
Linköping Studies in Science and Technology
Dissertation No. 932

Development and Performance
Evaluation of Networks on Chip

Daniel Wiklund

Cover image

Department of Electrical Engineering
Linköping University

SE-581 83 Linköping, Sweden

Linköping 2005

Linköping Studies in Science and Technology
Dissertation No. 932

Development and Performance
Evaluation of Networks on Chip

Daniel Wiklund

Department of Electrical Engineering
Linköping University

SE-581 83 Linköping, Sweden

Linköping 2005

ISBN 91-85297-62-3
ISSN 0345-7524

ii

Development and Performance
Evaluation of Networks on Chip
Daniel Wiklund
ISBN 91-85297-62-3

Copyright c© Daniel Wiklund, 2005

Linköping Studies in Science and Technology
Dissertation No. 932
ISSN 0345-7524

Department of Electrical Engineering
Linköping University
SE-581 83 Linköping
Sweden
Phone: +46 13 28 10 00

Author e-mail: daniel.wiklund@ieee.org

Cover image
Visualization of the basestation application mapping in figure
10.4. The image has been generated using POV-Ray 3.5.

Printed by UniTryck, Linköping University
Linköping, Sweden, 2005

Abstract

Along with Moore’s law there is a continuous development in architec-
tures for electronic systems. Currently there is a trend towards integra-
tion of more and more processing elements, e.g. general-purpose proces-
sors and DSPs, onto a single chip. With the increasing complexity of such
systems come difficulties in creating a proper communications infrastruc-
ture for the chip. When time-division buses and custom point to point
communication are no longer sufficient, more elaborate networks are the
obvious choice. By turning from the current path of buses and custom
communication designs for the higher levels of interconnection on the
chip, it is possible to reach high performance with lower design and veri-
fication costs.

This thesis presents a circuit-switched network for on-chip use that
has been developed with signal processing tasks in mind. The network
implementation is simple and thus area efficient while being able to op-
erate at high speed. Circuit-switched technology has the advantage of al-
lowing very simple network components while giving high performance
for many applications in the telecom area where intra-system communi-
cation often can be scheduled tightly according to the performance re-
quirements of the system.

Parts of the design flow CAD support have been implemented along
with the network components. An extendable, event-driven simulator
has been developed that allows for updates and elaboration of both net-
work components and processing modules.

The simulator has been used as the basis to develop a general method

iii

iv Abstract

for benchmarking of networks on chip, where the end result should be
comparable across different platforms and implementations. The perfor-
mance of complex systems such as networks is not easily expressed ana-
lytically. Thus, the simulator is of paramount importance in assessing the
performance of the network in an application.

The network implementation and simulation environment have been
used for analysis of some applications. Applications that have been more
thoroughly investigated are a single chip Internet core router and the
baseband part of a 3G WCDMA/FDD radio basestation. The core router
showed a performance in excess of 14 Gbit/s per port at 16 ports with
realistic traffic. The 3G basestation application showed the applicabil-
ity of the network for systems with lower requirements on communica-
tion bandwidth where significant savings in design effort can be made
through the simplicity of the network system.

Preface

The contents of this thesis present the research that I have done during
the last five years. Parts of the research have been presented on confer-
ences. The network-on-chip part has been presented with the following
conference papers:

• Daniel Wiklund, Sumant Sathe, and Dake Liu, “Benchmarking of
on-chip interconnection networks”, in Proceedings of the International
Conference on Microelectronics (ICM), Carthage, Tunisia, Dec 2004

• Daniel Wiklund, Sumant Sathe, and Dake Liu, “Network on chip
simulations for benchmarking”, in Proceedings of the International work-
shop on SoC for real-time applications (IWSOC), Banff, Canada, July
2004

• Sumant Sathe, Daniel Wiklund, and Dake Liu, “Design of a switch-
ing node (router) for on-chip networks”, in Proceedings of Int’l con-
ference on ASIC (ASICON), Beijing, China, Oct 2003

• Daniel Wiklund and Dake Liu, “SoCBUS: Switched network on
chip for hard real time embedded systems”, in Proceedings of the
International Parallel and Distributed Processing Symposium (IPDPS),
Nice, France, Apr 2003

• Daniel Wiklund and Dake Liu, “Design of a system on chip switch-
ed network and its design support”, in Proceedings of the Interna-
tional conference on communications, circuits and systems (ICCCAS),
Chengdu, China, July 2002, pp 1279-1283

v

vi Preface

• Daniel Wiklund and Dake Liu, “Switched interconnect for system-
on-a-chip designs”, in Proceedings of the IP2000 Europe conference, Ed-
inburgh, Scotland, Oct 2000, pp 185-192

The applications part of the research has not yet been presented at
conferences but there are two submitted articles:

• Daniel Wiklund and Dake Liu, “Design of an Internet core router
using the SoCBUS network on chip”, submitted manuscript

• Daniel Wiklund and Dake Liu, “Design, mapping, and simulations
of a 3G WCDMA/FDD basestation”, submitted manuscript

Apart from these publications, there is a number of related or unre-
lated publications that will not be touched upon in this thesis:

• Daniel Wiklund, “Processing and memory requirements for a 3G
WCDMA basestation baseband solution”, in Proceedings of the Swed-
ish System-on-Chip Conference (SSoCC), Båstad, Sweden, Apr 2004

• Tomas Henriksson, Daniel Wiklund, and Dake Liu, “VLSI imple-
mentation of a switch for on-chip networks”, in Proceedings of Int’l
workshop on Design and diagnostics of electronic circuits and systems
(DDECS), Poznan, Poland, Apr 2003

• Daniel Wiklund, “Mesochronous clocking and communication in
on-chip networks”, in Proceedings of the Swedish System-on-Chip Con-
ference (SSoCC), Eskilstuna, Apr 2003

• Dake Liu, Daniel Wiklund, Erik Svensson, Olle Seger, and Sumant
Sathe, “SoCBUS: The solution of high communication bandwidth
on chip and short TTM”, in Proceedings of the Real-Time and Embedded
Computing Conference (RTECC), Gothenburg, Sweden, Sep 2002

• Daniel Wiklund, “Implementation of a behavioral simulator for
on-chip switched networks”, in Proceedings of the Swedish System-
on-Chip Conference (SSoCC), Falkenberg, Sweden, Mar 2002

Preface vii

• Daniel Wiklund, “Switched interconnect for embedded System-on-
a-Chip signal processing designs”, in Proceedings of the Swedish Sys-
tem-on-Chip Conference (SSoCC), Arild, Sweden, Mar 2001

viii Preface

Acknowledgments

I know you half as well as I should have,
and like you half as much as you deserve
Bilbo Baggins in “Lord of the Rings” (J.R.R. Tolkien)

Reaching the point in my life where I am able to present this booky thingy
is not my work alone. There are many persons that deserve to be thanked
for all they have done for me and my work.

• My supervisor Prof. Dake Liu. Thanks for letting me get the oppor-
tunity to do my Ph.D. together with you. It’s been a great time!

• Prof. Christer Svensson for all interesting and stimulating discus-
sions, both on research and more or less everything else.

• Dr. Anders Edman for many discussions and ideas on how to con-
tinue the research and attack the problems that have arisen.

• Dr. Kalle Folkesson for being such a whacko friend! No one can
confuse people like you – you’re the master! “Vill du något? Du
tittar så konstigt på mig.”

• The old “inner circle”: Dr. Daniel “Bunnywhitewizard” Eckerbert,
Dr. Henrik Eriksson, Dr. Tomas Henriksson, Dr. Ulf Nordqvist, and
Lic. Eng. Mikael Olausson.

• The slightly newer friends from Computer Engineering: Eric Tell,
2 x Anders Nilsson (to both of you – hey, I saved some typing!), An-
dreas Ehliar, Johan Eilert, and Per Karlström.

ix

x Acknowledgments

• The neighboring friends at Electronic Devices: Lic. Eng. Stefan An-
dersson, Lic. Eng. Peter Caputa, Henrik Fredriksson, and Martin
Hansson.

• To the team closely involved with me in teaching, Tomas Svensson,
Dr. Olle Seger, and Camilla Eidem, I say “Docendo discimus”.

• Ylva Jernling, Anna Folkeson, and Ingegärd Andersson for making
all the tedious and complicated administrative stuff both bearable
and simple!

• All other current and previous members of both Computer Engi-
neering and Electronic Devices that I have had the opportunity to
know. None mentioned, none forgotten – you know who you are
anyway. I have had a great time in both groups!

• And last but definitely not least: My parents, Anna and Erling, for
always supporting me – and because they still allow me to live in
their house. Tack för allt!

Daniel Wiklund
Linköping, February 2005

Contents

Abstract iii

Preface v

Acknowledgments ix

List of figures xix

List of tables xxiii

Abbreviations xxv

I Background 1

1 Introduction 3

1.1 Background . 3

1.2 Dissertation objective and scope 5

1.2.1 Network on chip design 6

1.2.2 Interconnection benchmarking 7

1.2.3 Applications on the SoCBUS platform 7

1.3 Background of the SoCBUS project 7

1.4 Contributions . 8

1.5 Dissertation overview . 8

Bibliography . 9

xi

xii Contents

2 Heterogeneous Multi-Processor Systems 11
2.1 Introduction . 11

2.1.1 Parallelization of applications 12

2.2 Platform-based design . 13
2.3 Evolution of processor-based platforms 14

2.4 Communication-centric platform design 15
2.4.1 Dependencies . 16

2.5 High-level application/platform design 17
2.5.1 Profiling of applications 17

2.5.2 Selection of processing elements 17
2.6 Application implementation 18

2.6.1 Application mapping 19
2.6.2 Scheduling of real-time applications 19

Bibliography . 20

II On-Chip Communication Infrastructures 23

3 On-Chip Communication Infrastructures 25
3.1 Communication environment 25

3.1.1 Internal synchronization 26
3.1.2 Area and power considerations 26

3.1.3 Comparison with parallel computer networks . . . 27
3.2 Challenges and opportunities 27

3.2.1 Physical issues . 28
3.2.2 Logical issues . 30

3.2.3 Design efficiency issues 32

3.3 Traditional interconnects . 34
3.4 Generalized communication structures 35

Bibliography . 36

4 Networks on Chip 39
4.1 The impact of context . 39
4.2 The OSI model . 40

Contents xiii

4.3 Quality of service . 42
4.4 Network topology . 43

4.4.1 Theoretical performance of topologies 43
4.4.2 Properties of the 2D mesh and torus 44
4.4.3 Advantages with arbitrary topologies 44

4.5 Packet and circuit switching 45
4.5.1 Latency . 46
4.5.2 Wormhole routing 47
4.5.3 Virtual circuits in packet networks 47

4.6 Routing in networks on chip 48
4.6.1 Nonminimal routing 48
4.6.2 Source and distributed routing 48
4.6.3 Local vs. global knowledge 49

4.7 Deadlock avoidance . 50
4.7.1 Turn-model routing 50
4.7.2 Virtual channels . 51
4.7.3 Circuit-switched networks 52

Bibliography . 53

III SoCBUS 55

5 The SoCBUS Network 57
5.1 Introduction . 57
5.2 Network components . 57
5.3 SoCBUS architecture . 59
5.4 Configuration and control layering 61
5.5 Network transaction handling 62

5.5.1 Route setup flow . 62
5.5.2 PCC: Packet-connected circuit 63

5.6 Routing . 64
5.6.1 Distributed routing 64
5.6.2 Source routing . 64

5.7 Physical links . 65

xiv Contents

5.8 Link level protocol . 66

5.8.1 Long packets . 66
5.8.2 Speculative sending of data 68

5.8.3 Short packets . 69
5.9 Router implementations . 69

5.9.1 The first router . 70
5.9.2 Short packet router 71

5.9.3 Speculative sending support 72
5.10 The fourth router implementation 73

5.10.1 Configurable and parameterized 73
5.10.2 Micro architecture 74

5.10.3 Request path . 76
Bibliography . 77

6 Design and Simulation Environment 79
6.1 Design environment . 79

6.2 Design flow for SoCBUS . 80

6.2.1 Customer design flow 81
6.2.2 Tool coverage . 82

6.3 Simulation flow . 82
6.4 Traffic modeling . 83

6.4.1 Stimuli files . 85
6.5 Stimuli generator . 85

6.6 Simulator architecture . 86
6.6.1 Simulation event handling 88

6.6.2 Simulation models of network components 89
6.7 Network generator . 90

6.8 Network generator architecture 90
Bibliography . 91

IV Benchmarking of Interconnect Structures 93

7 Benchmarking in General 95

Contents xv

7.1 Motivation . 95

7.2 Definitions . 96
7.3 Performance metrics . 96

7.4 Average vs. worst-case performance 97
7.5 Measurement techniques . 98

7.6 Comparing results . 98
7.7 Processor benchmarking . 99

7.8 Network benchmarking . 99
Bibliography . 99

8 Benchmarking of On-Chip Interconnects 101
8.1 Benchmarking of interconnects 101

8.1.1 Benchmarking method 102
8.1.2 Benchmark specification 103

8.1.3 Interpretation of results 103
8.2 Benchmarking examples . 104

8.2.1 Example 1: Specification 104

8.2.2 Example 1: Results 105
8.2.3 Example 2: Specification 107

8.2.4 Example 2: Results 107
Bibliography . 109

V Applications 111

9 Internet Core Router 113
9.1 Brief introduction to core routers 113
9.2 Core router processing flow 114

9.3 Function mapping . 116
9.4 Simulation setup . 117

9.5 Simulation results . 118
9.5.1 Traffic patterns . 118

9.5.2 Internet mix simulations 119
9.5.3 RFC2544 simulations 120

xvi Contents

9.5.4 Minimum size packets simulations 120

9.6 Conclusions . 121
Bibliography . 122

10 WCDMA/FDD Basestation 125
10.1 A brief introduction to WCDMA/FDD 125

10.2 Basestation processing flow 126
10.2.1 Downlink . 126

10.2.2 Uplink . 127
10.3 High-level design specification 128

10.4 Function mapping . 128
10.5 Processing subsystems . 130

10.5.1 Multipath search and Rake 130
10.5.2 Deinterleaving and rate matching 131

10.5.3 Radio-frame reassembly and deinterleaving 131
10.5.4 Viterbi and Turbo decoding 131

10.5.5 CRC checking . 132

10.6 Processing and communication scheduling 132
10.6.1 Schedule analysis . 133

10.6.2 Latency-induced storage 134
10.7 Simulation results . 135

10.7.1 Minimum network frequency 135
10.7.2 Network usage . 136

10.7.3 Control messages vs. transmission schedule 137
10.8 Conclusions . 137

Bibliography . 137

VI Conclusions and Future Work 139

11 Conclusions 141
11.1 Design of networks on chip 141

11.2 Performance evaluation . 142
11.3 Application case studies . 142

Contents xvii

12 Future Work 143
12.1 Networks on chip . 143
12.2 Extensions to the tool chain 143
12.3 System simulator . 144

12.3.1 System simulator integration 144
12.3.2 Cycle and bit true simulations 145
12.3.3 Challenges . 145

12.4 Application case studies . 146
Bibliography . 146

VII Appendix 147

A Tool Implementation Details 149
A.1 Details on the simulation flow 149

A.1.1 Stimuli generator implementation 149
A.1.2 Simulator implementation 150

A.2 Simulation models of network components 153
A.3 Tool usage . 154

A.3.1 Stimuli generator . 154
A.3.2 Simulator . 154
A.3.3 Network generator 155

Bibliography . 156

B XML Formats 157
B.1 Notation . 157
B.2 General specifications . 158

B.2.1 Model names . 158
B.2.2 Frequencies, times, and lengths 158

B.3 Traffic model . 158
B.3.1 XML structure . 158

B.4 Network model . 161
B.4.1 XML structure . 162

Index 167

xviii Contents

List of Figures

1.1 Hardware and software development cost vs. feature size . 5

1.2 Relative market share for different electronics products . . 6

2.1 Speedup for parallel computers (Amdahl’s law) 12

2.2 Classical bus-centric platform with a single CPU 14

2.3 New platform architecture with multiple processing ele-
ments (PEs) each containing one (or more) processors . . . 15

2.4 Integration flow for software on top of a hardware platform 18

3.1 Transistors per chip vs. feature size 27

3.2 Bus based two-processor system (IC/DC = Instruction/-
data cache) . 35

3.3 Hierarchical bus/network architecture 36

4.1 2D mesh topology (4x4). Dashed line marks bisection. . . . 44

4.2 2D torus variations (4x4). Dashed line marks bisection. . . 45

4.3 Example of an arbitrary topology 46

4.4 Turn model routing . 51

4.5 Deadlock avoidance by virtual channels 52

5.1 Network-connected processing tile 58

5.2 A 3x3-node switched network with wrappers and subsys-
tems . 59

5.3 Interface between routers and wrappers within the network 61

xix

xx List of Figures

5.4 Two successful circuit setups 62
5.5 Signals in a unidirectional link 65
5.6 Basic link protocol . 68
5.7 Link protocol for speculative sending 68
5.8 Link protocol for short packets 69
5.9 Block diagram for the first two routers 70
5.10 Number of ports vs. router area for the first router 71
5.11 Block diagram for the third router (with speculative sending) 72
5.12 Block diagram for the fourth router 73
5.13 Micro architecture for the fourth router 75

6.1 Design flow for systems based on network on chip 80
6.2 SoCBUS simulation flow . 82
6.3 Traffic modeling flow . 84
6.4 Translation from traffic model to stimuli 86
6.5 Simulator top level flow . 87
6.6 Simulator class hierarchy . 88
6.7 Simulator event handling 88
6.8 State machine for the model of the first router 90
6.9 Network generator top flow 91

8.1 Throughput for random traffic on 2D mesh 106
8.2 Throughput for traffic with locality on 2D mesh 106
8.3 Throughput for 2D torus . 107
8.4 Throughput for 3D mesh . 108
8.5 Throughput for 3D torus . 108

9.1 Schematic view of the Internet 114
9.2 Dataflow in the core router 115
9.3 Core router system architecture 116
9.4 Final network allocation and mapping 117
9.5 Internet mix: Average packet latency 119
9.6 Internet mix: SoCBUS router-port lock 119
9.7 RFC2544: Average packet latency 120

List of Figures xxi

9.8 Min size: Average packet latency 121
9.9 Min size: Source port locking 122

10.1 Spreading function . 126
10.2 Downlink transmission flow 127
10.3 Uplink reception flow . 128
10.4 Architectural mapping of the basestation 130
10.5 Worst-case uplink processing schedule (not to scale) 133
10.6 First try successful routing 135
10.7 Maximum circuit-setup latency 136

A.1 SoCBUS simulation flow . 150
A.2 Stimuli generator program flow chart 151
A.3 Simulator flow chart with partial message handling for a

router model . 152

B.1 Tag structure for a traffic model/test case 165
B.2 Tag structure for a network model 165

xxii List of Figures

List of Tables

3.1 Some challenges in on-chip communication 28

4.1 The seven OSI layers and their coverage in the typical NoC 41
4.2 Theoretical performance of different network topologies as-

suming N connected cores. 43

5.1 Configuration and control layering 61
5.2 Request format . 66
5.3 Functions for the req0[3:0] signals 67
5.4 Link feedback signals . 68

8.1 Comparison of DSP and NoC benchmarks 102

9.1 Packet-size distribution for Internet mix 118

10.1 Block types . 129
10.2 Longest possible processing times in the reception flow . . 134

B.1 Notation of tags . 157
B.2 XML tag description for the traffic model 160
B.3 XML tag description for the network model 163

xxiii

xxiv List of Tables

Abbreviations

3G Third generation mobile telecommunication
API Application programming interface
ASIC Application-specific integrated circuit
BIST Built-in selftest
CAM Content-addressable memory
CRC Cyclic redundancy check
DSM Deep sub-micron
DSP Digital signal processor
FDD Frequency-division multiplex
FIFO First in, first out
Flit Flow control digit, the basic transmission unit

of a network
FPGA Field-programmable gate array
GALS Globally asynchronous, locally synchronous
GPP General-purpose processor
IP Intellectual property
MAC Media access controller
MOC Model of computation
MPI Message-passing interface
NoC Network on chip
NRE Non-recurrent engineering
OSI Open systems interconnect
OVSF Orthogonal variable spreading factor

xxv

xxvi Abbreviations

PCC Packet-connected circuit
PLL Phase-locked loop
PTP Point-to-point
QoS Quality of service
RTL Register transfer level
SoC System on chip
TCP/IP Transmission control protocol / Internet protocol
TDM Time-division multiplex
WCDMA Wideband code-division multiple access
XML Extensible markup language

Part I

Background

1

Chapter 1

Introduction

The future, according to some scientists, will be
exactly like the past, only far more expensive.
John Sladek

1.1 Background

The electronics industry has come a long way since the first integrated
circuit was built in the late 1950s. Possible circuit complexity continues
to follow Moore’s law with no apparent end in sight other than due to
economic reasons.

