
Accelerating CABAC Encoding for Multi-standard Media
with Configurability

Oskar Flordal†, Di Wu, and Dake Liu
Department of Electrical Engineering, Linköping University

SE-581 83, Linköping, Sweden
oskar@flordal.net,{diwu,dake}@isy.liu.se

Abstract

This paper presents the study of how to accelerate
CABAC encoding for emerging heterogeneous multimedia
applications. The latest image and video compression stan-
dards such as JPEG2000 and H.264 both have adopted
Context Adaptive Binary Arithmetic Coding to achieve per-
formance enhancement. However, CABAC requires high
computing power. After investigating computational com-
plexity of CABAC coding, firstly, instruction level accelera-
tion is elaborated. Secondly, a configurable accelerator for
CABAC encoding in multiple standards is proposed. Bench-
marking performance and implementation cost is also ad-
dressed.

1. Introduction

Entropy coding such as Variable Length Coding (VLC)
and Arithmetic coding (AC) has been widely adopted
in modern information compression systems in order to
achieve a higher compression ratio. Context-based Adap-
tive Binary Arithmetic Coding (CABAC) has been adopted
in latest multimedia coding standards such as JPEG2000
and H.264. Compared to VLC, arithmetic coding has its
advantage in compression ratio while it introduces higher
complexity.

JPEG2000: JPEG2000 is the latest still image compres-
sion standard which brings significant improvement in com-
pression performance compared to the JPEG standard. Mo-
tion JPEG000 is a multiple frames (e.g. 30fps) extension of
JPEG2000 which works almost in the same way as standard
JPEG2000 in the sense that each frame is coded indepen-
dently without motion estimation. This technique is useful
for applications with high demand for quality such as dig-
ital cinema (e.g. with resolution of 4096x3112) and med-
ical imaging. Motion JPEG2000 generates a large amount

†Oskar Flordal is now with Axis Communications AB, Lund, Sweden.

of data for these applications which requires the encoder to
sustain real-time coding performance at very high bitrate.

H.264: H.264 (MPEG-4 part 10) is the latest video
compression standard. By adopting innovative algorithms,
both high compression rate and error robustness is achieved
which is critical for IP based networks. Compared to
MPEG-2 and MPEG-4, H.264 greatly promotes coding effi-
ciency while it introduces much higher computational com-
plexity. For high-end applications, a powerful hardware
platform is required to provide real-time performance.

2 Algorithm Features and Comparison

2.1 Arithmetic Coding

Arithmetic coding is one of the entropy coding meth-
ods which converts a sequence of data symbols into a single
fractional number. By dividing a range, for example be-
tween 0 and 1, iteratively depending on the probabilities of
different symbols, arithmetic coding interprets a given set
of symbols to a value in the range that can only be coded by
that specific sequence of symbols.

For example if at the beginning the range is 0 to 1 and
there is four symbols (for example A,B, C and D in Fig-
ure 1) to encode with the probabilities 1/2, 1/6, 1/6 and 1/6
respectively. Whenever a symbol is to be encoded, the cur-
rent range will be divided according to the size of the proba-
bilities and the new range will be the interval that represents
the symbol that is coded, for example 0-0.5 if the symbol A,
with probability 1/2, was coded. This new range becomes
the basis for the next symbol to be encoded as depicted in
Figure 1 and in there will be a range that is unique for the
coded symbols and will be coded with bits. The amount of
bits required to code the smallest value in the final range
is then usually smaller than the amount of bits required to
code the original message. Compared to other entropy cod-
ing methods such as Huffman coding, arithmetic coding al-
most reaches the optimal presentation for coded symbols in



Figure 1: Explanation of Arithmetic Coding

number of bits, which means it is more efficient. For exam-
ple, compared to variable length coding, binary arithmetic
coding provides bit rate reductions of 5 − 15% in H.264.

