in order to
explain how the instruction TAP6 (mode0) works. As it can be seen from the data flow depicted
in Fig.11, six full-pel values (a0...a5) are loaded to the IRs in the first three cycles (two values in
each cycle from the 2D memory) and then issued along the data path of the Flexible Filter, receiving
6-tap filtering, scaling and rounding operations in three pipeline stages. The generated half-pel
value (b0) is stored in the LRs as the output. The taps (CTU) have been configured to generate
multiplication coefficients (multipliers such as -5 and 20) for filtering operation. For example, as it
has been depicted in Fig.11, when counting from the left, the first and lasttaps have coefficient ’1’.
The second tap has the coefficient ’5’ which is generated by configuring the shift s2 to left shift 2
bits and s3 to be bypassed (5 × a = a << 2 + a) while the left-half part of the tap (including s0
and s1) is disabled.

The ALU is used to perform scaling and rounding operations. Since the data in the IRs can propagate
to the right, in the coming three cycles, three new pixel values (a6...a8) can be shifted into the IRs
to generate three new half-pel values (b1...b3). The advantage of data propagation in the IRs is that
five out of six old full-pel values can be reused in the calculation of next half-pel value without being
reloaded. Thus only one new full-pel value needs to be loaded every cycle. For example, in order to
generate b1, only a6 needs to be loaded, while a5...a1 just need to be shifted to the neighboring IR
on the right.



Figure 10: Sample Code Figure 11: Data Flow of TAP6 (mode 0)

5 Scheduling

In our solution, the DSP core works as the task manager. It issues extended instructions to the
accelerator in the same way as it issues core instructions. Thus the data dependency problem is
avoided. Since tasks are executed sequentially, the implementation is much easier compared with
multi-core solutions. Scheduling of the accelerated solution is depicted in Fig.12.

Figure 12: Scheduling of the DSP Core and Accelerators

6 Experimental Results

Based on the cycle-accurate simulator, the performance improvementachieved by the hardware
acceleration was evaluated. Since the complexity of H.264 baseline profile(not to mention main
profile) is higher than VC-1 (1.5 times or so), the benchmarking was onlyperformed based on
H.264 decoder. However, all intensive inner-loop operations in VC-1decoding have been covered by
the instruction acceleration (actually they are similar while simpler compared with those of H.264)
which means VC-1 real-time decoding with even higher resolution can be supported as well.



Five video sequences with different scenarios have been coded by H.264 baseline profile encoder
in CIF (352x288) resolution at the frame rate of 30fps. They are usedas test sequences for the
benchmarking. As shown in Fig.13, sequences with difference scenarios exert different computa-
tional requirements on the decoder. For example, the sequence Akiyo has the lowest computational
complexity because its scenario is a news reporter sitting in front of the camera without dramatic
movement which means the number of residues coded in entropy codingis small and in motion
compensation, a lot of blocks can be simply copied without interpolation. Thus it has the lowest
MIPS costs both in VLC decoding and vector processing among five test sequences. While the se-
quence Coastguard has the highest computational complexity because itsscenario is a boat sailing
along the river with relatively high motion. For all these test sequences, real-time H.264 decoding
performance of CIF resolution (352×288, 30fps) together with audio decoding (roughly 30MIPS)
can be achieved at 150 MHz working clock frequency with hardware acceleration proposed by us.
Even compared with the optimized software implementation mentioned in Sec.3, the performance
with hardware acceleration is more than eight times higher.

Figure 13: Total MIPS Cost of H.264 Baseline Decoding

Applications Standards
Voice AMR, G.723, G.729

MPEG Layer-3 (MP3),
Audio MPEG AAC (Advanced

Audio Coding), OGG
Image JPEG, JPEG2000
Video Motion JPEG, MPEG4,

H.264, VC-1

Table 4: Application Coverage

7 Conclusion

Because of the parallel data path (though without multipliers), the Flexible Filter very well ex-
ploits the parallelism in filtering based operations. Its estimated gate count is nomore than 30K
gates. When synthesized with UMC0.18µm process the silicon cost of the accelerators is less
than0.5mm2. It provides enough flexibility for the latest standards such as H.264 and VC-1 with
small silicon area (compared to 4-way SIMD with16 × 16 multipliers which has been elaborated
in Sec 4.4). At the same time, since general multiplication is avoided, lower power consumption is
achieved which is more important for mobile applications with limited battery capacity.

In this paper, a programmable solution has been proposed for media processing. The program-
mable single-issue DSP processor works as the task manager and performs less intensive tasks. The
low-cost and configurable accelerators perform computational intensive tasks with high parallelism.
Real-time decoding performance can be achieved at resolution which is high enough for all mobile
terminals. The memory of the legacy DSP is fully utilized with parallelism. It hasbeen proven
that the solution of a single-issue DSP processor plus low-cost accelerators in media processing is



not only practical but also advantageous in time-to-market and silicon cost. HW reusability has
also been explored and it has been proven that configurable accelerators can accommodate different
computing tasks with similar computing and data access patterns.

As it is depicted in Table 4, since the single-issue DSP was originally designedfor voice coding,
most of the voice coding standards are already supported. With the VLC accelerator, it well supports
the current audio coding standards such as MP3 and OGG. Besides the latest video coding standards
such as H.264 and VC-1 which have the highest computational complexity, other legacy image and
video coding standards such as MPEG4 and JPEG are supported as well.To be noticed is that though
the JPEG2000 coding is supported, it is not in real-time, because it is generally used for compressing
still images captured by the camera which can take several seconds. Thus with the low-cost hardware
acceleration, the legacy single-issue DSP platform covers most of the latest multimeida applications
for mobile terminals.

8 Future Work

Since the Flexible Filter also supports 4-way SAD (sum of absolute difference) operations, a video
(e.g. H.264) encoder can be implemented together with the decoder which enables video conference
at lower resolution (e.g. QCIF). This part will be included in our future work.
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