With the evolution in circuit technology, the complexity of the designs
follow, albeit slower. Thus there is an increasing gap between the possi-
bilities of the technology and the extent to which it is possible to utilize
this technology. This problem is known as the “design gap”.

New hardware platforms and design methodologies must be used to
help close the design gap. The hardware platforms are very much the
same as they have always been since the dawn of the semiconductor com-
puter in the early 1970s. Systems typically consist of a single (Harvard)
processor, perhaps some acceleration hardware, a couple of local mem-
ories, and some peripherals. All components are connected through a
single time-division multiplex (TDM) bus. This type of platform can only
go so far and the industry is now on the verge of a new era in electronics
design. The old-style platforms must be superseded by something new

3

4 Introduction

that is more scalable.

The second generation of platforms, which are being deployed today
resembles the first generation. The difference is that the single processor
generally has been replaced by one microcontroller and one digital signal
processor. These can coexist on a TDM bus by using extensions that allow
multiple memory accesses. It is not possible to generalize this type of
platform to multiprocessor because of the inherent limitation of the TDM
bus.

The current trend is to go for heterogeneous multi-processor systems.
As the number of processors go beyond one (or two), many new chal-
lenges appear. Challenges such as integration, communication, and soft-
ware development is just a few of the issues that have to be researched
further to allow for smooth development.

Complexity of software development is a huge obstacle towards suc-
cess of multi-processor systems. This is obvious from the personal com-
puter market where small multi-processor systems have been available
for at least ten years without much success except for the server market.
The reason being the difficulty in exploiting parallelism in software. Even
so, these personal computers use the simpler programming paradigm
of shared memory abstraction rather than the more involved message-
passing abstraction.

When looking into single-chip solutions for complex systems, such as
Internet gateways, mobile telecommunication basestations, the complex-
ity of the problem dictates solutions with fairly many processing nodes.
Many processing nodes in a system will inevitably result in message pass-
ing since shared memory is inherently bad when it comes to scaling [1].

Even for on-chip systems there is a significant software development
cost. The cost for software development actually increases faster than
hardware development cost as can be seen in figure 1.1. A report from
IBS shows that already at 90 nm technology, the software has a higher
cost than the hardware [2]. Since software is easier to update, it is quite
obvious why system companies wish to define the behavior of their prod-
ucts more through software, thus prolonging the lifespan of the relatively

1.2 Dissertation objective and scope 5

0.35um 0.25um 0.18um 0.13um 90nm
0

10

20

30

40

50

60

Process technology

D
es

ig
n

co
st

 (M
$)

Hardware cost
Software cost

Figure 1.1: Hardware and software development cost vs. feature size

expensive and risky hardware platform. All evidence points to that this
trend will continue for the foreseeable future and beyond.

There is already a clear trend towards a larger share of the total rev-
enue in the electronics industry being generated by integrated (embed-
ded) processors. Figure 1.2 shows a graph of the relative market share
for different product categories. The total revenues also increases and it
is projected that the embedded processor market will reach $100B around
year 2010.

What is not evident from the IBS report is the on-chip communication
infrastructure and how this will be designed in the future. With an ever
increasing number of processing cores integrated on a single chip this
will become a severe bottleneck, both in terms of bandwidth and latency
as well as software implementation issues.

1.2 Dissertation objective and scope

As outlined above, the number of upcoming issues with electronics de-
sign in deep submicron technology is daunting. Of all the challenges
posed on research due to these, this thesis aims at two particular areas:

6 Introduction

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
0

10

20

30

40

50

60

70

80

90

100

Year

IC
 m

ar
ke

t
va

lu
e

(%
)

Integrated processors
Stand−alone processors
Memory and non−processors

Figure 1.2: Relative market share for different electronics products

network on chip (NoC) design and interconnection benchmarking. The
second area in turn evolved into a full-scale investigation of a couple of
applications, integrated using the NoC.

1.2.1 Network on chip design

Design of networks on chip is a difficult process since the design space is
so vast. There are a large number of design decisions that has to be made
during the design process. Many of the design decisions have an impact
on the resulting system that is very hard to predict at design time.

This thesis presents the design of a network on chip that is primarily
intended to efficiently utilize silicon area, yielding small components with
high performance. The issues presented is basic network theory with a
preference towards on-chip networks, topology, routing, and the design
and implementation of the SoCBUS project in more detail.

The objective of the on-chip communication architectures part of this
thesis is to give an introduction to the area, show a possible solution, and
evaluate this solution.

1.3 Background of the SoCBUS project 7

1.2.2 Interconnection benchmarking

With the transition to more complex systems on chip where many sub-
systems should communicate, there is an increasing need to assess the
performance required for the application and that given by the platform.
The latter problem has been addressed in this thesis.

The objective is to give a general methodology as well as a couple of
generic benchmarks that can be applied on any interconnection structure
(within certain limits).

1.2.3 Applications on the SoCBUS platform

Besides the generic traffic cases mentioned in the previous section, two
applications have been investigated further. These applications are an
Internet core router for 10 Gbit/s networking and the baseband part of a
3G WCDMA/FDD radio basestation.

1.3 Background of the SoCBUS project

The SoCBUS project started as a research project in the summer of 1999.
At that time, in principle no network on chip research had yet been pub-
lished. The project started with an investigation into possible solutions
and it was early decided to go for a simple network architecture that
would allow small and efficient implemetations of network components
to be made.

The intention was that the network should be as generic as possible
with no inherent limitations on issues such as traffic types, component
synchronization, and process technology. Thus, no assumptions were
made about these issues at the early stages.

More or less all aspects of networks on chip have been touched upon
during the project although many topics have not been investigated deeply
and are beyond the scope of this thesis.

8 Introduction

1.4 Contributions

As described earlier, there are three main areas for contributions pre-
sented in this thesis: NoC design, interconnection benchmarking, and
application mapping on the NoC platform.

The first area, NoC design, shows a complete network that has been
developed with typical digital signal processing and network processing
applications in mind. The network is based on a practical design that is
usable for most systems with multiple processors. This research project
aims for a solution that is intended to be practical and not an “on-chip
Internet”. The network has support for arbitrary topologies and is com-
pletely relaxed with respect to clocking and handshaking. This will give a
simple to use, low-constrained interconnection environment. Also, the to-
tal area cost for a network on chip has to be low, maximally around 5-10%
of the chip size. This constraint will limit the component implementations
and the total buffer memory in the network.

Since there were no publications on interconnect performance eval-
uation available, a benchmarking method was developed. This thesis
also presents this methodology for interconnection system benchmark-
ing from concept to example. The methodology is simple to use and will
yield fair results for comparisons. This has been applied to a set of generic
benchmarks for illustrative purposes.

The application mapping shows the feasibility and implementation
platform for two specific applications. An Internet core router for 10
Gbit/s networks and a baseband part for a 3G WCDMA/FDD basesta-
tion are presented.

1.5 Dissertation overview

Part I is made up of the first two chapters. These deal with a general
motivation to the work presented in the rest of the thesis and the basics of
multi-processor systems.

Parts II and III go into details on on-chip infrastructure and networks

1.5 Dissertation overview 9

on chip. Chapters 3 and 4 discuss the concept of networks on chip and the
basic challenges posed on such solutions. Chapter 5 introduces the solu-
tion, SoCBUS, that has been developed based on this background knowl-
edge. Chapter 6 discusses the design environment and, more specifically,
the simulation environment that has been developed for the SoCBUS net-
work.

Part IV discusses benchmarking of interconnects. This includes a gen-
eral intrduction to benchmarking in chapter 7 and a newly developed
methodology for interconnect benchmarking described in chapter 8.

Part V evaluates the SoCBUS network from a real-world application
perspective. Two applications, an Internet core router (chapter 9) and a
3G basestation (chapter 10), have been investigated.

Finally, part VI concludes the thesis and gives an outlook on the future
work that is possible with the previously presented work as a starting
point.

Bibliography

[1] David E. Culler, Jaswinder Pal Singh, and Anoop Gupta, Parallel com-
puter architecture: A hardware/software approach. Morgan Kaufmann
Publishers, Inc., 1999. ISBN 1558603433.

[2] Handel Jones, Analysis of the relationship between EDA expenditures and
competitive positioning of IC vendors for 2003. IBS Inc. through EDA
Consortium, http://www.edac.org, 2003.

10 Introduction

Chapter 2

Heterogeneous
Multi-Processor Systems

Any sufficiently advanced technology is indistinguishable from magic.
Arthur C. Clarke (Clarke’s third law)

2.1 Introduction

People in the area of scientific computing have used multi-processor sys-
tems for many years. The advantage being the shorter run-time to solve
a computationally intensive problem.

The problem with multi-processor systems is that in order to get a
speedup of the application, significant parallelization is needed. Even
very small amounts of nonparallelizable code will severely hamper the
speedup as is shown by equation 2.1. This equation describes what is
known as Amdahl’s law. The program has a nonparallelizable part, s, and
a parallelizable part, p = 1 − s. By increasing the number of processors,
N , some speedup can be achieved.

S =
s+ p

s+ p/N
=

N

(1− p)N + p
(2.1)

The theoretical limit set by this law is shown in figure 2.1 for some
values of p. It is clear from the figure that even when a small portion of the

11

12 Heterogeneous Multi-Processor Systems

0 10 20 30 40 50 60 70
1

2

3

4

5

6

7

8

9

Number of processors

S
pe

ed
up

 (t
im

es
)

90%

80%

70%

60%

50%

Parallelizable code (%)

Figure 2.1: Speedup for parallel computers (Amdahl’s law)

program can not be parallelized, this will rapidly reduce the additional
speedup when adding processors.

It must be considered that Amdahl’s law is only valid for applications
that have a large amount of internal dependencies. Applications that are
based on dataflows may well seem to break this law, although then the
law has not been applied correctly. The dataflow applications may have
large sequential parts when considering a single data block, whereas data
blocks may be largely independent of each other. This will give the possi-
bility to parallelize even such an application but insted over several data
blocks. This thesis mainly focuses on dataflow based applications in the
communications and media signal processing domains.

2.1.1 Parallelization of applications

There are three main methods of parallelizing an application. Which one
is most appropriate depends on the type of application and the context in
which it is run. For more general-purpose scientific applications that are
run on a limited dataset, e.g. protein folding, the only method is to divide
the problem into smaller chunks of the same type. These can then easily
be handled and distributed on the processors. Doing this kind of division

2.2 Platform-based design 13

is very difficult and can suffer heavily under Amdahl’s law.

The second main method is appropriate for applications that are in-
herently sequential or dataflow based. Such applications are typically
run over a large, possibly infinite, dataset. Dividing dataflow programs
into smaller tasks is significantly easier than the previous case. Thus the
application can easily be distributed onto a set of (different) processors.
Applications in the areas of multimedia processing and radio baseband
processing tend to be of the dataflow type. In this case, it is also possible
to tailor the processors so that they are more appropriate for their part in
the processing chain.

The final method can be used when several independent dataflows
are handled, like a (general-purpose) network router. The dependecies
in such a system comes to a large extent from the memory handling and
partitioning.

By creating a dataflow platform with several heterogeneous and spe-
cialized DSP cores it is possible to reach the three ultimate goals for elec-
tronics design: high performance, low power consumption, and low cost.

2.2 Platform-based design

The concept of platform-based design in short means that a chip design
should be reusable for a set of applications. This is preferred in order
to amortize the non-recurrent engineering (NRE) costs for chip design
and manufacturing over a larger number of chips. The idea is to create
a generic enough platform for the set of applications by allowing soft-
ware configuration of much functionality. The platforms are typically
constructed around some programmable or configurable IP. This can be a
mask-programmed ASIC (gate array), an FPGA, or a processor.

If such a platform is to be efficient for the new, more complex types of
applications, a number of processors (or processing elements) are needed.
Typically, these processing elements should be of different types, each
type tailored to a specific aspect of the processing in the application area.

14 Heterogeneous Multi-Processor Systems

CPU Acc Acc Acc

IOMEMMEMMEM

Figure 2.2: Classical bus-centric platform with a single CPU

2.3 Evolution of processor-based platforms

The classical processor-based platform is depicted in figure 2.2. The typ-
ical architecture consists of a single processor, either a general-purpose
processor (GPP) or a digital signal processor (DSP). This is accompanied
by a (relatively small) number of hardware units tailored to specific func-
tionalities, known as accelerators. Further, there are a few memories for
storing programs, coefficients, and data for the processing. Finally, some
input/output circuitry is needed. These units are connected together us-
ing a bus or in rare cases a small-scale crossbar. This in total makes up a
complete system.

The single drawback with such a solution is the scalability of the sys-
tem. With an increase in the processing requirements, the platform has
to follow. This is not trivial since there is no easy and scalable method to
add further processing elements to the system.

The current trend is towards larger, more complex systems. The com-
plete system will probably consist of many subsystems, each similar to the
classical platform. These are in turn connected to each other using an in-
terconnection network, see figure 2.3. A processing element should not be
seen as a single processor, but rather as a small self-contained processor-
based system.

2.4 Communication-centric platform design 15

PEPE

PEPE PEPE

PEPE

Interconnection network

Figure 2.3: New platform architecture with multiple processing elements
(PEs) each containing one (or more) processors

2.4 Communication-centric platform design

Considering the complex platforms outlined above it is clear that the in-
terconnection network will become a hot issue when designing such sys-
tems. The basic performance of the processing elements are of no use
unless the data can be fed to them at the appropriate rates. The design
of a communication infrastructure for complex chips must be done in an
orderly fashion to achieve good results at a reasonable design efficiency.

Rabaey identifies four key tenets for the design of such platforms [1]:

• Applying a discipline to on-chip communication design, giving a
transition from ad-hoc SoCs to disciplined IC platforms.

• Base the design on formal models of computation (MOCs) and sup-
port a correct-by-construction synthesis design flow as well as a set
of analysis tools for broad design exploration.

• Maximize reuse by defining a set of interfaces between layers.

• Provide the application programmer with a set of application pro-
gramming interfaces (APIs) that hides the architectural details be-
hind an abstraction layer.

16 Heterogeneous Multi-Processor Systems

From these bullet points one can identify several tools and libraries
that have to be present for the efficient development of platforms and
products built on these platforms. The tools include synthesis (e.g. net-
work generator) as well as analysis (e.g. behavioral simulator).

Libraries have to be present for communication abstraction in the soft-
ware. The advantages of using well-defined APIs have been appreciated
for several years by the parallel-computer society through the message
passing interface (MPI) [2].

Also, the use of well defined MOCs and APIs makes it possible to cre-
ate the software components of the system concurrently with the hard-
ware platform. By using architectural and behavioral simulators for the
system components it is possible to run and debug software at a stage
where no hardware is available. When the hardware becomes available
it is (in theory) just to move the software components onto the hardware
and the system should be up and running. Thus it is possible to shrink
the time to market significantly.

2.4.1 Dependencies

There are three types of large scale dependencies in a complex system:
synchronization, communication, and parallelization. The ultimate goal
of communication centric design is to eliminate all three of these in order
to fully utilize the power of the platform for the application. Dataflow
applications based on data push between subsystem can easily eliminate
the need for extra synchronization on the top level, assuming that the
system is fast enough to fulfill the processing requirements.

By using appropriate hardware and strong tool support, it is possible
to minimize the other two dependencies. Communication dependencies
can be minimized through the use of a scalable and efficient intercon-
nect structure with matching performance. When the communication is
sorted out, parallelization problems are minimized through a multiliplic-
ity of heterogeneous subsystems with the appropriate task identification,
subsystem mapping, and scheduling.

2.5 High-level application/platform design 17

2.5 High-level application/platform design

The creation of a multiprocessor environment on a chip is a fairly straight-
forward task. Even though the complexity of the system is high and there
are numerous problems at the physical level (e.g. DSM effects) it is still
manageable to build quite complicated systems. Producing software that
can exploit the platform efficiently is a completely different problem that
is not necessarily simple.

Taking software development from the sequential uni-processor sys-
tem onto a truly parallel tasking multiprocessor system that furthermore
is heterogeneous can make software development complicated. The slow
introduction of multiprocessor platforms in desktop PCs is a very good
evidence for this fact.

2.5.1 Profiling of applications

The potential applications in the domain that is targeted for the platform
have to be considered at an early stage in the platform design. The ap-
plications are typically examined for kernel operations and algorithms
that are used for significant portions of time. These kernel parts are then
considered when the hardware is designed. By using very efficient imple-
mentations of the kernel operations but still allowing any kind of program
to run it is possible to achieve high performance within the application
domain while not restricting the platform too much.

The profiling is done at a very early stage in system design and must
be considered to be somewhat uncertain. Therefore it should not be relied
on to the full extent but there should be headroom for unprofiled applica-
tions on the platform.

2.5.2 Selection of processing elements

The selection/design have to be performed with great care by experi-
enced designers for a suitable end result. If the platform design is based
on IP reuse to a large extent, which is desirable, the selection of which IP

18 Heterogeneous Multi-Processor Systems

Application Platform

Partitioning

Mapping

Scheduling

System

Figure 2.4: Integration flow for software on top of a hardware platform

blocks to use is a design decision with large impact on the performance
of the platform. The design decisions when building new IP blocks have
a similarly large impact on the result.

2.6 Application implementation

The last step in the platform-based design is the integration of an applica-
tion on top of the platform. This work includes application partitioning
and mapping onto processing elements.

A high-level implementation flow for the software on the platform is
shown in figure 2.4. The application is first partitioned into small (atomic)
units, commonly denoted “tasks”, that can easily be extracted from the
programs. This could simply be subroutines or other (possibly explicit)
entities in the program code. The tasks are then mapped onto the process-
ing elements, considering the costs of communication between the tasks
in the specific platform. The mapped tasks are then scheduled so that the

2.6 Application implementation 19

system meets the processing deadlines set by the designer.

2.6.1 Application mapping

How mapping of the application onto the hardware platform is done
is important for the end result. The ideal application mapping should
minimize memory usage, processing requirements, communication, and
power consumption to a global optimum for the application. Mapping
is a known NP-hard problem so there is little hope to find the optimum
solution for other than the smallest problems.

The problem can be formulated as follows. Given a platform with
processing elements E, a set of tasks T , and a communication graph C,
find a mapping M that fulfills the constraints.

M = Fmap (E, T, C) (2.2)

The mapping function Fmap must be somewhat tailored to the application
area for near optimal results as stated above. The result of the mapping
is basically a set of tuples (<Ei, Tj>) that describes which task(s) go on
which processing element.

2.6.2 Scheduling of real-time applications

After the application has been mapped onto the hardware platform it is
time to create a schedule. For a hard real time system it is important that
the schedule meets the worst-case requirements for all situations. If there
is a large ratio between the worst-case and the average runtime of the
tasks, this may lead to a significantly overpowered system to be able to
keep up with the worst-case timing. If the worst case is unlikely to occur,
it may be worthwhile to consider a softer real-time approach. Thus it may
be possible to lower the processing performance requirements with only
a small cost in terms of system performance.

There are a vast number of approaches to scheduling, from the simple
“as soon as possible” (ASAP) and “as late as possible” (ALAP) scheduling
techniques to very elaborate ones. Achieving an optimal schedule is only

20 Heterogeneous Multi-Processor Systems

possible for reasonably small problems whereas large problem formula-
tions generally use an ad-hoc approach to get nearly optimal results.

There are and have been a large number of different research projects
around the world concerning scheduling. Some target specific applica-
tion areas, e.g. matrix calculations [3], while others target specific goals,
e.g. memory access minimization [4]. Traditionally, there have been much
research on scheduling for single-processor systems [5] while the multi-
processor systems have largely been neglected until recent years.

Discussions on high-level synthesis issues, such as mapping and schedul-
ing, are far beyond the scope of this thesis. A good place to start for infor-
mation in this area is the book by Eles, Kuchinski, and Peng [6].

Bibliography

[1] Jari Nurmi, Hannu Tenhunen, Jouni Isoaho, and Axel Jantsch (Eds.),
Interconnect-centric design for advanced SoC and NoC: Communication-
based design for network-on-chip (chapter 1). Kluwer Academic Publish-
ers, 2004. ISBN 1-4020-7835-8.

[2] “Message passing interface (2.0),” http://www.mpi-forum.org/, 1997.

[3] G. N. S. Prasanna and B. R. Musicus, “Generalized multiprocessor
scheduling and applications to matrix computations,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 7, pp. 650–664, June 1996.

[4] Jenny Qingyan Wang, Edwin Hsing-Mean Sha, and Nelson Luiz Pas-
sos, “Minimization of memory access overhead for multidimensional
DSP applications via multilevel partitioning and scheduling,” IEEE
Transactions on Circuits And Systems II: Analog and Digital Signal Pro-
cessing, vol. 44, Sept. 1997.

[5] Jiang Zhu, T. G. Lewis, W. Jackson, and R. L. Wilson, “Scheduling in
hard real-time applications,” IEEE Software, vol. 12, pp. 54–63, May
1995.

2.6 Application implementation 21

[6] Petru Eles, Krystzof Kuchinski, and Zebo Peng, System synthesis with
VHDL. Kluwer Academic Publishers, 1998. ISBN 0792380827.