2.2 CABAC in Multi-standard

2.2.1 Binary Arithmetic Coding

Binary Arithmetic Coding (BAC) where only two sym-
bols are used, for example 1 and 0, is in many cases the
most convenient and efficient way to do arithmetic cod-
ing. In principle the encoder parts of the CABACs in
JPEG2000 and H.264 both employ the binary arithmetic
coding method for coding. However, several practical dif-
ferences exist in the implementations. As a binary encoder,
bits are encoded and shifted one at a time. The symbols that
are coded are referred to as Most Probable Symbol (MPS)
and Least Probable Symbol (LPS) and whether MPS is 0
or 1 is determined by the context. In both implementations
the convention of a low value that is the base of the current
range is used (referred to as C in the JPEG2000 standard[1])
and a range value that is the length of the coding range
(called A in JPEG2000). The division of these according
to LPS and MPS is carried out in different ways. In H.264,
LPS is coded in the higher values of the range (Range -
LPS, probability would be added to Low)[2]. While in
JPEG2000, the LPS field is in the lower part of the range
except when the LPS range is actually larger than the MPS
field in which cases the fields are reversed.

2.2.2 Context Modeling

Besides binary arithmetic coding, a large amount of work
is done in other steps of CABAC which includes binariza-
tion and context modeling. The context modeling selects
the correct context for bits which have been decided by the
binarization and is perhaps the heaviest task in the CABAC.

JPEG2000: In JPEG2000, context modeling is con-
ducted as follows: A bit in a bitplane is mapped to the bits

in the same coefficient and bits closest in the bitplane. A
bit can be encoded in three different passes (Significance
Propagation, Magnitude Refinement and Cleanup) de-
pending on surrounding bits and how bits were coded in
previous bitplanes for that coefficient. Based on neighbor-
ing states, the most suitable probability model is chosen to
encode the symbol.

H.264: There are a number of different ways to build
contexts in H.264 and they can be divided into four main
categories. The first type gets its context from previously
coded blocks above and to the left, which is suitable for
syntax such as motion vectors where blocks nearby have
a tendency to move the same way. The second type is a
model which is used to code macroblock information and
build its context based on previously coded bits in this state.
Both the third and fourth category can only be applied to
residual data. The fourth category is like the third only used
for residual data and the contexts are based on accumulated
encoded values from earlier encodings, while the third one
does not use past data. Some data is also encoded without a
particular model. [2]

The different context indexes describe the way to encode
information such as motion vectors (there are different con-
text depending on the length of the vectors and so on) and
coefficients. There are in total 399 different context val-
ues and these in turn point to 64 different (6 bit) probability
states with a current MPS (another bit). More details of
CABAC can be referred to [1],[2] and [5].

2.3 Complexity Analysis

The bit rate of coded H.264 video stream with HDTV
quality (1080p/30fps) is approximately 10 Mbps. The de-
mands of other resolutions can be found in Table 1 as ref-
erence. The GNU profiler (gprof) has been used as a tracer
to perform profiling. The number of invocations of each
subroutine is traced and recorded in the log file which pro-
vides enough precision to expose performance bottlenecks
and help make decisions on SW/HW partition. However,
reference codes for both standards have been rewritten in
order to be optimized and mapped to a single issue DSP
platform. Thus the final estimation of MIPS cost is reason-
able and accurate enough based on this DSP platform.

Resolution QCIF CIF 4CIF HDTV
(176x144) (352x288) (704x576) (1920x1080)

Bitrate 0.5 Mbps 1 Mbps 3 Mbps 10 Mbps

Table 1: Bitrate for Various Quality

JPEG2000: In order to perform profiling of JPEG2000,
a reference toolkit called JasPer[7] is used which includes
a software implementation of the JPEG2000 CODEC. Ac-
cording to profiling done on this software implementation,



CABAC coding is around 60% of the total MIPS cost. The
number of bits that are processed in the CABAC based on
profiling of various test images are depicted in Table 2. The
invocation number (InvoNum) tells how many times the
arithmetic coder is called during the encoding of one frame
of the image at a specified size multiplied by 30. Mbps
states how many bits per second would go through the en-
coder if the image was used in a video sequence with 30fps
(frames per second). To achieve an approximate MIPS cost,
Mbps has then been multiplied by an approximate value of
cycles required to code a bit on average according to our
DSP platform. The test images (Boat and Wharf) are from
the CD that comes with [6] and have been scaled to different
resolutions.