22 Heterogeneous Multi-Processor Systems

Part II

On-Chip Communication
Infrastructures

23

Chapter 3

On-Chip Communication
Infrastructures

Different computers need different cables.
HP DraftPro DXL/EXL User’s guide

Merriam-Webster Online Dictionary defines infrastructure as “the under-
lying foundation or basic framework (as of a system or organization)”.
Accordingly, the infrastructure is one of the most important aspects of a
system.

In order to create a good infrastructure, it is very important to under-
stand the context in which it should work. When a good understanding
has been reached the potential for efficient, high-performance designs is
very high. In the end, making a good design is one of the most important
factors in product success.

In this chapter, problem areas related to on-chip communication in-
frastructure are identified and the possible solution spaces are explored.

3.1 Communication environment

It is important to see both the differences and likenesses between off- and
on-chip communication. Several properties are very different between

25

26 On-Chip Communication Infrastructures

the two domains, a topology that can e.g. change considerably during
runtime for an off-chip network whereas the on-chip counterpart will be
more or less the same. Other properties, such as synchronization, is more
or less the same for the two domains.

3.1.1 Internal synchronization

Whereas a typical off-chip network (e.g. gigabit Ethernet) uses relatively
high speed communication over long distances, the on-chip counterpart
uses much shorter distances. Consider the gigabit Ethernet signal (@
125 MHz) where each cycle corresponds to a couple of meters of wire.
This will clearly give synchronization problems even for rather short wire
lengths used in the network. On the chip where distances typically reach
a maximum in the centimeter range, a few GHz is necessary to reach the
same effects. This is by no means an impossible signaling rate on-chip [1].

Possible remedies for the synchronization problem may be the use of
mesochronous or pleisochronous clocking schemes for the interconnect.
Mesochronous means that both parties use the same clock frequency but
with an unknown phase difference while pleisochronous means approx-
imately the same clock frequency in both ends. A purely asynchronous
approach will also work if that is desired.

3.1.2 Area and power considerations

Other very important aspect in on-chip communications are the area and
power consumptions of the communications subsystem. Whereas the off-
chip counterpart can occupy considerable space and consume consider-
able power, the on-chip version must be both small and power-efficient.

Even with an somewhat increasing gate count, the building blocks
in the interconnect can become physically smaller as scaling continues.
Another effect of process scaling is the significantly increased amount of
transistors per chip, see figure 3.1. The increase comes almost entirely
from the shrinking feature sizes while increased chip size has a smaller
impact [2]. With scaling comes the possibility for more complex function-

3.2 Challenges and opportunities 27

2004 2006 2008 2010 2012 2014 2016 2018
102

103

104

105

Fu
nc

tio
ns

 p
er

 c
hi

p
(M

tra
ns

is
to

rs
)

Year

Functions

2004 2006 2008 2010 2012 2014 2016 2018
0

10

20

30

40

50

60

70

P
rin

te
d

ga
te

 le
ng

th
 (n

m
)

Gate length

Figure 3.1: Transistors per chip vs. feature size

ality in the interconnect. This is not only a necessity but also a necessity
since a number of problems will require the use of more advanced func-
tionality in the interconnect as is shown in section 3.2.

3.1.3 Comparison with parallel computer networks

It is interesting to see the similarities between on-chip communication
infrastructures for the real-time class applications and networks used in
parallel computers. The demands for connectivity, performance, reliabil-
ity, etc. are all in the same range as for the on-chip counterparts. Par-
allel computer networks also tend to be relatively fixed topology, but
with a higher fault probability than on-chip. This all leads to the parallel
computer network arena being a very good place for inspiration when it
comes to advanced on-chip communication.

3.2 Challenges and opportunities

There are many challenges when designing the communication infras-
tructure. On the other hand, there are also many opportunities given in

28 On-Chip Communication Infrastructures

Table 3.1: Some challenges in on-chip communication
Context Challenge

Physical Voltage regions
Clock distribution
GALS
Area and power

Logical Connectivity
Bandwidth and latency
Real-time behavior
Dynamic vs. static behavior
Robustness

Design efficiency Productivity
Verification
Testing

the design process. Some of these challenges are shown in table 3.1. The
remainder of this section will elaborate a bit on these challenges and out-
line the opportunities given.

3.2.1 Physical issues

There are several challenges for on-chip interconnects in the physical do-
main. Most of the current challenges derive from the urge to save on
power consumption.

The dynamic power consumption of a CMOS system is governed by
the well-known formula

P = α · C · f · V 2
dd (3.1)

As can be seen, the most important factor is the supply voltage (Vdd). The
other factors are operating frequency (f), switched capacitance (C), and
switching activity (α).

Operating frequency and switched capacitance are in principle hard

3.2 Challenges and opportunities 29

to reduce. The switched capacitance is determined primarily by physical
layout considerations. The operating frequency is dictated by the require-
ments on bandwidth, latency, etc. It is in principle possible to reduce
the frequency by adding more parallel wires for the interconnect. This
method, while reducing the frequency, will increase the switched capaci-
tance proportionally resulting in a similar power consumption. There is a
possibility to save energy in this case, though this comes from the possi-
bility to decrease the power supply for the lower frequency.

Switching activity can be reduced in several fashions. One of the
simplest is using smart coding schemes for the interconnect [3]. This
can be particularly useful in conjunction with error-correcting codes that
will introduce redundancy, possibly giving more favorable autocorrela-
tion properties in the dataflows.

Voltage regions

One increasingly important aspect in physical design is voltage regions.
As power is rapidly becoming an important factor in design, adaptation
of supply voltage to the computing power needed is increasing in popu-
larity. This will lead to chips with many different voltage regions, with
voltages that will vary during runtime. The communication subsystem
must be able to allow the differences in supply voltages in different at-
tached subsystems, possibly even running the interconnect at different
voltages dependent on the communication demands.

Clock distribution and GALS

Clock distribution is another problem that is becoming increasingly dif-
ficult in complex systems. Keeping an entire chip synchronous is no
longer possible for any useful frequencies. Instead the clocking can be
divided into smaller regions that each internally run synchronously. Each
such region will have its own clock running at the appropriate frequency
for that module. The distribution of the clock can then be done using
a low-frequency normal that is used in local phase-locked loops (PLL)

30 On-Chip Communication Infrastructures

for clock generation on chip, thus circumventing the power-hungry high-
frequency clock distribution. Clock distribution is not normally done
through the communication infrastructure and will not be discussed fur-
ther in this thesis.

With the increasing clock rates and multiple clock domains, the trend
is towards globally asynchronous/locally synchronous (GALS) designs.
These designs are based on asynchronous connections between the syn-
chronous regions. The design of efficient asynchronous communication
is error-prone with todays design tools and should preferably be done in
as few places as possible. One advantageous possibility is to include the
asynchronism in the communication infrastructure, isolating it to a single
IP block instead of requiring asynchronous circuitry in many different IP
blocks.

3.2.2 Logical issues

Connectivity

One important aspect of the interconnect is the connectivity, i.e. which
processing elements can communicate with which other processing ele-
ments. As the trend towards application-domain-specific hardware plat-
forms continue, there is an increasing need to supply appropriate con-
nectivity to allow future adaptations to new, upcoming standards in the
given area. It is obvious that more complex interconnect architectures
can provide significantly higher usable connectivity than a bus or similar
structure.

Bandwidth and latency

There are of course also challenges in the area of raw communication
performance. As the applications and systems become more and more
complex, the need for communication capacity will also increase and be-
come more complex. The two primary targets when discussing capacity
is bandwidth, i.e. how much data can be moved per time period, and
latency, i.e. the end-to-end delay for data transfer.

3.2 Challenges and opportunities 31

An interesting sidenote on latency is that a higher latency will also
imply more storage in the interconnect. This is obvious from the fact that
more data is in the interconnect at the same time.

It is relatively simple to analyze and describe the bandwidth and la-
tency for a simple infrastructural element, e.g. a bus. When going for
more complex structures, the analysis becomes more and more difficult.
There is currently no theory available that can cope with arbitrary net-
works.

Real-time behavior

Another important aspect in advanced designs, especially for media and
communications, is the real-time behavior. Most of the applications have
strict deadlines to meet if the system is to behave correctly. A typical ex-
ample is a radio basestation that has to process one incoming radio frame
before the arrival of the next frame.

The requirements on the communication infrastructure becomes sig-
nificantly tougher when considering real-time behavior. A typical remedy
to the real-time behavior problem is quality of service (QoS).

Dynamic and static behavior

Whereas the static behavior of a system can be fairly simple to analyze, the
dynamic behavior can be largely unpredictable. Intentional events, such
as schedule changes and unscheduled or random traffic, as well as unin-
tentional events, e.g. transient errors, can trigger complex event chains in
the interconnect system. The analysis of such events can be more or less
impossible, requiring the use of simulation to assess the impacts.

The issues in dynamic behavior is largely coupled to the real-time be-
havior. In order to guarantee the real-time behavior, all dynamic issues
and their impact will have to be taken into account.

32 On-Chip Communication Infrastructures

Robustness and reliability

Another aspect that is closely related to real-time behavior and QoS is ro-
bustness. A network must be reliable, i.e. provide correct functionality in
all normal cases, in order to guarantee anything in the area of QoS. Dur-
ing exceptional circumstances, e.g. physical failure in the chip, reliability
(and thus QoS) can normally not be provided at all.

There is a physical motivation for adding reliability circuitry to the in-
frastructure. With shrinking feature sizes the electrical noise margins will
continue to shrink giving higher and higher probability that something
will go wrong, e.g. that a signal may be inadvertently changed [4]. This
can to a large extent be counteracted by error-correcting codes on the in-
terconnect. If QoS is to be guaranteed, error detection is not enough since
there will be no headroom for retransmissions. If the data is not correct
on the first try the guaranteed bounds can not be kept.

3.2.3 Design efficiency issues

Design productivity is one of the absolutely worst problems for the indus-
try today when it comes to exploiting the process technology available, as
described in section 1.1. Three areas related to design productivity are
clear candidates for help from the communication infrastructure.

Design productivity

Ease of integration in design projects primarily based on reuse of previous
designs or external IP blocks is paramount for the shortening of the design
cycle. Thus the communication infrastructure should provide easy to use,
easily verified, standardized connections that can allow high productivity
in integration.

Furthermore, it is vital that the performance requirements for the sys-
tem can be met. This implies that the communication infrastructure must
be easily understood and evaluated from a performance perspective to
qualify the system for the intended application or application area.

3.2 Challenges and opportunities 33

System design verification

As mentioned in the previous paragraphs, ease of verification is very im-
portant for the design productivity. There are figures in the literature
showing that the verification effort clearly outweighs the design effort
in complex system on chip designs today [5]. Since the communication
infrastructure is the glue that holds the system together, this is a key area
to alleviating the verification pain in complex designs.

By allowing a reasonably decoupled verification of the system, where
subsystems can be verified separately and then easily verified at the inte-
gration phase could slash the verification time considerably.

There are three typical methods to verify a multi-processor design.
The first is to create a “super-model” where all functionality of the sys-
tem is included and then verify the RTL designs and software implemen-
tations against this model. Another method is to use formal verification of
all subsystem interaction before the customer modification, thus minimiz-
ing the inter-work verification as much as possible. The final variation is
to generate a super-model for the interconnect functionality and the inter-
connect interfaces, leaving each subsystem to be verified using whichever
method being most suitable.

The first method is generally too costly and complex for use in the
most complex system designs, although the verification quality can be
very high when such a model is used.

The second method will give good verification quality before cus-
tomer modification, but in principle everything will have to be verified
again after modifications. This second verification run may be signifi-
cantly easier than it would have been without the previous verification
efforts for the system.

The third and final method seems to be the most appropriate in the
context. The use of a super-model for the interconnect allows for easy ver-
ification of the interconnect and interfaces in the system. Also, by build-
ing the model with a well-designed interface, this model can be used as a
basis for an overall super-model of the system.

34 On-Chip Communication Infrastructures

Chip testing

Chip testing is now a major cost in the manufacture of complex chips.
With the unproportional scaling of logic resources compared to the num-
ber of pins on a package this will only worsen over time. The current
trend is towards more built-in selftest (BIST) circuitry on the chip to test
the various parts. Even with BIST circuitry there is a need to control the
testing and distribute the test information over the chip. There is an on-
going effort to create a system on chip test structure today [6]. This effort
does not specify the infrastructure for connecting different test subsys-
tems so that is left for the designer to do.

Besides the inherent problem of testing the communication infrastruc-
ture itself, one can consider the advantages of using the infrastructure for
communication purposes when testing other parts of the design. The in-
frastructure that is used for communication can thus be reused at chip
testing for controlling the testing procedures from the chip tester. One
obvious advantage is that a completely separate infrastructure for testing
(that in turn has to be verified and tested) can be avoided.

Another advantage with this is that test ports will be connected to the
network which in turn is connected to the system controller. The system
controller can thus use the interconnect to run diagnostics and selftests
on idle parts of the system without extra communication interfaces being
needed for this purpose. This may also lead to simpler testing equip-
ment being needed for the testing since much of the tester functionality is
moved onto the chip.

3.3 Traditional interconnects

The historically proven most appropriate solution for a small system is
the time-division bus. This is appropriate where a small number of units,
typically less than ten, are attached to the bus. It is also possible to cre-
ate multi-processor systems with a bus, see figure 3.2. In this case, the
cache memories are crucial in offloading the traffic on the bus to get any

3.4 Generalized communication structures 35

DCIC

CPU

IC DC

CPU

IOMEM

Figure 3.2: Bus based two-processor system (IC/DC = Instruction/data
cache)

performance enhancement from the added processor(s).
This bus-based solution has very good properties for a limited sys-

tem, but scales very poorly to larger systems. As the number of attached
units increase, the bandwidth available to each one will decrease. Also,
the increased number of units will result in higher capacitive bus loading
(due to fan-out) or larger logic depth in the bus, further decreasing the
performance.

Point-to-point (PTP) links are very nice from a bandwidth scaling per-
spective since each physical communication channel is completely sepa-
rated from the other channels. The limiting factor for scalability here is
complexity. For a fully connected network of PTP links with n units, a to-
tal of n · (n− 1)/2 links will be needed. This number grows rapidly when
the number of units is increased.

3.4 Generalized communication structures

Because of the bad scaling for both traditional buses and PTP links, other
communication architectures must be used for larger systems. The first
step in scaling is the use of a bridge between two buses. This idea can
be generalized so that a bridging network of some kind is used between

36 On-Chip Communication Infrastructures

Bridging network Bus

Figure 3.3: Hierarchical bus/network architecture

the buses. This bridging network could in principle be anything from
a simple bus-to-bus bridge to the Internet. A network of some kind is
the most suitable for a system where scalability is the primary issue. It is
important to remember that the complexity has to be managed in a proper
fashion, especially for on-chip communication as will be discussed in the
next chapter.

For a more in-depth discussion on general interconnection networks
than is given in this thesis, please refer to the book on interconnection
networks by Dally and Towles [7].

Bibliography

[1] Peter Caputa and Christer Svensson, “Well-behaved global on-chip
interconnect,” in IEEE Transactions on Circuits and Systems I, 2005.

[2] International Technology Roadmap for Semiconductors, 2003 Edition, Exec-
utive Summary. http://public.itrs.net/, 2003.

[3] Sumant Ramprasad, Naresh R. Shanbhag, and Ibrahim N. Hajj, “Sig-
nal coding for low power: Fundamental limits and practical realiza-
tions,” IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, July 1999.

[4] G.R. Srinivasan, P.C. Murley, and H.K. Tang, “Accurate, predictive
modeling of soft error rate due to cosmic rays and chip alpha radia-

3.4 Generalized communication structures 37

tion,” in Proceedings of the IEEE International Reliability Physics Sympo-
sium, pp. 12–16, Apr. 2003.

[5] Michael Keating and Pierre Bricaud, Reuse methodology manual, 3rd ed.
Kluwer Academic Publishers, 2002. ISBN 1-4020-7141-8.

[6] IEEE P1500 Working Group, Standard for Embedded Core Test (SECT).
http://grouper.ieee.org/groups/1500/, 2005.

[7] William J. Dally and Brian Towles, Principles and practices of intercon-
nection networks. Morgan Kaufmann Publishers, Inc., 1998. ISBN 0-12-
200751-4.

38 On-Chip Communication Infrastructures

Chapter 4

Networks on Chip

Think like a wise man but communicate in the language of the people.
William Butler Yeats (1865 - 1939)

This chapter continues the discussion on communication infrastructure
with a network on chip focus. Several general aspects related to networks
on chip are discussed in more detail.

4.1 The impact of context

There are a number of differences between implementations of buses, off-
chip (general) networks, and on-chip networks. These are important to
have in mind when creating a network on chip in order to get a reasonable
and efficient result.

The time division multiplex (TDM) bus is the traditional, single-media-
based interconnect that may connect any two attached units (possibly
with some restrictions) while blocking all other combinations at the same
time. Thus there is no possiblity to have more than one transfer running
at the same time on a single TDM bus.

A general off-chip network, on the other hand, will allow multiple si-
multaneous trasfers (in most cases). It may allow units to connect and dis-
engage from the network without prior notification and that the topology

39

40 Networks on Chip

may change at any moment due to this. Also there are many sources of
unpredictability in such a network. A new unit that is attached may cre-
ate “bad” traffic which was not foreseen at the deployment of the network
and may thus damage the performance of the network. This is possible
since the entire system (i.e. network and units) was not verified together
in the first place.

An on-chip network will reside in a controlled environment. After
manufacturing the chip, all units must already be there and no new units
can be attached. The topology is also fixed at design time. Because of
this hard deadline on network parameters, many aspects of the network
design are simplified.

4.2 The OSI model

The seven layer open systems interconnect (OSI) model [1] was devel-
oped with general purpose networks in mind. Despite its usefulness in
understanding the workings of networks, it is important to realize that the
OSI model is not necessarily applicable directly to all types of networks.
This is especially true when it comes to implementation where an OSI-
layered implementation could become cumbersome and complex with-
out adding any significant value. One such network type where the lay-
ered approach of implementation is unsuitable is on-chip networks. The
reason is that there is some fundamental differences between a general-
purpose network (e.g. Internet) and an on-chip network. Whereas the
general-purpose network is in principle unknown, i.e. nodes can be added
and removed at any time, the topology is not fixed, and so on, the on-chip
network is well-known since basically everything is fixed at the time of
chip manufacturing.

With the additional knowledge of the network infrastructure in a con-
trolled environment it is possible to group several layers of the OSI model,
without losing any flexibility and abstraction, and thereby simplifying the
hardware and software. The simplifications will at the same time cut la-
tency in the network. A typical coverage of the OSI-layers in a network

4.2 The OSI model 41

Table 4.1: The seven OSI layers and their coverage in the typical NoC
Layer Coverage

7 Application Not covered
6 Presentation Wrappers
5 Session Wrappers

4 Transport Components
3 Network Components

2 Link Components
1 Physical Components

on chip is shown in table 4.1.

The OSI layers are naturally grouped in a network on chip because
of the limited freedom. Typically, the link and physical layers are very
much related as well as the network and transport layers. These four
layers have to be covered by the network in order to allow easy separation
of the hardware from the software. The session and presentation layers
can be left to the software or handled by the wrappers depending on the
complexity of the protocols on these layers.

There is no natural border (or even a reason for one) between the phys-
ical and link layers in a network on chip since there is basically just one
physical media possible, i.e. is the silicon chip. If just physical signaling
is considered at this level, e.g. low-swing techniques, then the physical
layer is even below the level of the network on chip. Similar arguments
are valid for other layer pairs. Thus there is no reason for these layers
being separated and no need for the full OSI layering to be implemented.
This will save on component complexity and thereby give a cheaper over-
all solution.

In short, the OSI model is very useful for understanding network pro-
tocols and network behavior but is not necessarily the ultimate guideline
for protocol design. Creating a protocol stack that is adapted to the system
requirements and limitations is far more important than OSI compliance.

42 Networks on Chip

4.3 Quality of service

General computer networks, like the Internet, offer only best-effort packet
forwarding. When congestion starts to occur, the service providers and
core network providers will simply increase the available bandwidth by
buying new, more powerful equipment until the congestion situation dis-
appears. This method of dealing with congestion, though efficient in its
simplicity, is not always possible or even desirable from a technologi-
cal perspective. One such situation is networks on chip where exces-
sive bandwidth requirements will give too costly implementations, both
in terms of area and power.

Instead, there are many possible levels where a real-time behavior can
be guaranteed. The most straight forward is to give guarantees on the
network bandwidth and latency per communication. Such guarantees
are known as quality of service (QoS).

Support for QoS implies certain qualities in the network. All commu-
nications must be correct and complete, i.e. sent data must arrive unal-
tered at the destination. There must also be guaranteed bounds on min-
imum bandwidth and maximum latency. Thus it is necessary to identify
and separate the different communication flows in the network. Separa-
tion can be done using time slots as in Æthereal (Philips Research [2]) or
any other virtual circuit technique.

Quality of service is only necessary when the underlying network is
unknown or unreliable and based on resources that are limited from the
application perspective. It is useful in OSI-based systems where any level
can be exchanged for another implementation, resulting in a network
with different performance.

If there are adequate resources in the network, all requirements can be
met in the design. This will allow for a network without the support of
QoS and will thus simplify the components. Also, an embedded system is
generally based on worst-case assumptions, which will take all situations
into account, further reducing the need for QoS. Currently, the time to
market is the most important aspect of system design. This will require

4.4 Network topology 43

Table 4.2: Theoretical performance of different network topologies assum-
ing N connected cores.

Ring 2D Mesh 2D torus Binary tree Fat tree

No. of nodes N
√
N

√
N 2N − 1 2N/4−1

Bisection BW 2
√
N 2

√
N 1 N

Links Bidir Bidir Bidir Bidir Bidir

Complexity
Wiring Low Low Low Low High
Wire length Short Short Medium Medium Long
Routing Low Medium Medium Low High

the use of simple components and tools to achieve a complex system.

4.4 Network topology

The topology of a network is the geometrical configuration on logical
level used to connect the different network components. Many different
topologies exist, from the simplest crossbar to very complex hierarchical
cubes and beyond.

The first aspect to take into account when selecting which topology to
use for a network is the patterns of traffic that will go through the net-
work. So, in order to determine the most appropriate topology for a sys-
tem an investigation of the advantages and drawbacks of a number of
common topologies with respect to the application at hand must be done
during the early design stages.

For a more in-depth discussion on topologies than that given in this
thesis, please refer to the book by Dally and Towles [3].

4.4.1 Theoretical performance of topologies

A short summary of the theoretical performance for some of the common
network topologies can be found in table 4.2. The ring topology is very

44 Networks on Chip

Figure 4.1: 2D mesh topology (4x4). Dashed line marks bisection.

easy to implement but is subject to the same fundamental limitations as
a time-division bus since the only available resource for transmission at a
node will be occupied whenever a transmission wants to pass that node.
On the other hand, the more powerful topologies like fat trees are very
complex when it comes to wiring.

4.4.2 Properties of the 2D mesh and torus

The two-dimensional mesh, see figure 4.1, and torus, see figure 4.2, are
very suitable for on-chip networks. The main advantages of these are
the good performance-to-resource ratio, the ease of routing, and that the
topologies are very easily mapped onto a chip. The torus have somewhat
better properties for random traffic but the added resources may be un-
necessary for many systems. The better performance of the torus is due to
the uniform connectivity of that topology. The uniform connectivity also
removes any boundary effects from the torus, which will appear totally
homogeneous. The average logical distance between routers will become
shorter in the torus, but at the cost of possibly longer physical distances.

4.4.3 Advantages with arbitrary topologies

The clear advantage with allowing implementations with arbitrary topol-
ogy is the possibility to adapt the network to the application domain at
hand. This can give significant savings for parts of the network where

4.5 Packet and circuit switching 45

(a) Torus (b) Folded torus

Figure 4.2: 2D torus variations (4x4). Dashed line marks bisection.

little traffic is handled while still being able to support significantly more
traffic in other parts.

A small example of a nonstandardized network topology is shown
in figure 4.3. Using two links between routers will effectively double
the bandwidth there (pair 4-5), while removing links between adjacent
routers will reduce network cost (pair 5-8). Also it is possible to skip
routers to get shorter paths, leading to less resource usage and lower la-
tency (pair 1-7).

4.5 Packet and circuit switching

A network using circuit switching has low complexity switching nodes
because their main function is basically to connect an incoming link to
an outgoing link. Deadlock avoidance is easily achieved since the circuit
setup can either succeed or fail but may easily be prevented from stalling
somewhere in the process. Packet switching inarguably leads to more
complex switching nodes. Because the risk of deadlocks, one of three

46 Networks on Chip

1 2 3

4 5 6

7 8

Figure 4.3: Example of an arbitrary topology

possible solutions has to be applied. Buffering of every packet in its en-
tirety before routing it to the next node will prevent deadlock. This is very
inefficient from memory usage and latency perspective in a network on
chip. Another method is to use virtual channels for solving the loops in
the dependency graph [4]. Finally, restrictions of possible paths can also
be used to prevent loops in the dependency graph [5]. These alternate
methods will be discussed further in section 4.7.

4.5.1 Latency

Packet switching may also suffer from latency problems where the packet
delay through the network can be several hundred or even several thou-
sands of cycles dependent on routing algorithms and router implemen-
tations [6]. One example is where a fully buffering implementation of a
packet switched network transfers 128 bytes of information between two
diagonally opposite corners of a 8x8 mesh, i.e. 15 hops. The time spent
in the network would then be more than 128 · 15 = 1920 cycles. Even for
a wormhole routing network there is a possibility that the packets will
be stalled for long times due to other traffic. There is typically always
a statistical distribution of packet delays in a packet-switched network.
This will also create the possibility for packets to arrive out-of-order to
the destination if distributed routing is used.

4.5 Packet and circuit switching 47

Circuit switching has a clear advantage over packet switching since
the data latency is only dependent on the distance when the circuit has
been setup. Also there is no dependency on other factors, e.g. other traffic
in the network at that stage. All data is also guaranteed to arrive in the
same order as it were sent. The only dependency on the traffic situation
in a circuit switched network is when setting up a route.

4.5.2 Wormhole routing

The basic mode for packet transport is store-and-forward where a packet
will be received at a router in its entirety before forwarding is done to the
output. This is the typical mode of operation for general-purpose com-
puter networks. The drawback is that store-and-forward is fairly ineffi-
cient for smaller, dedicated networks. Latency as well as the requirements
on buffer memory size will be unnecessarily high.

For this discussion, one definition is necessary: A flow-control digit
or flit is the basic transmission unit of the network. This means that a
flit is the smallest piece of information that can be transported over the
network.

By allowing the leading flit to continue through the network without
awaiting the arrival of the following flits, it is possible to reduce the end-
to-end latency of the network significantly. This method of “worming”
through the network is generally very good for high-performance net-
works. The general drawback with wormhole routing is the increased
resource occupancy that can increase the deadlock problems in the net-
work, as is discussed in section 4.7.

4.5.3 Virtual circuits in packet networks

Both circuit- and packet-switched networks are inherently unreliable from
a performance perspective. The interaction between different traffic flows
is difficult to analyze and may give very unpredictable effects. One method
to achieve quality of service in such an environment is the use of virtual

48 Networks on Chip

circuits (not to be confused with virtual channels), which in principle uses
dedicated time slots on the packet-based network for specific traffic flows.

A typical use of virtual circuits is found in the Æthereal network from
Philips Research [2]. Distributed slot tables are used to enforce the time
slots in the routers or network interfaces, thus providing QoS guarantees.

The drawback with virtual circuits is that the time slot assignments
generally can not be done in a distributed fashion. Rather, in order to
guarantee that a slot assignment solution is found if one exists, schedul-
ing of transfers must be taken care of by a central resource with the full
picture. This central resource (typically a processor) must then distribute
the new schedule to the network and make sure that the changes take ef-
fect simultaneously throughout the network to avoid any glitches in the
behavior. It may even be necessary to have a gradual transit from one
schedule to the next to avoid problems with traffic currently in the net-
work.

4.6 Routing in networks on chip

There are many different methods for choosing a route in a network. This
section will touch upon some different methods and their main proper-
ties.

4.6.1 Nonminimal routing

Theory indicates that a nonminimal routing will severely worsen the con-
gestion in a saturation situation. This has been validated by some simple
experiments. Thus, for a graceful degradation at the saturation point,
a simple minimum-path-length routing is better than the nonminimal
counterpart.

4.6.2 Source and distributed routing

There are two distinct routing classes, based on where the routing deci-
sion takes place. Source routing relies on the packet source to supply the

4.6 Routing in networks on chip 49

routing information as the name implies. Thus the source decides the en-
tire path for the packet. The necessary routing information can either be
calculated in the source processor or in the network interface (wrapper).

In distributed routing, on the other hand, the source will only sup-
ply a destination identifier and the routers decide which path is the most
appropriate.

There are advantages as well as drawbacks with both methods. Source
routing will allow the use of very simple routers since they will, in princi-
ple, be nothing more than advanced multiplexers. The network topology
knowledge must be known to the source and this may not be desirable.
Source routing does not allow the network to use alternate routes in case
of congestion, which is possible with distributed routing.

Source routing works well in networks where the traffic is well known,
whereas the distributed routing tend to work better in an environment of
random or unknown traffic. This is simply because the source routing can
handle a well-behaved scheduled system whereas the distributed routing
can handle the unforeseen situations that happens with random traffic.

4.6.3 Local vs. global knowledge

Both source and distributed routing can use information about the net-
work state and current traffic flows in order to make the optimal routing
decision. Globally optimal routing is only possible if the decisions are
taken considering the full network state. This is not scalable since either
one single block will have to have all information and take all routing de-
cisions or all state information must be distributed (instantaneously) to
all routers.

Instead, using local knowledge of just a single router or possibly the
neighboring routers will yield suboptimal results but with high scalabil-
ity. By using only local knowledge a packet may be routed around a local
hotspot and into a more congested area in another area of the network
that could have been avoided with global knowledge.

50 Networks on Chip

4.7 Deadlock avoidance

Deadlock becomes an issue as soon as the system may enter a state where
resources may be locked indefinitely while waiting for other resources
to become free. If a loop is formed in these dependencies, a deadlock
will occur. This situation is especially prone to occur in wormhole-routed
networks because of the extended resource occupation of the wormhole
packets.

There are in principle only three methods to avoid deadlocks:

• Do not wait at all for resources.

• Use timeouts when waiting for resources.

• Prevent loops in the dependency graph from occurring.

The first and second methods would lead to dropped packets in a
packet switched network when congestion occurs. If this is not accept-
able, the third method must be employed. The common methods to do
this is to prevent some turns in the route or by adding independent re-
sources that will break the loop.

It is not trivial to prove freedom of deadlocks in a network with arbi-
trary topology. Some general theories for deadlock avoidance in certain
types of networks have been presented during the last decade [7, 8]. The
common ground for these is that the proof is based on complicated math-
ematics and that each work is only valid for that particular network type.

4.7.1 Turn-model routing

If the network has a regular topology, e.g. meshes, it is simple to prevent
loops in the dependency graph by disallowing some turns in the network
[5]. There are also extensions of these ideas allowing for fault-tolerance in
the network [9].

Figure 4.4 shows two versions of the turn-model routing for 2D meshes.
Figure 4.4(a) shows dimension-order routing. At most one turn is allowed
in every route. Thus the route always follows the row where the source is

4.7 Deadlock avoidance 51

(a) Dimension order (b) North last

Figure 4.4: Turn model routing

located until it reaches the column where the destination is located. This
will prevent any dependency loops from forming in the network. The
drawback with dimension-order routing is the very limited routing pos-
sibilities. Figure 4.4(b) shows a more flexible version where several paths
may exist between a source and destination.

4.7.2 Virtual channels

The previous section outlined a method to avoid deadlock by limiting the
possible routes. This is undesirable from the performance perspective so
other methods are used when possible. The most common is to use virtual
channels where the output queues for the router is separated so that the
forming of a dependency loop is prevented [10].

Consider the example given by Dally [10] for clarification. The situa-
tion in the example is four nodes interconnected by unidirectional links
in a ring. The topology and dependency graphs will then be according to
figure 4.5(a), with four channels numbered c0 to c3. It is clear that a circu-
lar dependency exists and that the network is vulnerable to deadlock. By
introducing virtual channels, i.e. logic links that may time-share the phys-
ical links, the possibility to break the dependency graph without cutting
any link or preventing any routes is there.

Assuming two virtual channels on each physical channel gives the sit-
uation in figure 4.5(b). The new numbering scheme effectively makes a
partial ordering of the channels if routes at a node with higher number

52 Networks on Chip

n2

n0

n1 n3

c3

c2c1

c0

c1 c2

c3c0

Interconnection Dependency

(a) Without virtual channels

n2

n0

n1 n3
c00

c0
1 c02

c0
3

c10 c1
3

c12c1
1 c11 c12

c13c10

c00

c02c01

c03

DependencyInterconnection

(b) With virtual channels

Figure 4.5: Deadlock avoidance by virtual channels

than the destination node is routed along the low numbered channels,
and vice versa. Channel c00 is not used. This will give a total ordering of
the channels according to the subscripts: C13 > C12 > C11 > C10 > C03 >
C02 > C01. After this, the cycle in the dependency graph is gone and it is
possible to route completely deadlock free.

The concept of virtual channels can be extended to networks with arbi-
trary topologies, although more virtual channels than two may be needed
per link [11].

4.7.3 Circuit-switched networks

Circuit-switched network are in general simpler than packet switched
networks. A circuit, once it is connected, will lead to completion of the

4.7 Deadlock avoidance 53

transfer and will not contribute to deadlock problems. The dangerous
task is the route setup where deadlock due to occupied resources can
occur if not designed properly. The simple solution is to not wait for
resources to become free, but rather fail the routing attempt and retry.
The other possibility is to use some of the many methods developed for
packet-based networks, e.g. virtual circuits, for the circuit setup.

Bibliography

[1] International Standardization Organisation (ISO), ISO/IEC 7498-
1:1994: Information technology – Open Systems Interconnection – Basic
Reference Model: The Basic Model. http://www.iso.org, 1994.

[2] K. Goossens, J. van Meerbergen, A. Peeters, and P. Wielage, “Net-
works on silicon: Combining best-effort and guaranteed services,”
in Proceedings of the design automation and test conference, Mar. 2002.

[3] William J. Dally and Brian Towles, Principles and practices of intercon-
nection networks. Morgan Kaufmann Publishers, Inc., 1998. ISBN
0-12-200751-4.

[4] Hussein G. Badr and Sunil Podar, “An optimal shortest-path routing
policy for network computers with regular mesh-connected topolo-
gies,” IEEE transactions on computers, vol. 38, no. 10, 1989.

[5] Christopher J. Glass and Lionel M. Ni, “Adaptive routing in mesh-
connected networks,” in Proceedings of the International Conference on
Distributed Computing Systems, 1992.

[6] Pierre Guerrier and Alain Greiner, “A generic architecture for on-
chip packet-switched interconnections,” in Proceedings of the design
and test in Europe (DATE) conference, 2000.

[7] Eric Fleury and Pierre Fraigniaud, “A general theory for deadlock
avoidance in wormhole-routed networks,” IEEE Transactions on par-
allel and distributed systems, vol. 9, no. 7, 1998.

54 Networks on Chip

[8] Loren Schwiebert and D. N. Jayasimha, “A universal proof technique
for deadlock-free routing in interconnection networks,” in Proceed-
ings of the seventh annual ACM symposium on Parallel algorithms and
architectures, 1995.

[9] Christopher J. Glass and Lionel M. Ni, “Fault-tolerant wormhole
routing in meshes without virtual channels,” IEEE transactions on
parallel and distributed systems, vol. 7, no. 6, 1996.

[10] William J. Dally and C. L. Seitz, “Deadlock-free message routing
in multiprocessor interconnection networks,” IEEE Transactions on
Computers, vol. 36, pp. 547–553, May 1987.

[11] Frederico Silla and Jose Duato, “On the use of virtual channels in
networks of workstations with irregular topology,” IEEE Transactions
on Parallel and Distributed Systems, vol. 11, pp. 813–828, Aug. 2000.

Part III

SoCBUS

55

Chapter 5

The SoCBUS Network

The cure for boredom is curiosity. There is no cure for curiosity.
Dorothy Parker (1893 - 1967)

5.1 Introduction

The design space for networks on chip is vast. On every level of de-
sign there are numerous design decisions that have to be made. After
the prestudy phase it was decided to go with circuit switching as the ba-
sic mode because of the resulting simplicity of the network components.
A packet-based circuit setup scheme, described in section 5.5.1, was de-
vised that allows shared use of the links for both circuit setup and payload
transfer.

The network is made up of two separated component classes. The first
is the routers and the second is the wrappers (a.k.a. network interfaces).
These components are interconnected through bidirectional links (which
in fact are two unidirectional links). This chapter will describe the design
decisions, the components, and the implementations in detail.

5.2 Network components

If a 2-d mesh topology is used, the basic network can be seen as a matrix of
tiles. Each tile consists of a router, a wrapper, and an IP block/subsystem

57

58 The SoCBUS Network

W
ra

pp
er

Subsystem

Router

Figure 5.1: Network-connected processing tile

as shown in fig 5.1.

The purpose of the wrappers is to isolate the port of the subsystem
from the internal link format of the SoCBUS network. One great advan-
tage of using configurable wrappers on the border between subsystem
and communication infrastructure is the possibility to ease the task of
verification of the whole system on chip design. The configurable wrap-
pers can be thoroughly verified for the different possible configurations
together with the rest of the network system so that only the interfaces
have to be verified at the system integration phase, thus simplifying the
verification task.

The routers are responsible for setting up the circuits between source
and destination as well as transporting the data streams between these.
If distributed routing is used, setting up circuits involves decoding of the
destination address and translating this into a set of output ports that will
lead closer to the destination. One port is then chosen and the request
is forwarded. Similar tasks have to be performed in case of source rout-
ing. At data transport the router will just blindly forward the data to the
destination port.

The routers are designed so that one occupied port will not limit the
ability to use the other ports. This is implemented as a central crossbar
that handles the connections through the router. Since this is a full-scale
crossbar, it will scale with the square of the number of ports.

5.3 SoCBUS architecture 59

W
ra

pp
er

Su
bs

ys

W
ra

pp
er

Su
bs

ys

W
ra

pp
er

Su
bs

ys

W
ra

pp
er

Su
bs

ys

W
ra

pp
er

Su
bs

ys

W
ra

pp
er

Su
bs

ys

W
ra

pp
er

Su
bs

ys

W
ra

pp
er

Su
bs

ys

W
ra

pp
er

Su
bs

ys

Rou
ter

Rou
ter

Rou
ter

Rou
ter

Rou
ter

Rou
ter

Rou
ter

Rou
ter

Rou
ter

Figure 5.2: A 3x3-node switched network with wrappers and subsystems

5.3 SoCBUS architecture

The SoCBUS network was developed with the possibility to use arbitrary
topologies in mind. Thus there are no inherent limits on the number of
ports on a router, which route lookup algorithms that can be used, etc.

The investigation of different network topologies that were conducted
during the prestudy indicated that a two-dimensional mesh should be
the most suitable for most on-chip networks. This is also the common
topology proposed by most other researchers [1, 2, 3]. The main reasons
for selecting the two-dimensional mesh instead of other topologies such
as hypercubes, butterflies, or trees are that a two-dimensional mesh have
an acceptable wire cost, reasonably high bandwidth, and a nice mapping
onto a chip.

Further, since it is easy to group subsystems that communicate much
it is possible to map the subsystems onto the network so that they do
not consume an unnecessarily high amount of resources in the network.
Thus it is not necessary to have the “best” topology in order to get high

60 The SoCBUS Network

performance in the system.

The routers in a 2-d mesh network have five ports. One port is used for
connection to the local subsystem while the other four ports are used to
connect to the adjacent routers, see figure 5.2. The local port is connected
through a wrapper to the local subsystem.

The interfaces internal to SoCBUS all use the same physical format,
see figure 5.3. 20 wires in total are used in each direction. 16 wires carry
data and request packets in the forward direction. Two wires are used
for reverse control and two wires for forward control. These signals are
described in more detail in section 5.7.

The simplicity of the SoCBUS components allow for implementations
of routers and wrappers with very low logic depth, around 6-8 gate de-
lays. With this low logic depth it is possible to reach an operating fre-
quency of 1.2 GHz in a 0.18 µm process [4]. This is four times the max-
imum expected IP block clock frequency of about 300 MHz in the same
process. This difference in clock rates will further mask the network la-
tency since a four cycle latency in the network will look like a one-cycle
latency to a core.

Considering the possibly high clock rates and the distributed nature
of an on-chip network, the wire delays between components become a se-
rious problem if using traditional synchronous design methodology. By
using mesochronous clocking (i.e. same frequency but unknown phase)
with distributed signal retiming it is possible to handle the wire delay and
skew. Using mesochronous clocking still requires the wire delays within
a link to have reasonably low skew but allows the design to use links
that have very differing delays without any problem. To further simplify
the connection of network components it is proposed to use optimized
drivers and transmission-style wires [5, 6]. This will give many advan-
tages, e.g. no repeaters are needed, the system consumes a minimum of
power, and there is no need of laying out the network in an orderly fash-
ion on chip.

5.4 Configuration and control layering 61

Router Router

Data
Fwd ctrl
Rev ctrl

Fwd ctrl
Data

Rev ctrl

Figure 5.3: Interface between routers and wrappers within the network

Table 5.1: Configuration and control layering
Layer Content

Data transport Data package interpretation
Application layer protocol

Link setup Logical configuration
Addressing and routing
Congestion control
Other (FEC, buffering, etc.)