Test Sequence Resolution InvoNum Mbps MIPS
QCIF 12538200 13 260

Boat CIF 47528790 48 960
(30fps) 4CIF 185618130 186 3720

HDTV 929133330 929 18580
QCIF 11956890 12 240

Wharf CIF 45671940 46 920
(30fps) 4CIF 170628720 171 3420

HDTV 821745540 822 16440

Table 2: Profiling of JPEG2000

H.264: For H.264, reference software from JVT which is
called JM[8] has been used to perform profiling. The differ-
ent clips in Table 3 are taken from a set of standard 1080p
clips and standard clips in smaller sizes. The invocation
numbers(InvoNum) in this case is calculated over 50-250
frames as the frames are dependent on each other in H.264.
The Mbps is based on frame rate of 30fps.

Test Sequence Paris Highway Pedestrian
Resolution 352x288 352x288 1920x1080

Frames 250 250 50
InvoNum Context 1914198 1208284 6790618

MQ-coder 5551384 3129586 15618854
Mbps (30fps) 0.67 0.38 9.37
MIPS (30fps) 20 12 271

Table 3: Profiling of H.264

3 Hardware Acceleration

3.1 Design Consideration

From complexity analysis elaborated in Section 2.3, it
is obvious that pure SW implementation of CABAC is not
efficient enough and therefor hardware acceleration is re-
quired. Generally, application based instruction level accel-
eration (ILA) and dedicated hardware acceleration (DHA)
can both promote performance to different degrees based
on different hardware cost.

3.2 Instruction Level Acceleration

ILA is about finding ways to add instructions and archi-
tectural features in order to accelerate specific tasks. Based
on the study of CABAC in multiple standards, a set of
instruction extension which accelerates the processing of
CABAC on general DSP has been proposed. ILA is tightly
defined to the processor core and generally can be applied
to a larger set of tasks with similar computational features.
Compared to DHA, it has lower silicon cost and higher flex-
ibility while only limited performance enhancement can be
achieved. For mobile applications, only relatively low res-
olution (e.g. 352 × 288) is considered. Thus the bit rate is
relatively low. For the sake of silicon cost, power consump-
tion and programmability, to apply ILA to a general DSP is
preferred.

3.2.1 ILA Design

It has been disclosed that CABAC coders in different stan-
dards are very branch heavy while containing relatively few
operations in each branch. In order to accelerate the coding
process, one set of improvement that has been suggested is
to use features like delayed execution, address register arith-
metic and, most interesting, if-then-else decisions. The first
two are already common architectural features and need
not be discussed further. If-then-else instructions or con-
ditional execution is interesting in the cases where branches
are evenly matched and could be considered in some cases.

Figure 2: Branch Tree

A multi-branch instruction has been proposed to accel-
erate control flow by calculating multiple branching steps
in one cycle. A reasonable limit would be three compar-
isons in parallel and to find the correct branch in a binary
tree as is depicted in Figure 2. The instruction compares
a few pre-loaded constants in flexible combinations with at
most two other registers (which is the maximum most bus
structures would allow). If this multibranch instruction is
used on the LPS/MPS branch in JPEG2000 that consists of
three possible compares, they could be executed together in
one cycle with a little rewrite. Similarly the same function
could efficiently deal with the H.264 renorm (renormaliza-
tion) process and the encoding process, but it would not be



as efficient on those parts. The problem with the instruc-
tion is that it would need some pre-loading/configuration
and is not fully orthogonal to most instruction sets. But
with quite simple hardware, three comparators and a few
muxes and short registers it would be useful. The initializa-
tion of these four registers takes four cycles only once and
will be updated in runtime until they are reconfigured for the
next frame. Another optimization is to incorporate some
sort of jump back functionality that works with the Pro-
gram Counter. At a few certain values the Program Counter
would unconditionally be set to a common value that is the
location where the execution is supposed to continue after
the branches. This way the jump instruction that is needed
on most branches could be skipped and the branching would
in principle be free if the first branch could be done in the
background.