Hardware design Link layer protocol
Physical protocol
Network topology
Wrapper configuration

5.4 Configuration and control layering

In order to make a usable system, the network components and the con-
nections have to be configured according to the requirements during de-
sign time. This configuration makes up the hardware design which will
be used in the platform. Further configuration and control tasks have
to be carried out during runtime. All configuration/control tasks can be
divided into different groups that reflect the level at which they are per-
formed as shown in table 5.1. The layering can also be seen as a proto-

62 The SoCBUS Network

Request

Source

Cancel

Transfer

Ack

Dest

III

IV

I

II

(a) No retry necessary

Request

Source Dest

Transfer

Cancel

Ack

nAck
Retry

I

Ib
Ia

III

IV

II

(b) One retry used

Figure 5.4: Two successful circuit setups

col hierarchy in the implemented system where lower levels are imple-
mented as fixed hardware protocols and upper levels are implemented as
software controlled protocols.

The data-transport layer includes the data link protocol for control of
source-drain transfers and handles transmission specific control informa-
tion such as packet sizes. The link-setup layer is at the wrapper-router or
router-router level and handles link-by-link setup, e.g. FEC on the links.
The last layer is the configuration done at hardware design.

5.5 Network transaction handling

5.5.1 Route setup flow

The network transactions consist of four to six phases dependent on whether
the first try routing is successful or not. A successful transaction, see fig-
ure 5.4(a), has four phases. (I) First a request is sent from the source to
the network. As this request finds its way through the network the route
is locked and cannot be used by any other transactions. (II) The second

5.5 Network transaction handling 63

phase starts when the request reaches its destination and an acknowledg-
ment is sent back along the route. (III) When the acknowledgment has
returned to the source the third phase starts. This phase holds the actual
transfer of payload data. (IV) Finally after the data has been transferred a
cancel token is sent that releases all resources as it follows the route. This
type of packet transport where the data is sent separated from the request
is called “long packets”.

If a route is blocked in a node the routing request is canceled by the
blocking router (Ia) returning a negative acknowledge to the source, as
shown in figure 5.4(b). (Ib) The source must then retry the route at a later
stage which means that the additional two phases (nAck and retry) may
need to be iterated.

5.5.2 PCC: Packet-connected circuit

The hybrid circuit switching with packet-based setup introduced in the
previous subsection is referred to as “packet-connected circuit” or PCC
for short. The PCC has very nice properties in several areas:

• PCC is deadlock free since no resources are locked while waiting
(indefinitely) for other resources.

• The routers become very simple when no special cases, stalls, or
virtual channels must be considered.

• A minimum of buffers capable of holding just a request package are
needed in the routers.

• PCC gives the lowest possible latency of just one retiming flip-flop
pipeline at each router.

• There is no inherent limit on route selection algorithms in the PCC
scheme.

64 The SoCBUS Network

5.6 Routing

Routing in SoCBUS is the task of mapping a destination address or port
number into a set of possible ports that can be used to get closer to the
destination. Both basic methods for routing are implemented, namely
distributed and source routing.

5.6.1 Distributed routing

In the case of distributed routing, the mapping can be seen a simple math-
ematical function where the address a is mapped onto the set of output
ports P .

P = F (a) (5.1)

The simplest and fastest method to implement this function is through a
look-up table in the routers.

After studying publications on routing algorithms and performing
some simple experiments it was decided to go for a simple minimum-
path-length routing. Each router has the knowledge of the general direc-
tion to each destination, i.e. north, west, south, east, local, and combina-
tions of these, e.g. north-west. Since the network do not change when the
chip has been designed this knowledge is static if no faults are assumed
to occur. Thus it can be decided at the time of network layout design. The
routing decisions will then simply be based on the destination address
which can be translated into the known direction(s). If there are more
than one direction that leads to the destination one is selected according
to a round-robin scheme. If the primary selection is occupied the second
choice will be used instead and so on. If there are no free outputs that lead
towards the destination the routing will fail and the router will return a
negative acknowledgment to the source.

5.6.2 Source routing

Source routing is trivial compared to the distributed routing. In this case,
routing information is transmitted along with the request and can directly

5.7 Physical links 65

Cancel

Data

Qual
Stb

Ack

Figure 5.5: Signals in a unidirectional link

be interpreted as the output port number. If the intended output is occu-
pied there will be no possibility to select a different port since that will
violate the basic principles of source routing.

5.7 Physical links

The physical links in SoCBUS consists of five signals as shown in figure
5.5. The first signal is the data which is nominally 16 bits wide, although
wider links are possible. The next two signals are the forward control
consisting of strobe (stb) and data qualifier (qual). The last signals are the
reverse control which consists of two acknowledgment signals, ack and
cancel.

The main reason for defining the links like this is suitability and sim-
plicity. The wires used are necessary for circuit setup and data trans-
port. It would be possible to use a predefined link type, e.g. Wishbone
or AMBA. Doing so would imply the link protocol which would not be
suitable for a network on chip.

A routing request is signaled by a rising edge on the strobe signal. The
first two cycles are used for the two request-packet words. A description
of the data bits in the routing request is shown in table 5.2. The possible
value combinations that decide which packet type to expect is listed in ta-
ble 5.3. Out of the 16 combinations, only six are used. These combinations
are sufficient to signal all possible packet types. The reason for not using
only three bits for this is efficiency. The wires are already there so there

66 The SoCBUS Network

Table 5.2: Request format
Signal Description

Req0 [15:8] Destination address
Req0 [7:4] Reserved
Req0 [3] Speculative sending
Req0 [2] End-to-end or local handshaking
Req0 [1] Long or short packet
Req0 [0] Distributed or source routing
Req1 [15:0] Misc data or addressing

is no need for saving a bit and each functionality will get its own control
bit, giving a smaller implementation in the router.

As can be seen from that table there are several possible packet types.
The basic packet type is the long packet, as outlined in section 5.5.1. us-
ing distributed routing. The other possible packet types are long packets
using source routing and short packets. Short packets are similar to long
packets but the data and cancel phase have been replaced by a positive
acknowledgment that rips up the route. Thus, a short packet will only
be two words in size. Because the short packet can hold such a limited
amount of information they have to use distributed routing.

Since there are two distinct positive acknowledgments and one nega-
tive ditto, there have to be two wires in the reverse direction. The func-
tions encoded on these reverse control signals are shown in table 5.4.

5.8 Link level protocol

5.8.1 Long packets

The link-level protocol in SoCBUS is relatively simple. A typical time dia-
gram of a long packet transfer is shown in figure 5.6. The start of a trans-
mission is signified by the transition from low to high level on the strobe
signal. The two first words that are accepted on the input are the rout-

5.8 Link level protocol 67

Table 5.3: Functions for the req0[3:0] signals
[3] [2] [1] [0] Description

0 0 0 0 Long packet with distributed routing
0 0 0 1 Long packet with source routing
0 0 1 0 Short packet with distributed routing
0 - 1 1 Illegal combinations
0 1 0 - Illegal combinations
0 1 1 0 Short packet with distributed routing

using local handshaking
1 0 0 0 Long packet with speculative sending

and distributed routing
1 0 0 1 Long packet with speculative sending

and source routing
1 1 - - Illegal combinations
1 - 1 - Illegal combinations

ing request packet. These are accepted immediately on the port without
regard to the qualifier signal. After a while, the port replies with either
an accept (ack) or a deny (cancel) signal which will tell whether the circuit
setup was successful or if it failed.

If the routing was accepted as in the figure this means that the circuit
has been completed and that the source is free to send data. The payload
data is framed by the qualifier signal, making wait states possible in the
transmission if such are desired. If a source has no reason to enter wait-
states in the transmission, the qualifier may be kept asserted (i.e. high).

When the source is finished and wants to disconnect the circuit this is
achieved by lowering the strobe signal. After a one-cycle waiting period
the port is ready to accept a request again.

If the circuit could not be set up and the network replies with an as-
serted cancel signal, the source will have to lower the strobe signal for at
least one cycle and then try again. Thus, the strobe will frame the trans-
mission entirely and a low state means that the link is free to use.

68 The SoCBUS Network

Table 5.4: Link feedback signals
Ack Cancel Description Usage

0 0 Idle Anytime
0 1 Negative acknowledgment Any packet
1 0 Pos ack, keep route Long packet
1 1 Pos ack, cancel route Short packet

stb
clk

ack
data
qual

cancel

DataDataReq1Req0

Figure 5.6: Basic link protocol

5.8.2 Speculative sending of data

A drawback with the PCC protocol is the relatively long latency in the
setup phase when a packet has to wait for the circuit to be complete be-
fore the payload can be sent. A remedy to this is the speculative sending
where the data is sent directly after the request has been sent as is shown
in figure 5.7. This will require more buffering in the routers as is discussed
in section 5.9.3.

stb
clk

ack
data
qual

cancel

Req0 DataData DataDataReq1

Figure 5.7: Link protocol for speculative sending

5.9 Router implementations 69

stb
clk

ack
data
qual

cancel

Req0 Req1

Figure 5.8: Link protocol for short packets

The speculative sending will allow most of the route setup latency to
be masked when a successful circuit setup is performed. The data will
have to be buffered in the source until the acknowledgment is received
because all data will have to be resent at the next try if a circuit could not
be set up.

5.8.3 Short packets

The short packets with end-to-end handshaking look exactly as the long
packets until the acknowledgment is signaled. A successful transmission
will be signaled by asserting both reverse control signals which will imply
a disconnect of the circuit to the routers as is shown in figure 5.8.

The possibility to use local handshaking has been introduced as a
means to lower the routing overhead for the short packets. When us-
ing local handshaking the packet will be moved from router to router
while the handshaking will be done entirely locally, i.e. between pairs of
adjacent routers. This will give the functionality of a packet switched net-
work. Because there is no end-to-end handshaking there is no method to
allow the source to know when the packet has arrived at the destination.
The only guarantee is that the packet will eventually arrive there.

5.9 Router implementations

There are four versions of the router, all written in Verilog. The first three
router implementations were done with speed as primary target and is

70 The SoCBUS Network

Inputs

Router State

Crossbar Outputs

Figure 5.9: Block diagram for the first two routers

thus quite heavily pipelined [4]. These show the evolution of the protocol
with extensions such as short packets and speculative sending.

The fourth version has been implemented with the focus of support-
ing all modes and being as configurable as possible. In this implementa-
tion it is possible (through Verilog parameters) to change the number of
ports, the data width, and the routing table among others. This imple-
mentation has not been optimized for speed (as of this writing).

The three first routers are described in this section while the fourth
router is described in detail in section 5.10. The fourth router is the only
one to be described in much detail since it includes all functionality of the
previous routers. All router implementations are similar so the descrip-
tion of the fourth router is very much applicable to the other implemen-
tations as well.

5.9.1 The first router

The first router was implemented so that it would be able to route only
long packets. The router was pipelined for maximum performance in the
clock domain, reaching an operating frequency of 1.2 GHz (synthesized).
The latency for a routing decision is six cycles and the latency for data
and ack transport is one cycle through the router.

The block diagram of the first two router implementations can be seen
in figure 5.9. The input blocks each contain a small state machine that
keeps track of incoming requests. The incoming requests are signaled to
the router block that will make the routing decision. The results from

5.9 Router implementations 71

3 4 5 6 7
0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

Number of ports

R
ou

te
r a

re
a

(m
m

2)

Figure 5.10: Number of ports vs. router area for the first router

the routing block in turn control the crossbar via the router state block.
Finally, the output blocks decode the reverse control signals and handle
the output state.

A five-port router useful for a mesh network will occupy slightly less
than 0.06 mm2 in a 0.18 µm process. The area scales roughly linearly with
the number of ports as can be seen in figure 5.10. The reason for the linear
scaling is that the only part that scale with the square of the number of
ports (i.e. the crossbar) is small compared to the rest of the router.

5.9.2 Short packet router

The second router added support for short packets with end-to-end hand-
shaking. The differences from the first version is basically that there is an
improved interpretation of the two reverse control wires to allow a circuit
to be ripped up even though a positive acknowledgment is returned. This
has very little effect on the area of the router.

72 The SoCBUS Network

Inputs

Router State

Crossbar OutputsFIFOs

Figure 5.11: Block diagram for the third router (with speculative sending)

5.9.3 Speculative sending support

The routers will have to accept the data that can be sent during the waiting
time without losses to allow speculative sending of data. This is necessary
since the routers will stall the request for a few cycles and no cycle-by-
cycle handshaking is done, The routers therefore require small FIFOs on
every incoming port to act as a flexible buffer for the incoming data. The
size of the FIFO must be equivalent to the longest waiting time in the
router which is typically described by equation 5.2.

ncy,wait = ncy,routing +N − 1 (5.2)

ncy,routing is the number of cycles required for handling a routing request
and N is the number of ports on the router. Thus, ncy,wait is the number
of words that the FIFO must be able to store. For this particular imple-
mentation, ncy,routing is four, giving a need of a FIFO with at least eight
entries per port for a five-port router.

The implemented version with 16 entries per FIFO occupies roughly
0.3 mm2 in a 0.18 µm process. Because of speed issues the FIFOs were im-
plemented with flip-flops giving quite large area. The reason for selecting
16 entries is that the FIFO was not parameterized and therefore had to be
large enough for all reasonable number of ports on the router. The FIFOs
will give a quadratic scaling of the router area since an addition of one
port will not only require the addition of a new FIFO but also an increase
in size of all other FIFOs in that router.

The price for avoiding the initial latency incurred by the speculative

5.10 The fourth router implementation 73

Inputs Crossbar Outputs

Router State

Packet router

Figure 5.12: Block diagram for the fourth router

sending is quite high with a fivefold increase in area of a five-port router.
In certain applications this may still be acceptable since a large portion of
the latency in the network is masked by this scheme.

5.10 The fourth router implementation

5.10.1 Configurable and parameterized

The fourth router is a merge of all previous ideas into a single router im-
plementation. This router is designed to be fully parameterized in order
to reach the full potential of the network in experimental setups. The fo-
cus for this implementation is not extreme speed on an ASIC target but
rather a small and reasonably fast implementation on FPGA based sys-
tems. The main intention is to use this implementation for experiments
and tests that are run on a large FPGA.

The overall architecture is similar to the three earlier versions. The
block diagram for the fourth router is shown in figure 5.12. The main
change from the previous routers is the addition of the packet router
block, which is responsible for the local router-to-router handshaking when
using packet switched transport of short packets. Also, the FIFOs for
speculative transport has been incorporated in the input blocks and is
thus not shown explicitly.

74 The SoCBUS Network

The router is fully parameterized with the possibility to select which of
the previously described protocol features that should be supported. An
example configuration could involve support for long, short, and local
packets but no support for speculative sending. Parameters are also used
to select the width of data (at least 16 bits) and which routing table to use.

The function of the packet router is to handle the local handshaking
for short packets. An incoming local short packet will be directed to this
block that will acknowledge the reception, freeing the resources from the
previous hop. The packet router will then find a suitable output port and
send the packet to the next router which in turn will accept the packet.
Thus it is possible to send the short packets with little resource occupation
overhead through the network.

A tool for network generation is easily achieved once a configurable
router implementation has been made. Such a tool has been created based
on this router implementation and is described further in section 6.7.

5.10.2 Micro architecture

The micro architecture of the router is designed from the blocks shown in
the overall architecture in figure 5.12. Each block is intentionally kept sim-
ple to simplify verification and keep the overall complexity of the router
at a minimum.

Inputs

The input blocks handle the input buffering in the router. The block di-
agram for this is shown in figure 5.13(a). The incominng requests are
buffered in the request buffer that also handles extraction of routing in-
formation and stripping of source routing entries.

The optional data buffer is used for speculative sending. The size of
this buffer is equivalent to the routing decision delay plus the number of
ports on the router minus the request buffer size (i.e. two words). This
size corresponds to the longest time to get a routing decision from the
router and state blocks.

5.10 The fourth router implementation 75

Request
buffer

Data
buffer

FSM

In
co

m
in

g

T
o

cr
os

sb
ar

To router

(a) Input block

Routing
table

Source
router

Counter

Fr
om

 in
pu

ts

T
o

st
at

e

(b) Router block

State
update

Counter

Fr
om

 ro
ut

er
s

T
o

cr
os

sb
ar

From outputs

(c) State block

D
es

t Packet
buffers So

ur
ce

Counter

T
o

ro
ut

er
an

d
cr

os
sb

ar

Fr
om

 in
pu

ts

(d) Packet router block

Figure 5.13: Micro architecture for the fourth router

Router

The router block, see figure 5.13(b), is responsible for translation of the
incoming routing information into a set of possible outputs. The upper
path corresponds to the source routing handling where a request is simply
decoded. The lower path is the distributed routing centered around the
routing table. The routing table is designed as a ROM table in the current
implementation but could be changed into a RAM with the appropriate
supporting functionality.

The counter is used for round-robin selection of routing requests if
more than one request comes simultaneously. This counter is very short
since there is no point in being able to count further than the number of
input ports.

76 The SoCBUS Network

State

The router locking state is kept in a single register as shown in figure
5.13(c). The state updating is done atomically in accordance to the in-
coming routing decisions and acknowledgments to the block. The state is
simply a description of which inputs are connected to which outputs in
the router. If more than one route is possible, the output port is selected
based on the round-robin counter.

Packet router

The packet router is shown in figure 5.13(d). This will act as a destination
for incoming packets. Incoming packets are acknowledged and stored
in the packet buffer where they are fetched by the packet source. The
source will generate a routing request to the rest of the router as if it were
an input block. The router will then try to find a route according to this
request and the packet can be sent. The packet buffer supports virtual
channels to avoid deadlock problems in the packet based network.

Crossbar

The crossbar is a simple N inputs, M outputs crossbar that is controlled
externally. No additional functionality is included in this block.

Outputs

The output block is responsible for decoding the reverse control signals
and signaling these to the state and input blocks. This block is very simple
since the necessary functionality is very limited.

5.10.3 Request path

An incoming request is received at the input where it is buffered. The
appropriate routing information is extracted and sent to the router block
where it goes through the selector and a pipeline stage. After the pipeline
stage comes the routing decision and another pipeline stage. The result

5.10 The fourth router implementation 77

is sent to the state block that will update the state accordingly at the next
clock edge. After the state is updated the path will be connected through
the router and it is possible to forward the request through the output
pipeline stage.

The request path is therefore at least five cycles long from the request
being available on the input until it can be pushed to the output. If there
are multiple simultaneous routing requests, this will delay the routing de-
cision for some of the inputs accordingly. The latency through the router
is one pipeline stage after a path has been established.

The same pipeline stages are present in the three previous routers, al-
though they have been supplemented with an extra stage in the route
decision block to achieve maximum clock frequency.

Bibliography

[1] Ilkka Saastamoinen, David Sigüenza-Tortosa, and Jari Nurmi, “Inter-
connect IP node for future system-on-chip designs,” in IEEE Interna-
tional workshop on Electronic design, Test, and Applications, 2002.

[2] Marco Sgroi, Michael Sheets, Andrew Mihal, Kurt Keutzer, Sharad
Malik, Jan Rabaey, and Alberto Sangiovanni-Vincentelli, “Addressing
the system-on-chip interconnect woes through communication-based
design,” in Proceedings of the Design Automation Conference (DAC),
2001.

[3] William J. Dally and Brian Towles, “Route packets, not wires: On-
chip interconnection networks,” in Proceedings of the Design Automa-
tion Conference (DAC), 2001.

[4] Sumant Sathe, Daniel Wiklund, and Dake Liu, “Design of a switch-
ing node (router) for on-chip networks,” in Proceedings of the ASICON
2003 conference, Oct. 2003.

78 The SoCBUS Network

[5] C. Svensson, “Optimum voltage swing on on-chip and off-chip inter-
connect,” IEEE Jounal of Solid-State Circuits, vol. 36, no. 7, pp. 1108–
1112.

[6] Peter Caputa and Christer Svensson, “Low power, low latency global
interconnect,” in Proceedings of the 15th International ASIC/SoC confer-
ence, 2002.

Chapter 6

Design and Simulation
Environment

Don’t leave port without a multimeter.
“Boatowner’s mechanical and electrical manual” (Nigel Calder)

6.1 Design environment

The main difference in design of a network on chip instead of a traditional
interconnect is the complexity. Both design and performance evaluation
become much more difficult as the complexity increases.

The design environment must be able to support overall performance
assessment through analysis or simulation since there is no general the-
ories that will work for a generalized interconnect. Simulation has been
chosen as the primary method in the SoCBUS project because of the diffi-
culties involved in accurate analysis of such a complex system.

A relatively complete design environment consists of simulation tools,
synthesis tools, and design libraries. The libraries contain simulation
models and implementations for the components. The simulation models
are used in conjunction with a simulator and the implementations can be
used together with the synthesis tools to generate complete network im-
plementations. The design databases used for the toolchain should pre-
ferrably be as unified as possible, allowing for easy migration from design

79

80 Design and Simulation Environment

System specification

Define network

Define traffic model

Stimuli generation

Synthesis of network
and wrappers

Traffic analysis and
initial synthesis

and system debugging

Bottleneck analysis

RTL code
SoCBUSSoCBUS

drivers

Physical
designUser’s task

SoCBUS libraries & software

Network
models and

implementations

Behavior simulation

Network generation

Traffic spec Port spec

Figure 6.1: Design flow for systems based on network on chip

to simulation and on to synthesis.

A simple method to describe the complete network is essential for the
understanding of the design process and the expected results. The choice
fell on intuitive XML descriptions for both the network and traffic models.

6.2 Design flow for SoCBUS

The typical design flow for a network on chip starts with an application
or an application domain. From this it is possible to extract the communi-
cation patterns and requirements that should be put on the interconnect
structure. This could be done in a similar fashion as it would be done for
a classical TDM based interconnect structure. Generally, this step must

6.2 Design flow for SoCBUS 81

be done with great care to make sure that the traffic model matches the
actual traffic behavior in the application. This traffic specification can be
used as input for simulations as well as synthesis and optimizations of
the network.

The network design flow, see figure 6.1, is divided into two parts as
indicated by the dotted line. The part to the left is the customer design
flow for implementing a system and is described in this section. The part
to the right is for evaluation of performance for general network imple-
mentations which can be considered to be parts of a benchmarking flow.

6.2.1 Customer design flow

The customer design flow starts from the specification with an analysis of
the traffic between subsystems. The ultimate goal here would be a traffic
qualifier tool that takes the (executable) specification/model as input and
gives the traffic model for this specification. Just as with other complex co-
design tools this one must (for now) be considered utopia and the model
have to be extracted using partially manual methods.

The analysis of the traffic will result in an initial network that can be
used as a starting point for synthesis. The synthesis generates a network
that typically should be reasonably appropriate for the application. The
synthesis is followed by the analysis step, based on behavioral simula-
tions, that will verify the appropriateness of the synthesized solution. If
the simulation step shows too low or too high capacity in the network the
two last steps can be iterated to generate a more optimal network for the
application.

The initial synthesis step is still to be implemented as a tool and must
currently be performed manually. The simple approach is to start with a
mesh network of reasonable size and use this as a basis for optimizations.
A tool for supporting the manual synthesis is available in the form of a
network model generator that gives an XML description based on a mesh
topology. This network model can then be refined into the final network
and used as an input to the network generator that will implement this

82 Design and Simulation Environment

Component
models

Network modelStimuli file

Stimuli generator

Traffic model

Simulator

Results

Figure 6.2: SoCBUS simulation flow

XML description on RTL level in Verilog.

6.2.2 Tool coverage

Tools are available for all steps in in the design flow, including network
model generator, stimuli generator, simulator, and network generator (to
RTL). There are also RTL implementations of the router and some basic
wrappers. The missing parts include an application-driven initial synthe-
sis, more elaborate wrappers, and driver software for the network.

6.3 Simulation flow

The simulations for the SoCBUS project are done using an in-house sim-
ulator that is tailored to the task of simulating on-chip networks. The
simulator is used in conjunction with a stimuli generator tool according
to the simulation flow in figure 6.2. The inputs to the flow are the traffic
and network models, described using XML files.

The network model describes which components to use and the topol-
ogy of the network. This model can be annotated with additional infor-

6.4 Traffic modeling 83

mation such as link delays to achieve better simulation accuracy. The net-
work model can also directly be used for network generation to RTL. The
mapping of subsystems, i.e. traffic sources and destinations, to network
ports is done using literal names in the model files. With this method,
all connections between the network interfaces of the subsystems and the
routers are done entirely in the network model.

The traffic model consists of a set of communication tasks that are de-
scribed using any combimation of deterministic and stochastic parame-
ters. There is also the possibility to describe dependencies between tasks
in order to allow for more realistic traffic cases. The traffic model is used
as input to the stimuli generation tool to create fully deterministic stimuli
to the simulator.

By separating the traffic and stimuli from the network model, these
can be completely decoupled. This will allow traffic modeling that is in-
dependent of the network implementation and different networks can be
developed without any particular traffic in mind. Thus it is possible to
use the same traffic for evaluation of many networks and vice versa. This
is a clear advantage in the case of benchmarking.

The stimuli tool will take the traffic model and execute the probabilis-
tic models to create a specific instance of that model. This instance is
the stimuli that will be used for the simulation. All stochistic varibles
are eliminated in the stimuli file, which is fully deterministic so that two
runs of the simulator with the same stimuli and the same network should
yield the same results. Having the opportunity to reuse stimuli is impor-
tant for several resons. The primary reason is for evaluation of several
networks, which becomes more fair if the stimuli is exactly the same for
every network. Another reason is that debugging of tools and models can
be significantly simplified by running the same stimuli over and over.

6.4 Traffic modeling

Modeling of traffic is by no means a simple task. The modeling language
chosen for the SoCBUS project is XML with specialized tags for the traffic

84 Design and Simulation Environment

Application

Task identification

Traffic specification

Mapping

Communication
analysis

Subsystem selection

Figure 6.3: Traffic modeling flow

description. The models of computation that is supported by the XML
models is basically communicating tasks, similar but not restricted to
Kahn graphs [1]. These tasks can be described along the entire scale from
deterministic, periodic tasks to tasks with completely random behavior.
Most signal-processing-style applications can be described by this type of
model of computation. The power of Kahn graphs (and similar mod-
els of computation) is widely recognized throughout the industry and
academia today [2, 3].

The traffic modeling for a regular application can be quite simple with
a straight forward approach. Figure 6.3 shows a typical flow from appli-
cation to traffic model. The application is divided into communicating
tasks using some model of computation. These tasks can then be used
as a basis for selecting the appropriate subsystems in the platform if the
platform is not already given. The tasks can then be mapped onto the sub-
systems and the communication patterns between the subsystems can be
analyzed.

6.5 Stimuli generator 85

As can be expected, the complexity of the application has a significant
influence of the complexity of the traffic model. A simple dataflow appli-
cation can have a very simple model even though there is much traffic.
A more complex system on the other hand may give a quite complicated
model that is difficult to understand and debug.

6.4.1 Stimuli files

The stimuli file that is generated is a simple text file. For traffic without
dependencies the stimuli will use absolute time stamps (i.e. fully sched-
uled traffic) so the information in the stimuli file will just be source iden-
tifier, destination identifier, start time, and packet size for each transfer.

If the traffic is based on dependecies there will be the same informa-
tion showing the earliest time of initiation, together with dependency
clauses which describe the dependency conditions for starting a transfer.

Since the stimuli is represented by text files, it is possibile to write the
stimuli files directly, bypassing the stimuli generation tool. This is only
practical for very small models and is suitable for debugging only.

6.5 Stimuli generator

The stimuli generator is responsible for taking the traffic model in XML
as input and generate the deterministic stimuli as output. Since the input
model may describe traffic using statistical mathematical models these
have to be calculated into deterministic values.

The traffic model specifies each traffic flow in relative detail using a
set of XML tags. The stimuli generator must use each of these specifi-
cations to create the stimuli for that particular traffic. Each value in the
traffic model can either be explicitly given or specified through the use of
a stochastic model. In turn, each of the parameters of the stochastic model
can be specified explicitly or as another stochastic model. With this recur-
sive definition there is no limit on the probability-based parameterization
of the model.

86 Design and Simulation Environment

Stimuli

Parsed traffic model

Sort event list

depth first
Reduce stochastic models

Update system time

Add stimuli to event list

It
er

at
e

un
til

 s
to

p
tim

e

Figure 6.4: Translation from traffic model to stimuli

The program flow of the translation process in the stimuli generator
is shown in figure 6.4. Because of the hierarchical stochastic models in
the model, the stimuli generator must do a depth-first reduction of the
stochastic models in each iteration.

The stimuli generator is implemented entirely in ANSI C++ using the
GNU Scientific Library (GSL) [4] for implementations of the statistical
models and handling of probability-based models. The XML parser has
been developed and reused for all three XML-based tools, i.e. the stimuli
generator, the simulator, and the network generator. This parser has been
implemented using the GNU tools Flex [5] and Bison [6]. More details on
the stimuli generator implementation can be found in appendix A.

6.6 Simulator architecture

The simulator is event based, similar to a typical VHDL/Verilog simu-
lator. The big advantage of event-driven simulation is the fact that idle

6.6 Simulator architecture 87

Network model

XML parsing

Instantiation of
network components

routing tables
Generation of

Simulation run

Statistics summary

Stimuli

Stimuli parsing

Figure 6.5: Simulator top level flow

parts of the system will not generate events giving faster simulation runs.
This, on the other hand, also implies that a simulation with much traffic
will have a significantly longer runtime compared to a low-density simu-
lation.

The main program flow of the simulator is shown in figure 6.5. The
network model XML file is read and parsed into an internal represen-
tation. This internal representation is used to instantiate the equivalent
network from the component models. The routing tables that have not
been explicitly given in the network model are generated using Dijkstra’s
algorithm [7]. The stimuli file is read and parsed and used to excite the
network model in the core simulator. Finally, the results and statistics
acuired during simulation is written to a log file.

All network components (routers, links, sources, and destinations) are
modeled using cycle-accurate behavioral models. These models are im-
plemented using the same programming language as the simulator, i.e.
C/C++. These models are currently linked to the simulator at compile

88 Design and Simulation Environment

CSystemPart

CSystem CSwitch CSrcDest CLink

CSrcDestCSwitch
derivatives

CLink
derivatives derivatives

Figure 6.6: Simulator class hierarchy

server
Message Clock genModels

Figure 6.7: Simulator event handling

time. The use of shared libraries would also be possible making it possi-
ble to compile new models without recompiling the rest of the simulator
if that is desirable.

Figure 6.6 shows the inheritance hierarchy among the models in the
simulator. All models are based on the CSystemPart class which gives a
common ancestor class, making it possible to treat all models as one type
of entity in the simulator.

Using C++ also allows extensions to be made to the tools in this com-
monly known and efficient programming language. Further details on
the simulator implementation than is given here can be found in appendix
A.

6.6.1 Simulation event handling

A simulation message is created every time a network component gener-
ates an event. These event messages are distributed to the proper desti-
nation(s) through a message server, see figure 6.7. This central message
server will handle all time ordering of event messages through a single

6.6 Simulator architecture 89

message queue. This guarantees that the events will happen in the cor-
rect order independent of the order in which they have been created. This
is true as long as only causal events (i.e. forward going in time) are used.

The models are connected logically to each other through the message
server. If a model wants to send a message to another model, e.g. a router
to a link, it will create the message and tag it with the appropriate address
for the destination model and then send it to the message server. The
message server will queue the message and dispatch it at the correct time
to the destination which is then able to react to the message, possibly
creating a new message in the process.

The clock generator module is used to create clock event messages
that is distributed to the appropriate models. This feature is used to get
cycle-true simulations.

6.6.2 Simulation models of network components

All network related models that are used in the simulations are derived
from the RTL implementations. By using cycle-accurate models together
with cycle-true simulation, it is possible to get accurate results faster than
through RTL simulations.

Models can be easily changed or added through the use of a simple
API in C/C++. This is very useful if new implementations of components
are made or the need to model certain IP blocks/subsystems in a more
thorough fashion arises. Multiple models for a single component type
(e.g. routers) are supported. Which model to use is selected by supplying
a model type name in the network description.

The model for the first router implementation is based on a set of state
machines, one for every input port of the router. A simplified state dia-
gram of these machines can be found in figure 6.8. All updating of the
state machine is done upon reception of an appropriate clock message.
Even though the router consumes five cycles for a route lookup, the model
will generate the response message immediately. This message is times-
tamped five cycles in the future to give the correct delay. This type of

90 Design and Simulation Environment

Start

Idle Wait

RouteData

Request

Done
Cancel

OK

Fail

Figure 6.8: State machine for the model of the first router

model will guarantee the cycle accurate behavior without the model hav-
ing to keep track of a number of events that happened earlier on in the
simulation.

6.7 Network generator

A network generation tool has been developed that takes a network de-
scription in XML as input and generates the Verilog code for that particu-
lar network. The network generator relies on the router implementation
being parameterized so that the number of ports etc. can be set for each
router.

The top level of the generated Verilog will have a set of ports, one for
each IP block (subsystem) that is described in the XML file. By instanti-
ating this top level, all network functionality including routing tables are
included in the design. The Verilog code have all relevant parameters set
within the generated code with the possibility to change the appropriate
parameters (e.g. data width) at instantiation.

6.8 Network generator architecture

Figure 6.9 shows the top level flow for the network generator. This is in-
tentionally very similar to the simulator flow, allowing for reuse of large

6.8 Network generator architecture 91

Network model

XML parsing

routing tables
Generation of

Verilog generation

Verilog code

Figure 6.9: Network generator top flow

portions of the nonsimulation code. A XML file is parsed and the internal
representation is used to derive the topology for creating the implicit rout-
ing tables, again using Dijkstra’s algorithm. The complete internal repre-
sentation with topology, routing tables, and so on is then used to generate
the Verilog code for the network. Currently, only the fourth router imple-
mentation is supported in the network generator, simply because this is
the only router with a high enough level of parameterization.

Bibliography

[1] Gilles Kahn, “The sementics of a simple language for parallel pro-
gramming,” in Proc. of the IFIP congress, pp. 471–474, Aug. 1974.

[2] Marino T. J. Strik, Adwin H. Timmer, Jef L. van Meerbergen, and Gert-
Jan van Rootselaar, “Heterogeneous multiprocessor for the manage-
ment of real-time video and graphics streams,” IEEE Journal of Solid-
State Circuits, vol. 35, Nov. 2000.

92 Design and Simulation Environment

[3] Thomas M. Parks and David Roberts, “Distributed process networks
in Java,” in Proceedings of the International Parallel and Distributed Pro-
cessing Symposium (IPDPS), 2003.

[4] Free Software Foundation, GNU Scientific Library – Reference manual.
http://www.gnu.org/software/gsl/manual/, 2005.

[5] Free Software Foundation, GNU Flex 2.5 – Reference manual.
http://www.gnu.org/software/flex/manual/, 2005.

[6] Free Software Foundation, GNU Bison 2.0 – Reference manual.
http://www.gnu.org/software/bison/manual/, 2005.

[7] Harry R. Lewis and Larry Denenberg, Data structures and their algo-
rithms. Harper Collins Publishers, 1991. ISBN 0-673-39736-X.

Part IV

Benchmarking of
Interconnect Structures

93

Chapter 7

Benchmarking in General

. . . being honest and impartial and serving with fidelity. . .
The American Society of Civil Engineers’ Code of Ethics

7.1 Motivation

The motivation for benchmarking of hardware is quite simple. The num-
ber of hardware platforms and IP blocks available continually increase.
Many of these are targeted for the same or similar applications. With this
increasing range of implementation come the problems of selecting the
most appropriate solution for a particular problem. The relative perfor-
mance for a set of solutions is the most influential fact (apart from the
actual price) used in the selection process.

The performance evaluation is commonly known as benchmarking. The
need for benchmarking is omnipresent in the electronics industry, even if
the target metric differs widely depending on the intended application
and market. In a microcontroller used for a laundry machine the price,
availability, and simplicity in mounting may well outweight the perfor-
mance, while a military radio will have a significantly different set of
conditions.

95

96 Benchmarking in General

7.2 Definitions

There are some definitions that are very useful for the continuing discus-
sion on the topic of benchmarking. These are mostly concerned with how
to interpret the word benchmark in different contexts.

Definition 1 A benchmark is the combination of the specification(s) that have
been used and the result(s) that have been achieved in the process of benchmark-
ing.

Definition 2 A bottleneck is a performance-limiting factor in a system.

Definition 3 A benchmarking method is a specified method used to create
(i.e. specify) and run benchmarks in order to find bottlenecks.

Definition 4 A benchmarking process is the process of using a benchmark-
ing method and a benchmark specification in order to get benchmark results and
finding bottlenecks.

7.3 Performance metrics

The performance metrics used in benchmarking may also vary signifi-
cantly. There are many possible metrics but only a few that really indi-
cates the true performance. Consider a processor benchmark where there
is a small program, written in C, that is compiled to the native assembly
of the processor. Two distinct metrics are easily derived from the single
measurement of running time. First is the rate, i.e. how many runs per
second that the processor is capable of. The second is the number of in-
structions per second that the processor executes for the benchmark. The
former metric is a clear indication on the true performance of the proces-
sor and can freely be compared to other processors. The latter metric does
not really say anything about the performance since a processor with few,
specialized instructions may complete the processing in the same time as
a general-purpose RISC machine running at much higher clock frequency

7.4 Average vs. worst-case performance 97

and that uses many more instructions to solve the same task. If this sole
metric of instructions per second is used, it seems like the RISC machine
is superior to the specialized machine even though the real situation is the
opposite.

Metrics that may be useful for network performance benchmarking is
bandwidth, latency, power dissipation, etc. These are by no means the
only metrics since other factors will also affect the overall performance.
For example, a network implementation that will give the appropriate
bandwidth and latency may be far too costly in terms of silicon area. Such
a network would not be suitable at all even though the metrics indicate
that it is. This example clearly shows the importance of realizing the sig-
nificance of using the correct metrics for the evaluation process.

7.4 Average vs. worst-case performance

Not only the measurements but also the method of sampling is important
for the results of the benchmark. The two most commonly used methods
are average-case and worst-case sampling. Average-case focuses on the
average value of the measurements to get the metric. This could for ex-
ample be an average over a set of runtimes for a particular application.
Worst-case sampling on the other hand is only interested in the worst
possible value, e.g. the longest runtime.

Average sampling is appropriate in many cases where there is only
a need to estimate the overall performance during prolonged time peri-
ods, as is typically the case for personal computers. This average can be
supplemented by statistical variances and deviation measures to form a
measurement interval.

Using statistical measurements based on averages will only give indi-
cations on the expected value. If real-time behavior is to be guarateed this
is not adequate because the worst-case behavior is not given even implic-
itly. In this case the worst-case performance is the crucial sampling point,
although average behavior may well be interesting for making optimiza-
tions to the system.

98 Benchmarking in General

7.5 Measurement techniques

The accuracy of the benchmark is not only affected by which measure-
ments to take but also how these measurements are taken. There are three
main techniques used for measuring the system behavior, namely event
driven, sampling, and indirect.

Event-driven measurements are based on events that happen in the sys-
tem, i.e. a counter may be incremented when a packet has been received.
Event-driven measuring is generally the most accurate method. A special
case of event driven measurements is called tracing. Tracing involves sav-
ing information about the system state at the events, making it possible to
replay the causes or effects of the events.

Sampling uses periodic checks of the state to deduce the events be-
tween the states. In this case, measuring the number of received packets
could be done by checking if a new packet is coming in at the sampling
instant. Sampling may miss events if they happen too often (analogous to
the Nyquist sampling theorem).

Indirect methods have to be used if there is no direct method of re-
acting to events or sample some quantity. With indirect measurements,
a quantity that can be measured directly is used to deduce the probable
value of the indirect quantity.

The accuracy of the measurements is important to consider. Quantiza-
tion effects may give very imprecise results for measurement values that
are small compared to the resolution of the measurement.

One clear advantage of benchmarking using behavioral simulation is
the possibility to take the measurements nonintrusively. The accuracy of
the measurements can be significantly increased when the system is not
directly affected by the fact that measurements are being taken.

7.6 Comparing results

Taking measures and formulating metrics can be done relatively easy in
a objective fashion. Making results comparable across platforms and per-

7.7 Processor benchmarking 99

forming the comparisons can be more of a problem. In order to have fair
benchmarking, all measurements must be taken in a strictly controlled en-
vironment. This is necessary in order to prevent some systems from hav-
ing more or less favourable conditions during benchmarking compared
to the other which will lead to a biased benchmark result. This problem is
well known in any type of performance comparison and has been known
to confuse customers for decades.

7.7 Processor benchmarking

There are several benchmarking suites for processors, like the SPECint
[1] and SPECfp [2] for general-purpose processors. These benchmark-
ing suites are very common among both commercial and academic users.
Digital signal processors are benchmarked commercially by Berkeley De-
sign Technology, Inc. [3].

A general discussion on processor benchmarking is beyond the scope
of this thesis. See the book by Lilja for more information on this topic [4].

7.8 Network benchmarking

Benchmarking of networks is usually constrained to the individual com-
ponents, e.g. routers, or particular applications, e.g. web servers. An ex-
ample is the Internet core router test published by Light Reading [5].

Bibliography

[1] Standard Performance Evaluation Corporation, CPU2000 benchmark
suite, Integer benchmarks (SPECint). http://www.spec.com, 2000.

[2] Standard Performance Evaluation Corporation, CPU2000 benchmark
suite, Floating point benchmarks (SPECfp). http://www.spec.com, 2000.

[3] Berkeley Design Technology, Inc. (BDTI), Evaluating DSP Processor
Performance. http://www.bdti.com.

100 Benchmarking in General

[4] David J. Lilja, Measuring computer performance. Cambridge University
Press, 2000. ISBN 0-521-64105-5.

[5] David Newman, Internet core router test. Light Reading online,
http://www.lightreading.com, 2001.