Figure 3: Multi-branch HW

3.2.2 HW Implementation

As depicted in Figure 3, four operands are fetched from
four registers, these could either be all hardwired or a mix
of hardwired registers and bus registers. To select which
operands to use for the three compares there are two muxes
for every compare. The first compare selects which of the
other two compares should be used by controlling a mux
to where both the other compares are connected. The bit
coming from the first compare together with the bit that got
through the mux decides which location the PC should go
to. These four locations are stored in four 8-bit registers
that contain relatives addresses. The standard logic around
the PC will make the addition necessary for it to be a rela-
tive jump. The cost of this ILA lies mainly in registers and
in the case that all values need to compared dynamically,
registers have to use an additional bus so the values could
be loaded without any overhead. The jump destinations of
this branch also need to be stored, which requires one more
register. Generally, 8-bits relative addresses is enough to
provide flexibility with low HW cost.

3.2.3 Sample Code

A version of the JPEG2000 encoder without renorm is de-
picted in Figure 4. Note that this changes the program flow
as depicted in the standard to suit the multi-branch better by
moving the A (recursive probability interval) and 0x8000
comparison to the branch where A ≥ Qe (estimated prob-
ability of LPS). Both LPS branches can obviously be short-
ened if 32 bits could be loaded from memory to two sepa-
rate registers or one 32 bit register with high and low part.
Otherwise even with a fast memory, six to eight cycles are
required for an encoding process. The example code re-
quires that the multi-branch has been configured already by
writing the destinations of mpsa, mpsb, lpsa and lpsb to four
special purpose registers. Together with this each compare
unit has to be configured on what type of compare (<, > or
= and so on) it will do between its two operands. Further-
more it expects hardwired registers which are pointed to by
Qe, Range, MPS and (outside this code snippet) Bin that
describe which bit is being coded.

Figure 4: Sample Code of ILA

3.2.4 Benchmarking Result

It is hard to evaluate the performance of various ILA meth-
ods in a fair way, without actually implementing them in a
real processor and analyzing memory latencies and setup



time to get accelerators running and so on. In order to
benchmark proposed instructions, a simulator of a single is-
sue DSP designed by our division was used and modified to
accommodate ILA. It is assumed in every loop that registers
like state, MPS and so on are loaded previously which takes
cycles and could be argued to be the job of the encoder. As
the DSP has memory fetches and writes in one cycle, the
only real penalty is pipeline flushes due to missed branch
prediction and data dependencies in the pipeline. In our im-
plementation it cuts down the cycle count almost 50% in
the encoder before renorm and also automatically makes it
less prone to branch misses compared to the case with mul-
tiple branches. The benchmarking was done by combining
assembly based subroutine implementation and statistics of
subroutine invocation frequency collected from the refer-
ence software. This gives us a quite good estimation of
MIPS cost. For H.264, when using a specialised instruc-
tion for picking out 2 bits from the range and a multibranch
for both encoder and renorm, four cycles can be saved in
the encoder and another four from the renorm part which
reduces the MIPS cost by 27%.

Resolution QCIF CIF 4CIF HDTV
(176x144) (352x288) (704x576) (1920x1080)

MIPS Cost 10 21 63 210

Table 4: ILA Benchmarking Result

As shown in Table 4, MIPS cost of ILA implementa-
tion at various resolutions has been estimated. For low-end
applications, such as mobile video, ILA ensures real-time
performance with flexibility and low design cost. While
for high-end applications such as HDTV, the MIPS cost is
still too high which means Dedicated Hardware Accelera-
tion (DHA) is required.

3.3 Dedicated Hardware Acceleration

For high-end applications such as HDTV and cam-
corders, bit rate may be higher than 10Mbps. In order to
achieve real-time coding performance of CABAC, DHA
is required. Generally an accelerator is designed to ful-
fill CABAC coding without frequently interrupting the DSP
processor. Several dedicated CABAC accelerators have
been implemented specifically for JPEG2000[3] and for
H.264[4] compression systems. A novel architecture with
Inverse multiple branch selection (IMBS) method was pro-
posed in the design of DHA for JPEG2000 by Pastuszak[3].
In our design, based on the study of characteristics of
CABAC in multiple standards, this architecture was ex-
tended for both JPEG2000 and H.264. Thus when achiev-
ing performance improvement, hardware reuse was also
achieved.

As shown in Figure 5, the CABAC coding process con-
sists of the following four stages.

Figure 5: Stages of DHA

Stage1(Pre-load): The first stage prepares index values
and symbols for the calculation in stage 2. As Qe values
are selected differently there will be a few changes here.
Most notably is the memories that contain Qe values as they
have to have more rows and be longer due to having four Qe
values per row. The Qe memory has to be around 256 bytes
in H.264 as compared to roughly 100 bytes in JPEG2000.
The largest problem here is to localize the storage of the
context table. That is as in JPEG2000 only 20 contexts are
used which makes it quite easy to put them all in a flexible
register file, however in H.264, since 399 context values are
to be stored, it is impractical to allocate these 399 values
into one register file.

As two values need to be both read and written in one
cycle one memory is not enough. Even if the memory would
be dual port, there would still only be time for two of four
jobs to be finished every cycle. If dual memories are used
they would also need to be synchronized so it is not as trivial
as to just add another memory.

As depicted in Figure 6, the solution proposed by us is
to use a cached architecture where the most used context
values would be kept in the cache. Statistics acquired by
running cache based solutions resulted in an estimation that
a 64 post fully associative cache gets around 15% cache
misses. Such a cache will however be as large as the orig-
inal register file with surrounding logic so another solution
is necessary. A cache with eight rows containing four posts
each for simple memory transfer achieves, without optimis-
ing the memory, 65% hits. Doubling the size of the cache
results in 22% misses which is closer to the fully associa-
tive as it is the same size, and a quite good compromise.
An interesting feature when using a cache is that the struc-
ture could easily be reused for JPEG2000 were all contexts
would fit in the cache. This would eliminate the need for
using a register file or similar, especially for JPEG2000.

Stage2(Update Range): Main function of this stage is



Figure 6: Accelerator Architecture

to update range based on the coding process. According to
IMBS (inverse multiple branch selection) proposed in [3],
parallelism can be achieved if the coder pre-calculates all
possible outcomes of the first range when updating the sec-
ond bit and then select the result that was correct based on
the outcome of the first bit. To avoid a special renorm of the
data the fact that the value after the first encoding is either
a renormed Qe0 or Range − Qe0 in both CODECs can be
utilized. If the encoding results in Range−Qe0 the renorm
will shift the data either zero, one or two times otherwise a
pre-calculated renormed Qe0 will be used. It is known that
there are at most two shifts as Qe0 is at most less than 3/4
the size of range in both CODECs. If a branch is made for
each of these shifts and the renormed Qe all the possible
new range values have been covered. Which one to use is
selected by figuring out if what is coded is an MPS symbol,
if Qe0 < Range−Qe0 and by finding out how many times
to shift. Finding out how many times to shift is easily done
when there are so few possibilities and separate logic can be
used to do it for H.264 and JPEG 2000. The same technique
is used to pre-calculate 2×Qe < Range for the second bit.

The extra precision granted to H.264 by having more
lookup values must also be taken care of in this step as this
is the first opportunity to know the second range value. Hav-
ing to select this value here is far from optimal as it stalls
some of the branches until correct selector bits can be calcu-
lated from the first range, nullifying most of the advantage
gained from IMBS.

As depicted in Figure 7, the thing that has to be config-
urable between the different CODECs in this stage is pri-
marily which bits to look at to find out how many shifts
should be done as well as the device for getting the ex-
tra precision in H.264. Another thing is that the switching
mechanism is disabled in H.264 as an interval swap is never

Figure 7: DHA Stage 2:Update Range

done in H.264. These are all minor changes and this stage
in general makes for great hardware reuse.