Chapter 8

Benchmarking of On-Chip
Interconnects

If you can find something everyone agrees on, it’s wrong.
Mo Udall

8.1 Benchmarking of interconnects

There are a number of differences between benchmarking of computa-
tional resources, e.g. DSP processors and interconnection networks. The
most important differences are shown in Table 8.1. The two upper sec-
tions relate to the benchmark specification and the two lower sections
relate to the results. The idea behind each category is similar, e.g. con-
straints make both the DSPs and NoCs comparable in the sense of disal-
lowing “cheating”.

The constraints set the limitations of the interconnect to be bench-
marked such that it has to be implementable (and possibly reliable). The
specification in turn tells what kind of traffic should be simulated over
the interconnect.

The results are a combination of the target information and simula-
tion results. Target information are architectural choices such as word
length (i.e. link width), if quality of service is supported in hardware, etc.
Some results that may be acquired in the benchmarking are measures on

101

102 Benchmarking of On-Chip Interconnects

Table 8.1: Comparison of DSP and NoC benchmarks
DSP NoC

Constraints · Native precision · Transaction level

· Include round/sat · Implementable NoC

· Only core DSP · Only complete

(i.e. no accelerators) transactions (no loss)

Specification BDTI examples: · Traffic pattern

· Real block FIR · Packet size(s)

· Complex block FIR · Number of ports

· Vector dot product

Target info ·Word length ·Word length

· Clock frequency · QoS in hardware

· Hardware cost · Hardware cost

Results · Cycle cost · Throughput

· Program memory use · Latency

· Data memory use · Buffer usage

throughput, latency, buffer usage, etc.

8.1.1 Benchmarking method

The principle of the benchmarking method is to create a traffic model for
the interconnect simulation that reflects the benchmark specification. This
traffic model is then used to excite the network model in the appropriate
simulator. The simulations will give (approximations of) the performance
for the given network(s) under the traffic specified.

The benchmarking flow is as follows:

1. If possible, create the necessary instrumentation in the simulator to
allow nonintrusive benchmarking if this is not already supported.

2. Translate the benchmark specification into a traffic model for the
simulator. It is important to note that this translation might become

8.1 Benchmarking of interconnects 103

suboptimal. Depending on the impact of the design flow the bench-
mark may also take the tool chain and methodology into account.

3. Execute the simulations with the traffic model and one or more net-
work models. The traffic model is hereby used to create stimuli that
is used to excite the hardware model as given in the network speci-
fication.

4. Collect the results from the simulations and evalute these.

8.1.2 Benchmark specification

The specification of the benchmark is basically the traffic model specifica-
tion. As is discussed in section 6.4, such a specification can be presented
using many different methods. Examples are Kahn graphs [1] and com-
municating synchronous dataflow graphs [2]. Another possibility is to
simply use multiple state machines and flow charts to describe the traf-
fic flows. The important point is that the model used must be able to
describe the system accurately without the model becoming too complex
and error-prone.

Apart from the traffic model the benchmark specification may also put
constraints on the network model, e.g. the maximum silicon area allowed
for the network or the maximum clock frequency in the network. The
expected level of real-time behavior in the system is also important to
specify since this is important for the interpretation of the benchmark re-
sults.

8.1.3 Interpretation of results

The most important part of the benchmarking process is to interpret the
simulation results correctly. Even direct figures like a throughput mea-
surement can be misleading if taken out of context. The only appropriate
method to read a simulation result is to couple it with the traffic situation
and interconnect architecture used for the specific simulation. Because

104 Benchmarking of On-Chip Interconnects

of this and the general complexity of interconnect systems, each compari-
son must then be based on an individual interpretation to find the specific
differences in each case.

This complicated interpretation of the results is one of the major obsta-
cles for the use of generic benchmarks for interconnects. For a processor it
is very simple to state measurements, e.g. the run times for a set of kernel
algorithms, which will characterize the processor quite thoroughly. This
kind of information can easily be published while revealing very few ar-
chitectural details.

8.2 Benchmarking examples

This section presents two benchmarking examples where the impact of
burst size (i.e. packet size) and the total data rate is investigated. By using
a specification with open variables the benchmark will cover a certain de-
sign space, giving not only a single number as a result but rather a result
hypercurve over this design space. Generally, with n independent vari-
ables in the benchmark specification, the results will be a hypercurve in
n dimensions. In this case, the variables are limited to two giving results
over two dimensions which can easily be visualized as 3D graphs.

The main target result for the examples given here is data throughput
through the network. Several other result functions may be considered,
e.g. latency, but this is limited to a single result function for simplicity.

These traffic models are not intended to model a specific application
but have rather been selected to show the applicability of the methods
described in this thesis.

8.2.1 Example 1: Specification

Network

The network considered should have 64 ports for connection to subsys-
tems. The network is limited to a mesh implementation of the SoCBUS
network. This implementation is selected because of the simplicity in the

8.2 Benchmarking examples 105

design and the fact that this would typically be the original topology cho-
sen for the inital network before optimizations. The reason for just look-
ing at SoCBUS is that no other network on chip models were available to
us at the time.

Traffic

All traffic originates and terminates in the 64 combined sources/sinks
connected to the network. The outgoing data rate for each source is varied
over a range from 5% to 80% of the cycles (assuming synchronous model).
Also the packet size is varied from 20 to 3000 words per packet for each of
the data rates. These communicate with each other in a random fashion
with uniformly distributed starting times.

Two variations on this benchmark has been simulated. The two ver-
sions differ in how the source/sink pair selection have been specified.
The first case is totally random selection of source and sink over the en-
tire set. The second case assumes locality when the sources and sinks are
distributed evenly over a square (i.e. a 2D mesh). The sources are then
selected randomly while the sinks are selected randomly within a radius
of two sinks away from the source.

8.2.2 Example 1: Results

The theoretical maximum throughput at the inputs is 64 words per cy-
cle. The simulation results for the first sink selection case can be found
in figure 8.1. The graph shows a low saturation level about five words
per cycle for the smallest packet size (20 words). The saturation level in-
creases to about 21 words per cycle for larger packet sizes. The reason
for the relatively low saturation limit with small packets is that the over-
head will dominate the transfer. The low overall saturation level is due to
the congestion in the network center when traffic can go over the entire
network.

For the second case (with a sane network port allocation) the through-
put will reach the levels shown in figure 8.2. Small packet still give a

106 Benchmarking of On-Chip Interconnects

0
20

40
60

80
100

0
500

1000
1500

2000
2500

3000
0

10

20

30

40

50

Intensity (% of time)Packet size (words)

Th
ro

ug
hp

ut
 (w

or
ds

/c
yc

le
)

Figure 8.1: Throughput for random traffic on 2D mesh

0
20

40
60

80
100

0
500

1000
1500

2000
2500

3000
0

10

20

30

40

50

Intensity (% of time)Packet size

To
ta

l d
at

a

Figure 8.2: Throughput for traffic with locality on 2D mesh

low saturation limit of about 22 words per cycle whereas the use of larger
packets will raise the throughput to roughly 40 words per cycle. The rea-
sons for the higher saturation level is the significantly reduced congestion
in the network. These two benchmark variations clearly show the impact
of locality for this specific network.

8.2 Benchmarking examples 107

0
20

40
60

80
100

0
500

1000
1500

2000
2500

3000
0

10

20

30

40

50

Intensity (% of time)Packet size (words)

Th
ro

ug
hp

ut
 (w

or
ds

/c
yc

le
)

Figure 8.3: Throughput for 2D torus

8.2.3 Example 2: Specification

Network

The network specification is the same as in the first example, with the
exception of the topology. In this case, the topology is selected as an
additional variable. Four different network topologies have been sim-
ulated, namely the 2D mesh, 2D torus, 3D mesh, and 3D torus. Both 2D
topologies are of size 8x8 while the two 3D topologies are built from 4x4x4
routers.

Traffic

The traffic specification is exactly the same as in the first case of the first
benchmark example. All traffic is completely random without any restric-
tions on selection on source/sink pairs.

8.2.4 Example 2: Results

The results for the 2D mesh is exactly the same as for the first case in the
previous example, see figure 8.1. If the simple change from a mesh to a
torus is made, this will have a quite large impact on the result. With this
topology it is possible to reach beyond 31 words per cycle at the saturation

108 Benchmarking of On-Chip Interconnects

0
20

40
60

80
100

0
500

1000
1500

2000
2500

3000
0

10

20

30

40

50

Intensity (% of time)Packet size (words)

Th
ro

ug
hp

ut
 (w

or
ds

/c
yc

le
)

Figure 8.4: Throughput for 3D mesh

0
20

40
60

80
100

0
500

1000
1500

2000
2500

3000
0

10

20

30

40

50

Intensity (% of time)Packet size (words)

Th
ro

ug
hp

ut
 (w

or
ds

/c
yc

le
)

Figure 8.5: Throughput for 3D torus

point, which is almost 50% more than for the mesh. The reason is the
decreased congestion in the network coming from the significant increase
in the number of possible routes between sources and sinks.

The 3D mesh, see figure 8.4, shows a small improvement over the 2D
torus. Here it is possible to reach above 32 words per cycle. The last
case, the 3D torus is the best in this benchmark. Figure 8.5 shows the
throughput for this network, reaching more than 37 words per cycle. The
increase from the 2D torus to the 3D torus is not very impressive, consid-
ering the fact that there are 50% more links in the 3D torus. The 2D torus
is definitely interesting for systems with random or near-random traffic

8.2 Benchmarking examples 109

patterns, e.g. general computing.

Bibliography

[1] Gilles Kahn, “The sementics of a simple language for parallel pro-
gramming,” in Proc. of the IFIP congress, pp. 471–474, Aug. 1974.

[2] E. A. Lee and D. G. Messerschmitt, “Static scheduling of syn-
chrounous data flow programs for digital signal processing,” IEEE
transactions on computers, vol. C-36, Jan. 1987.

110 Benchmarking of On-Chip Interconnects

Part V

Applications

111

Chapter 9

Internet Core Router

Core: a tiny doughnut-shaped piece of magnetic
material (as ferrite) used in computer memories
Merriam-Webster Online Dictionary (2005)

9.1 Brief introduction to core routers

The evolution in electronics together with the rapidly increasing interest
in the Internet has led to a bandwidth explosion. Today, the traffic on
the Internet doubles about every six months. All service providers and
backbone suppliers must therefore keep up with the pace in deploying
new and faster network components.

Figure 9.1 shows a schematic view of the Internet. The end users have
their terminals connected to the service provider’s network. The service
providers in turn connect their network through their edge routers to the
core network. The core network consists of a set of high-performance
routers, known as core routers.

There are several design differences between core routers and edge
routers. The perhaps most obvious is the bandwidth requirement that is
higher in the core network. Also, the sizes of routing tables are signifi-
cantly larger in a core router because of the large number of links to other
routers. On the other hand, the edge routers may consider other aspects,
e.g. quality of service requirements and complex packet filtering.

The application case study described in this chapter is a core router for

113

114 Internet Core Router

Internet core

Edge router

Core router

Terminal

Figure 9.1: Schematic view of the Internet

the Internet, where high packet throughput is the main design target. The
design goal is a single-chip core router that is capable of accepting 16 ports
with 10 Gbit/s data rate transporting TCP/IP traffic. The standard that
has been targeted is 10 Gbit/s Ethernet [1], although Sonet/SDH OC-192
[2] would also be appropriate as a physical media. This solution will pro-
vide a cost-effective means to expand the core network with more band-
width.

Several years have passed since the first OC-192 router was introduced
on the market. The main difference to the one considered in this case
study is the physical size where the currently deployed core routers tend
to be on the scale of racks rather than chips.

9.2 Core router processing flow

The main task of the router is to filter out bad packets and forward the
good packets to the appropriate output port. In order to do this, four
main tasks has to be done:

1. Check incoming packets for errors, e.g. through a CRC check.

2. Classify the packets according to type, destination address, etc.

3. Make a routing decision.

9.2 Core router processing flow 115

processor

Input
packet Packet

buffer

Forwarding
table

Output
packet

processor

Figure 9.2: Dataflow in the core router

4. Update headers and calculate new checksum and CRC.

A side effect of this processing flow is that the payload data has to
be stored during the route lookup. This is necessary because the route
lookup may consume a varying time dependent on how the appropriate
address matching rules looks like. Based on the routing decision, the pay-
load will be repacketized with updated headers at the output of the core
router.

The processing and dataflow is shown in figure 9.2. The packet arrives
at the input packet processor (IPP) where initial classification, error check-
ing, etc. is done. The header information is forwarded to the forwarding
table (FT) and the payload is sent to the packet buffer (PB) for storage. The
packet buffers also handle any off-chip memory that is necessary to cope
with bursts of heavy traffic. The forwarding table will make a routing
decision and send this to the packet buffer for further forwarding to the
appropriate output packet processor (OPP). The OPP must then repacke-
tize the data, update the headers, and calculate the new checksum.

Because of processing requirements with line speed packet handling,
the IPPs and OPPs all take care of one Ethernet port each. Because of the
central functionality of the FT and PB, these should preferably only be
instantiated once. Because of bandwidth and processing limitations this
is impossible as will be shown later.

The processor (CPU) is used for the regular maintenance and routing
table update tasks. The multicast unit (MU) handles multicast packets.
These two blocks are not considered further in this case study.

116 Internet Core Router

PB

SoCBUS interconnect

MUCPU FT

IPP OPP

Figure 9.3: Core router system architecture

9.3 Function mapping

The function mapping of the core router is quite straight forward. The
four dataflow steps in figure 9.2 are mapped directly to hardware blocks.
These are interconnected using a SoCBUS network as depicted in figure
9.3. The input to the IPPs and the output from the OPPs are connected to
the (off-chip) Ethernet PHYs. All other connections are made through the
SoCBUS network.

Iterative design where the current solutions were evaluated using sim-
ulations resulted in the final network mapping and functional unit allo-
cation found in figure 9.4. The forwarding table unit has been replicated
four times because of the required bandwidth and processing require-
ments will be far from reachable in an implementation. If a single port to
the FT was used, this would give too high requirements on the SoCBUS
network connection of that unit. The maximum lookup rate for minimum
size packets will be around 260 million lookups per second. This rate is
possible to achieve without using specialized CAM memories [3].

Further, the packet buffer unit has been replicated eight times because
of the bandwidth requirements. Every packet buffer will use its own
buffer memory, which may lead to inefficient memory usage in case of
bursty traffic on some ports while other ports are idle. The resulting ad-
vantage in bandwidth is necessary in order to meet requirements.

Because of the processing requirements for handling packets at line
speeds of 10 Gbit/s all units must be implemented as dedicated (possibly
configurable) hardware blocks. Using a general processor is not viable for

9.4 Simulation setup 117

IPP

IPP

IPP
 1
IPP

 2

OPP OPP OPP OPP OPP OPP

IPP IPP

IPP

IPP IPP IPP

IPP IPP

OPP

IPP

IPP

IPP

IPP
 3 4

 14 15 16
IPP

PB PB PB

OPPOPP OPP OPP OPP OPP OPP OPP

OPP
 10 11 12

 13 14 15 16

MUCPU

PB

 1 2 3 4 9

 5 6 7 8

PB PB PB PB
 1 2 3 4 5 6 7 8

FT
 4 2

FTFT
 1

FT
 3

 5 6 7 8

 9 10 11 12 13

Figure 9.4: Final network allocation and mapping

this kind of system because of the limited processing power due to the
unsuitable architecture. The individual components can be implemented
as dataflow processors in the case where programmability is needed.

The selected architectures for the units will ensure ordering of the in-
dividual flows. This means that all packets coming in on one port will
be delivered in the same order to the output ports. In-order delivery of
packets is highly desirable for TCP flows.

9.4 Simulation setup

The simulations were done using an in-house simulator specifically de-
veloped for the SoCBUS project. Models for the IPP, FT, PB, and OPP were
developed and compiled into the simulator. The capability to cosimulate
the network and IP blocks considering the dependencies between internal
communications is essential for the accuracy of the simulation results.

Separate models for the internal traffic and SoCBUS network connec-
tions are written in XML and used as input to the simulator. By separating
the models it is possible to change the traffic or network model without

118 Internet Core Router

Table 9.1: Packet-size distribution for Internet mix

Probability Packet size

56% 40 bytes
23% 1500 bytes
17% 576 bytes
5% 52 bytes

affecting the other. This is particularly useful when a set of traffic patterns
should be run over a set of networks.

9.5 Simulation results

9.5.1 Traffic patterns

Three distinct traffic patterns have been used for the Internet traffic. The
first pattern is a statistical distribution of packet sizes that is derived from
observations on live traffic on the Internet, known as the Internet mix [4].
The Internet mix is a combination of four fixed packet sizes, see Table 9.1.
Using this traffic will mimic the behavior of a real network router.

The second pattern is evenly distributed packet sizes according to
RFC2544 [5]. The packet sizes according to this distribution are evenly
spread across 64, 128, 256, 512, 1024, 1280, and 1518 bytes.

The last traffic pattern used is constant streams of minimum-size pack-
ets. This is used to check the route lookup performance of the core router.
All three patterns use a flat distribution for selection of destination ports,
making the bandwidth per output port the same as for the input ports on
average.

By varying the intensity of the traffic, i.e. the arrival rate of packets, it
is possible to create incoming traffic with variable bandwidth. This can
be used to find the point where congestion will occur in the router.

9.5 Simulation results 119

0 2 4 6 8 10 12 14
0

500

1000

1500

2000

2500

Throughput (Gbit/s)

La
te

nc
y

(n
s)

Figure 9.5: Internet mix: Average packet latency

1
2

3
4

5
6

7
8

1 2 3 4 5 6 7

0

5

10

15

20

25

30

Y positionX position

R
ou

te
r l

oc
k

(%
)

Figure 9.6: Internet mix: SoCBUS router-port lock

9.5.2 Internet mix simulations

The first simulation runs were done using the Internet mix traffic. The av-
erage routing latency as a function of offered load (i.e. expected through-
put) per network port is shown in figure 9.5. For the Internet mix type
traffic, it is possible to reach beyond 13 Gbit/s sustained throughput per
port before congestion occurs and the router will begin to drop packets.

Figure 9.6 shows the usage of the router ports through the SoCBUS
network. The X- and Y-axes in the figure corresponds to the horizontal
and vertical axes in figure 9.4. It is clear that the most intense traffic is

120 Internet Core Router

0 2 4 6 8 10 12 14 16 18
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Throughput (Gbit/s)

La
te

nc
y

(n
s)

Figure 9.7: RFC2544: Average packet latency

around the packet buffers where almost all traffic originates or terminates.
The payload is sent from the IPPs to the PBs and then on to the OPPs. This
will give a network usage around the packet buffers equivalent to more
than double the bandwidth of incoming packets to the router. There are
also routing results sent from the FTs to the PBs, further increasing the
congestion around the packet buffers.

9.5.3 RFC2544 simulations

The simulations based on RFC2544 patterns show a similar behavior as
the Internet mix but with the maximum throughput increased to around
16 Gbit/s per port, as shown in figure 9.7. Because of the similarities with
the Internet mix, this case will not be discussed further.

9.5.4 Minimum size packets simulations

The minimum size packet simulations show a significantly lower through-
put than the previous two cases, as shown in figure 9.8. The congestion
point is now at around 2.6 Gbit/s per port.

The reason is that the SoCBUS ports to and from the forwarding tables
and the packet buffers can no longer cope with the immense number of

9.6 Conclusions 121

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

2000

2500

3000

3500

Throughput (Gbit/s)

La
te

nc
y

(n
s)

Figure 9.8: Min size: Average packet latency

packets that arrive. Figure 9.9 shows the port usage for outgoing trans-
missions from the functional blocks. The row corresponding to the packet
buffers show a peak usage of about 80% which is very high, considering
that the traffic into the packet buffers actually exceeds the output traffic
because both the IPPs and FTs communicate to the packet buffers.

One reason for the high port usage is that the PCC circuit setup scheme
will put a high communication overhead penalty on small packets. Pack-
ets that are of a single word, such as the routing information sent from
the IPPs to the FTs, will have a transmission overhead of several times the
payload size on the SoCBUS network. Either grouping several requests
together using a single SoCBUS packet or lowering the overhead will in-
crease the throughput significantly.

9.6 Conclusions

A viable design for a 16-port, single-chip Internet core router has been
presented. This design shows a performance limit of about 14 Gbit/s per
port with typical Internet traffic and 16 Gbit/s per port for RFC2544-style
traffic.

Pure minimum size packet traffic will limit the performance to about

122 Internet Core Router

1
2

3
4

5
6

7
8

1 2 3 4 5 6 7

0

10

20

30

40

50

60

70

80

Y positionX position

W
ra

pp
er

 lo
ck

 (%
)

Figure 9.9: Min size: Source port locking

2.6 Gbit/s per port because of limitations in the internal communication
structure and the forwarding tables. The limiting factor in the minimum-
size packet case is the SoCBUS connections to the forwarding table units
and the circuit switching scheme used for communications that puts a
large overhead on small transfers.