Stage3(Update Low): As it is shown in Figure 8, this
stage updates the lower boundary of the coding range. To
cope with the slightly different selection where H.264 can
set Low to Low = Low + Range−Qe and JPEG2000 be-
sides keeping the old Low value can have Low = Low +
Qe, a mux has to be added to both those places. The addi-
tion can be done using the same adder with a mux or done
for clarity as in Figure 8 with one adder for both possible ad-
ditions. The resulting value is then shifted the same amount
of times the range value was shifted in the previous stage.
The big difference between the CODECs comes after the
shift as H.264 only uses at most 10 bits of Low and in case
every previous shift in the renorm has not produced a ’1’ it
is only 9 bits. These three steps are done twice, once for
each bit.

To get the proper bits for stage 4 in H.264 a device to
merge the correct bits from the renorm has been devised.
It shifts the bits from the first coding to the left of the bits
from the second coding to turn them into the same stream.
As the renorm in H.264 can code either bit 8 or bit 9 in
the first place and so on there has to be muxes that de-
cide which bit that should actually be used for every po-
sition. To understand this consider an example with the bits
191807161403020100 and suppose 5 bits should be shifted.
Bit 7 will in in this case be ignored as when the bits have
been shifted twice the front most bits will be 01. This indi-
cates that an outstanding bit should be coded and then the
second of the bits will be removed. After the second bit has
been removed there is no longer a chance for a 1 to end up in
the ninth bit place (as possible new ones will be eliminated
at the second position) and from now on the only possible



outcomes are 0 or bit outstanding for the rest of the shifts.

Figure 8: DHA Stage 3:Updating Low

Stage4(Renorm): Renorm is sequential in nature and
would be hard to implement as a combinatorial net. The
simple solution is to implement it as a sequential net that
updates the Range and Low by shifting a bit at a time. But
as a parallel coder will generate bits at a high speed it has to
be done in once cycle to avoid constant pipeline stalls. As
the renorms are quite different, a separate solution is needed
for the different standards.

Figure 9: Output Generator of Renorm Stage (H.264)

As depicted in Figure 9, bits loaded from both low val-
ues are shifted into a register that is large enough to contain
the maximum amount of bits that can be added in one cy-
cle. This should be approximately 25 from previous bits
outstanding plus five more as the maximum of renorm cy-
cles is six in once cycle plus an additional four from the
other renorm as a maximum when the previous cycle coded
a renorm which in total makes 34. An additional buffer is
also required for wire speed. The register now contains as
many bits as will be put out, but a bunch of them will con-
tain values based on outstanding bits which needs to be cor-

rected. The way the bits have been packed in the previous
stage there is now a register with coded zeroes and ones and
another register which marks which bits are yet undecided.
By using a chain as described in Figure 9 all outstanding
bits that have a known bit to the right (which means they
are coded later) of them can now be corrected.

Figure 10: DHA Stage 4: Renorm

The solution prepared to solve this is actually not opti-
mal in its simplest form as it contains a carry chain of 50 or
so gates (if the maximum propagation chain would cover 25
bits) but there are ways around this. Values at the end of a
sequence of outstanding bits are propagated along the prop-
agation chain shown in Figure 10. The first bit in a series
of outstanding bits gets the value of the bit to the right on
the end of the outstanding bits, that is the first value that is
known which is normally coded first. The other bits includ-
ing the far right one at the same time gets the inverted value
of the leftmost bit that was just coded. This way the renorm
can be done in one step, which makes things more efficient
and also simpler in a way.

3.3.1 Configuration

Selecting which CODEC to code for is done by setting a bit
that indicates if it is H.264/JPEG2000 while coding and by
feeding a proper value to the Range register when resetting
the accelerator. This could for example be done through a
special purpose register.

4 Benchmarking and Prototyping

The performance of this implementation is determined
by the amount of stalls that have to occur. A stall will
have to occur when both bits to be coded are supposed to



be coded in the same context, as the context need to be up-
dated for the next cycle in that case. This seems to occur
17% of the dual encodings in H.264 and 11% in JPEG2000
which suggests well over 1.5 bits will be coded per cy-
cle if the pipeline is kept full. As argued in [3], this of
course comes at the cost of potentially lower frequency,
especially when using a single cycle renorm as suggested
here. The other problem is hardware cost. In H.264 the
pattern of ordinary encodings is interrupted by equal prob-
ability codings, which brings the problem that the codings
works slightly different and the output has to be stalled and
flushed if this machinery is not added to the last two steps
(it only affects Low and of course output). Benchmarking
is based on statistics of how often a stall occurs by count-
ing the amount of time both contexts is same during the
encoding process. The result was 1.82 bits per cycle, to
reach those speeds the large register file discussed before
would have to be used. If the 64 entry cache were used
with unoptimised memory, 25% miss rate will be achieved
using policy where the first context is always checked in
memory at the same time it is checked in the cache, thereby
making sure at least one context is available. If dual port
memory is used, number of bits coded per cycle would be
1.615 = 0.82× (1−0.25)+1 bits(0.82 is the probability in
case that contex0! = context1), which makes the estima-
tion of more than 1.5 bits per cycle rather safe. Note that the
second context will still end up in the cache the next cycle
when it is instead considered the first context. To achieve
these values, an equal probability encoder need to be built.
According to the benchmarking scheme elaborated above,
estimation of MIPS cost based on video sequences with dif-
ferent resolution is given in Table 5.

The DHA model was first implemented in Verilog and
simulated in Modelsim. Then it was prototyped and tested
on an Avnet Virtex-II FPGA board, by testing with vari-
ous corner cases, the functionality has been proven correct.
Finally, the design was synthesized with UMC 0.18µm
process. The DHA (including a cache with 64 entries)
consumes 0.039mm2 silicon area and reaches 190MHz as
working frequency.

Resolution QCIF CIF 4CIF HDTV
(176x144) (352x288) (704x576) (1920x1080)

MIPS Cost 0.3 0.6 1.8 6

Table 5: DHA Benchmarking Result

5 Conclusion

In this paper, both ILA and DHA for CABAC has been
investigated. Configurable solutions have been proposed for
multi-standard media processing. Benchmarking has been
conducted and comparison of different solutions have been

made. ILA has been proven to be practical for low-end
applications while DHA achieves enough performance for
high-end applications with silicon efficiency. HW reusabil-
ity has also been explored and it has been proven that the
configurable accelerator proposed by us can accommodate
high-end CABAC coding for the latest heterogeneous video
coding standards with both flexibility and silicon efficiency.

6 Future Work

Context-based Adaptive Variable Length Coding can
also utilize hardware components in our CABAC acceler-
ator. Design of an entropy coding accelerator in charge of
CAVLC, CABAC and general Huffman coding is ongoing
as future work.

References

[1] JBIG and JPEG, JPEG2000 Part I Final Committee
Draft Version 1.0, ISO/IEC JTC1/SC29 WG1(ITU-T
SG8), March 2000.

[2] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-
T VCEG, JVT-G050,Draft ITU-T Recommendation and
Final Draft International Standard of Joint Video Spec-
ification (ITU-T Rec. H.264 ISO/IEC 14496-10 AVC),
March 2003.

[3] Pastuszak, G, A novel architecture of arithmetic coder
in JPEG2000 based on parallel symbol encoding, In-
ternational Conference on Parallel Computing in Elec-
trical Engineering, 2004. 7-10 Sept. 2004 Page(s):303 -
308

[4] Roberto R. Osorio and Javier D.Bruguera, Arithmetic
Coding Architecture for H.264/AVC CABAC Compres-
sion System, Euromicro Symposium on Digital System
Design, 2004.

[5] Marpe, D.; Schwarz, H.; Wiegand, T, Context-based
adaptive binary arithmetic coding in the H.264/AVC
video compression standard, Circuits and Systems for
Video Technology, IEEE Transactions on Volume 13,
Issue 7, July 2003 Page(s):620 - 636

[6] David S.; Taubman and Michael W. Marcellin. JPEG
2000: Image Compression Fundamentals, Standards
and Practice, Kluwer Academic Publishers, Norwell,
MA, USA, 2001. ISBN 0-79237519-X.

[7] Michael Adams. The JasPer Project Home Page
(http://www.ece.uvic.ca/ mdadams/jasper/)

[8] Karsten Shring. H.264/AVC Software Coordination
(http://iphome.hhi.de/suehring/tml/)