Bibliography

[1] “IEEE 802.3an (10GBASE-T) task force,” http://www.ieee802.org/3/an/,
2005.

[2] “Synchronous optical network (SONET) basic description including
multiplex structures, rates, and formats,” ANSI T1.105, 2001.

[3] N. Soni, N. Richardson, L. Huang, S. Rajgopal, and G. Vlantis, “NPSE:
A high-performance network packet search engine,” in Proceedings of
the design and test in Europe (DATE) conference, 2003.

[4] David Newman, Internet core router test. Light Reading online,
http://www.lightreading.com, 2001.

9.6 Conclusions 123

[5] S. Bradner and J. McQuaid, Benchmarking Methodology for Network
Interconnect Devices. RFC2544, http://www.ietf.org/rfc/rfc2544.txt,
1999.

124 Internet Core Router

Chapter 10

WCDMA/FDD Basestation

10.1 A brief introduction to WCDMA/FDD

Currently, the third generation of mobile telephone systems is deployed
throughout the world. The standard used in Europe and some other parts
of the world is the WCDMA/FDD mode of the 3GPP specification [1].
WCDMA (wideband code-division multiple access) means that different
users share a relatively wide spectral band using coding instead of time
slots. Each user is allocated a spreading sequence used to smear its nar-
rowband data signal over the broader spectral band. Each user is then
differentiated from other users by the chosen spreading sequence which
preferably should be orthogonal to the other spreading sequences in use.
The narrowband signal can then be recovered at the receiver by the same
mechanism.

The spreading code must be generated at a higher rate than the data
to be transmitted. This spreading code rate is normally denoted chip rate
and is 3.84 Mchip/s for WCDMA/FDD. The chip rate is is typically 16-
256 times higher than the final data rate.

Figure 10.1 shows the schematic function of the spreading for the down-
link channels [2]. The data sequence enters the spreading block and is
parallelized to two bits, which are mapped into a QPSK (or 16QAM) sig-
nal. The outputs from the mapper are multiplied with the channelization

125

126 WCDMA/FDD Basestation

Ch codeS/P mapper
Modulation

Scr code

j

D
ow

nl
in

k
ch

an
ne

l

Sp
re

ad
 c

ha
nn

el

Figure 10.1: Spreading function

code, which is an orthogonal variable spreading factor (OVSF) code.

The sequences are then multiplied by the scrambling code. The scram-
bling code is also generated at the chip rate. The output can then be
summed with other downlink channels and transmitted over the radio.

The channelization codes are used to separate data streams from the
same source, which allows a number of downlink channels to be com-
bined before transmission. The scrambling code is unique for the basesta-
tion and is used to differentiate this from other basestations in the vicinity.

10.2 Basestation processing flow

10.2.1 Downlink

The downlink processing is relatively straight forward. The basestation
will transmit a set of downlink physical channels, typically one for each
terminal, plus a set of common channels. The common channels are three
synchronization channels, a broadcast channel, a paging channel, and so
on. All these common channels are transmitted to all users within the
reach of the basestation. Of special interest among these is the synchro-
nization channels that are used for initial cell search where a mobile termi-
nal can find and connect to a basestaion [3]. The primary synchronization
channel uses a so called generalized hierarchical Golay sequence with ex-
cellent autocorrelation properties for easy detection and synchronization.

Figure 10.2 shows the dataflow for user data. The incoming data from
the media access control (MAC) layer is made up of two different streams.
One is the dedicated transport channel (DTCH) for data and the other

10.2 Basestation processing flow 127

Rate
matching

1st
interleave

Spreading
mapping

2nd
interleave

Radio frame
segmentation

CRC12

CRC16 Viterbi/Turbo

Viterbi

DTCH

Signaling

To RF

DCCH

Figure 10.2: Downlink transmission flow

is the dedicated control channel (DCCH). The first step is to add error
correction and detection coding to these streams. The streams are then
sent to a rate matcher that will make sure that the data rate of the stream
is correct for the physical layer. The stream is then interleaved, segmented
into slots, and interleaved again. Finally, the stream will be mapped and
spread to the chip rate and output to the radio frontend.

10.2.2 Uplink

The uplink processing flow is similar to the downlink flow but involves
much more and a different order of computation. Figure 10.3 shows the
dataflow for the received data. The first step in the flow is multipath
combination. This step is based on a mutlipath search filter and a Rake
receiver in cooperation. Since each terminal will experience different mul-
tipath propagation conditions, this will require the use of one multipath
combiner per terminal in the basestation. The Rake recevier will do en-
ergy combination and despreading of the incoming signal.

The despread stream is then sent through deinterleaving followed by
reverse rate matching. The stream is then sent through radio frame re-
assembly and a second deinterleaver before the forward error correction
coding is used to restore the received data, which can then be sent to the
MAC layer.

128 WCDMA/FDD Basestation

deinterleave
1st

CRC12

CRC16

Viterbi

Viterbi/Turbo

From
RF RAKE

2nd
deinterleave

Rate
matching

Radio frame
reassembly

Multipath
search

DTCH

DCCH

Figure 10.3: Uplink reception flow

10.3 High-level design specification

The case study presented here concerns the baseband part of a 128-channel
radio basestation for WCDMA/FDD. The case study is limited to a spe-
cific traffic case in the basestation. The basic assumption is that 128 data
channels each transporting 384 kbit/s is used in both uplink and down-
link. No regard is given to changes in this situation that would occur if
a new user connects or a channel wants to change the transfer parame-
ters. The input at the radio is assumed to be samples, ready for multipath
search. This assumes that the radio interface is responsible for gain con-
trol and such, although this may well be based on information from later
stages of the flow.

10.4 Function mapping

The basestation dataflow implementation is based on a set of functional
subsystems that each perform a part of the flow. These subsystems are
listed in table 10.1. Some functionality has been grouped, e.g. the rate
matcher and one interleaver. This is possible since these functions are
each very simple and that a net gain in cost can be found when the func-
tions share the memory. The subsystem selection is based on an analysis
of the processing and memory requirements of the basestation and is be-
yond the scope of this thesis.

The architectural mapping is found in figure 10.4. The architecture

10.4 Function mapping 129

Table 10.1: Block types
Abbr Subsystem function

RI Radio interface
SM Spreading and modulation

Rake Rake receiver and despreader
IRM Interleaver and rate matcher
RFRI Radio frame reassembly and interleaver
VTC Viterbi/Turbo encoder
VTD Viterbi/Turbo decoder
CRC CRC calculator and checker
Mac Mac layer interface

is based on a mesh network of size 8x8 routers. The network has been
optimized somewhat to get a lower overall cost with only 52 routers. Fur-
ther optimizations are possible since the top and bottom rows (with two
routers each) are superfluous for the functionality since the blocks can be
attached to the nearest full row. Also, some of the links in other parts of
the network are unused and can be removed from the design. An optimal
network is not the main design target and this is therefore ignored.

The network considered uses only the first type of router (section 5.9.1)
because the extra functionality of the latter routers are not necessary. Some
routers have less than five ports, which will give a smaller contribution to
the total area than 0.06 mm2. Thus, with the selected network topology,
the routers will occupy a chip area of less than 52 · 0.06 = 3.12 mm2 plus
wiring.

The functional allocation follows the dataflow with the radio inter-
faces on the top edge of the network to the MAC interfaces at the bot-
tom edge. Uplink data goes from top to bottom, and vice versa for the
downlink data. The allocation of subsystems to network ports is done to
minimize the network distance between communicating subsystems.

A real basestation would need a system controller to be present. This
is not included in the described allocation but can be connected more or

130 WCDMA/FDD Basestation

RI RI

SM
0

SM
1

SM
2

SM
3

SM
4

SM
5

SM
6

SM
7

Rake
0

Rake
1

Rake
2

Rake
3

Rake
4

Rake
5

Rake
6

Rake
7

RMI
0

RMI
1

RMI
2

RMI
3

RMI
4

RMI
5

RMI
6

RMI
7

VTC
0

RFRI
0

VTC
1

RFRI
1

VTC
2

RFRI
2

VTC
3

RFRI
3

VTD
0

VTD
1

VTD
2

VTD
3

VTD
4

VTD
5

VTD
6

VTD
7

CRC
0

CRC
1

Mac
0

Mac
1

10

Figure 10.4: Architectural mapping of the basestation

less anywhere in the network.

10.5 Processing subsystems

10.5.1 Multipath search and Rake

The multipath search is by far the most processing intensive task in the
flow. The longest path delay (from the ITU pedestrian B model) is 3.7 µs,
or about 60 samples. Each channel must then be correlated over 60 sam-
ples to get the channel estimate. Each block of samples will then consume
about 46000 complex multiply and accumulate (CMAC) operations where
the coefficients are ±1 ± j per sample block and channel. Not all blocks
have to be used for multipath search once the initial multipath search
has been done. This will lower the requirements to one tenth (i.e. using
only one uplink pilot bit) of the otherwise preventively high processing
requirements.

10.5 Processing subsystems 131

After the multipath search is complete, Rake combining can then be
done using simple techniques, e.g. the FlexRake architecture [4].

The multipath search will require the use of multiple CMAC units in
order to meet the processing deadlines. The total processing requirement
will be on the order of 1500 CMAC/µs or the equivalent of eight units
running at 200 MHz. With somewhat more resources at hand it will be
possible to aquire initial synchronization for the users one at a time.

10.5.2 Deinterleaving and rate matching

Deinterleaving of data is a trivial operation in the 3G standard. Data is
simply written in order to a memory and then read from the memory
using a permutation of row and column order.

The rate matching is somewhat more involved since it uses bit rep-
etition and puncturing. Thus, the correct bits have to be removed from
the data stream so that the remaining bits can be sent to the radio frame
reassembly.

10.5.3 Radio-frame reassembly and deinterleaving

The radio-frame reassembly step is more or less just concatenation of data,
which is a trivial operation. The interleaving is done in the same fashion
as the first interleaving described in section 10.5.2.

10.5.4 Viterbi and Turbo decoding

The Viterbi and Turbo decoding is the second most processing-intensive
task in the receiver. The control flow goes through a convolutional coder
with rate 1/3 (or 1/2) and constraint length 9 in the terminal. The total
data rate for the control channels is low which gives a low processing
complexity for the Viterbi decoder.

Data is encoded with rate 1/3 using two 8-state constituent encoders.
The total incoming data rate to each Turbo decoder subsystem is about
6.2 Mbit/s. This target can be reached using ASIC-style hardware [5].

132 WCDMA/FDD Basestation

10.5.5 CRC checking

CRC checking in the receiver path is divided into two different paths
where the control uses 12-bit CRC and the data uses 16-bit CRC. With
the compound data rate of about 25 MBit/s per direction (i.e. 64 channels
times 384 kbit/s) the CRC checking must be considered a simple task. No
special ASIC-style hardware is necessary since this can be performed with
a suitable processor.

10.6 Processing and communication scheduling

The maximum latency for processing a 3G slot is on the order of a few slot
times. A maximum latency of two slot times (1333 µs) is assumed for the
schedule in this case study. Therefore, the communication and processing
schedule must be relatively tight to meet the deadline.

The downlink processing is practically trivial compared to the uplink
processing and will not be discussed further here although it has been
considered in the scheduling of the system. The uplink processing is more
interesting since all heavy processing are done in that part. A nice prop-
erty of the 3G system is that the received uplink channels must be (almost)
in synchronization with each other, simplifying the task of handling sev-
eral simultaneous channels.

There are four distinct subschedules for the receiver depending on
which specific instances of the subsystems that are involved in the pro-
cessing. Figure 10.5 shows the worst path schedule for the basestation.
The transmissions are shown as grey boxes and processing as white boxes.
The annotations are the transmission size in words (i.e. 16 bits) and maxi-
mum processing time in microseconds. The gaps in the schedule is due to
synchronization delays between the communicating subsystems and the
different schedules for these including the downlink processing.

The schedule shows the processing of the data for a single time slot.
Combining the four individual schedules and folding these over a slot
time will give the full picture of the schedule.

10.6 Processing and communication scheduling 133

Rake

IRM

RFRI

VTD

CRC

MAC

RI

1376 us

260 w

175 us
1280 w

3136 w
110 us

3136 w

260 w
70 us

120 us

205 us

768 w

Figure 10.5: Worst-case uplink processing schedule (not to scale)

The critical chain of communication in total is 8840 words plus over-
head, which gives less than 10000 network clock cycles for the commu-
nication. With a network running at 100 MHz this will give a total delay
on the order of 100 µs. Simulation results later showed that the mini-
mum acceptable network frequency of 75 MHz and maximum overhead
of 41 cycles per communication yielded about 122 µs total communica-
tion delay, which confirmed this assumption. With maximum two time
slot delays in the basestation, this will give about 1200 µs for processing
assuming no flow synchronization overhead.

10.6.1 Schedule analysis

The first step in the schedule is to send a set of samples from the radio
interfaces to the Rake/despreader blocks every 50 µs. With an oversam-
pling factor of four, this will be 768 samples per period. The reason for
selecting a period of 50 µs is that the radio interface will require signifi-
cantly less memory and that the Rake/despreader blocks can work con-
tinuously during reception of a slot without getting excessively large sets
of samples at long intervals. Also the radio interfaces need to send the
samples to four Rake blocks which adds about 400 µs to the latency for

134 WCDMA/FDD Basestation

Table 10.2: Longest possible processing times in the reception flow
Abbr Subsystem Max time

RI Radio interface n/a
Rake Rake receiver and despreader 175 µs
IRM Interleaver and rate matcher 120 µs
RFRI Radio frame reassembly and interleaver 110 µs
VTD Viterbi/Turbo decoder 205 µs
CRC CRC calculator and checker 70 µs
Mac Mac layer interface n/a

the last receiving Rake block.

The schedule continues with the rest of the processing subsystems and
their associated communication. The maximum allowable processing la-
tency for each block in the schedule is given in table 10.2. The shortest
schedule with low synchronization overhead is approx 907 µs long while
the longest schedule is 1376 µs.

10.6.2 Latency-induced storage

Extra memory requirements are added due to the additional latency in-
curred from the schedule. This latency is not part of the network latency
but rather related to the processing schedule for the subsystems. When-
ever a subsystem is occupied by computation, it is also considered unable
to receive incoming data.

The maximum extra buffer memory requirements consist of a single
buffer for each communication, in total about 100 kilobytes for all recep-
tion flows. This requirement can be relaxed somewhat by tweaking the
schedule to get tighter communication. With the simulated schedule this
has been lowered to about 25 kilobytes in total. The extra buffer memory
can either be placed within the subsystems or in the wrappers.

10.7 Simulation results 135

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Clock frequency (MHz)

Fi
rs

t t
im

e
su

cc
es

sf
ul

 (%
)

Figure 10.6: First try successful routing

10.7 Simulation results

10.7.1 Minimum network frequency

The basestation model has been implemented using the fixed scheduling
for the communication as described above. Simulation results show per-
fect adherence to the schedule with the SoCBUS running at 75 MHz. The
number of first-try successful routings are shown in figure 10.6. The rea-
son for the dropoff in first-try successful routing is that the bandwidth to
the radio interface ports are too low for the lower frequencies.

Figure 10.7 shows the maximum circuit setup latency as a function of
clock frequency. The average setup latency is about 65% of this value. The
full latency of a transmission is the setup latency plus data transmission
time which is one cycle per word plus one cycle per hop. The longest path
is five hops in this case. The maximum time for the longest transmission
in the system is thus expressed by equation 10.1.

t = tsetup +
nwords + nhops

fclk
= 0.5 +

3136 + 5

75
≈ 42.4 µs (10.1)

This time is an overestimate since the longest setup time is not associated
with the longest transmission for this application.

136 WCDMA/FDD Basestation

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Clock frequency (MHz)

M
ax

im
um

 c
irc

ui
t s

et
up

 la
te

nc
y

(u
s) Relevant area

B
an

dw
id

th
 li

m
it

Figure 10.7: Maximum circuit-setup latency

10.7.2 Network usage

The network usage on average is relatively low. The by far most used part
is the radio interfaces where all samples have to be multicast to the Rake
blocks giving a total transfer rate of 61.44 million words per second for
these source ports.

The other parts of the network are significantly underused with a
maximum transfer rate of slightly less than 12 million words per sec-
ond. Changing the radio interfaces so that the requirements in that part
are lowered below this will yield a significantly lower minimum network
clock frequency. The estimated lower limit on clock frequency given from
other parts of the network is about 15 MHz.

It must be considered that the data rates in the basestation are rela-
tively low with only about 50 Mbit/s effective payload rate. The maxi-
mum between stages is (of course) significantly higher, considering con-
volutional coding and soft decision bits. With rate 1/3 coding and four
soft bits per data bit, the maximum rate between two stages after de-
spreading is about 600 Mbit/s. Simulations have shown that the total
transferred data is slightly less than 27 million words during 80 ms, cor-
responding to about 5.4 Gbits/s.

10.8 Conclusions 137

10.7.3 Control messages vs. transmission schedule

The overhead from the network is limited to the circuit setup time. Thus,
most parts of the network have plenty of free time where control packets
can be transferred to the different subsystems from a central controller.
Even the radio interface is available for control messages since the path
into the radio interface has a low utilization.

10.8 Conclusions

This chapter has introduced a case study based on a single-chip WCD-
MA/FDD basestation which is feasible to implement. The case study
has shown the appropriateness of the SoCBUS network for this kind of
scheduled hard real-time application. The SoCBUS network is capable of
delivering the necessary performance at 75 MHz, which is significantly
lower than the maximum achievable speed for the network. Increasing
the clock frequency somewhat will directly render gaps in the communi-
cation schedule. These gaps can be used for system control related trans-
missions.

The limiting factors for further channels in the basestation is rather
the complexity of processing in the multipath search and Turbo decoding
stages. The complicated control flow necessary for changes in the bases-
tation dataflow is also a complicating matter that may well challenge the
system design.

Bibliography

[1] 3rd Generation Partnership Project, 3GPP web site.
http://www.3gpp.org, 2005.

[2] 3rd Generation Partnership Project (3GPP), TS25.213 – Spreading and
modulation (FDD). http://www.3gpp.org, 2003.

138 WCDMA/FDD Basestation

[3] 3rd Generation Partnership Project (3GPP), TS25.214 – Physical layer
procedures (FDD). http://www.3gpp.org, 2003.

[4] Lasse Harju, Mika Kuulusa, and Jari Nurmi, “Flexible implementa-
tion of a WCDMA Rake receiver,” in Proceedings of the IEEE Workshop
on Signal Processing Systems (SIPS), Oct. 2002.

[5] M. A. Bickerstaff, D. Garrett, T. Prokop, C. Thomas, B. Widdup,
Gongyu Zhou, L. M. Davis, G. Woodward, C. Nicol, and Ran-Hong
Yan, “A unified turbo/viterbi channel decoder for 3gpp mobile wire-
less in 0.18-µm cmos,” IEEE Journal of Solid-State Circuits, pp. 1555–
1564, Nov. 2002.

Part VI

Conclusions and Future
Work

139

Chapter 11

Conclusions

Acti labores jucundi
Cicero

The requirements on communication within a system on chip follow the
ever-increasing requirements on processing power closely. The commu-
nication infrastructure can no longer be taken for granted as the systems
become more complex. Deep submicron effects make the interconnec-
tions slow compared to the logic and the design must therefore be limited
to smaller blocks that communicate in a controlled fashion. This commu-
nication is the focus of the thesis.

11.1 Design of networks on chip

Starting from an analysis of the infrastructural context of contemporary
chip designs, a network for on-chip use has been developed. This net-
work is designed with simplicity in mind, giving small, fast, and area-
efficient implementations of the network components. A speed-optimized
implementation of a 5-port router capable of up to 1.2 GHz operation uses
only 0.06 mm2 in a 0.18 µm process.

The link protocol has evolved during design from a purely circuit-
switched protocol with packet-based circuit setup into a hybrid solution
that allows small packets to be sent without circuit overhead. This hy-

141

142 Conclusions

brid solution can get advantages from circuit-based networks, e.g. low
latency, and combine these with advantages from the packet-based net-
works, such as low resource usage.

The necessary design tools have also been developed, consisting (in
part) of a stimuli generator, a simulator, and a network generator.

11.2 Performance evaluation

After identifying the need to assess the performance of interconnect struc-
tures, a methodology for benchmarking has been developed. The design
tools for SocBUS have been used with this methodology to develop some
example benchmarks and try these on the SoCBUS network.

11.3 Application case studies

The final part of the work has been on application case studies. Two case
studies, an Internet core router and a WCDMA/FDD basestation, show
the applicability of SoCBUS is real world applications.

Chapter 12

Future Work

And here I’ll go crazy
Prof. Dake Liu, describing a plan of his research in the distant future

12.1 Networks on chip

The main extensions to the network on chip implementation would be
the implementation of a set of wrappers for standard interfaces, e.g. Wish-
bone, OCP, and AMBA. Creation of message-passing-style wrappers would
be reasonably straight forward and should be possible to implement. A
wrapper for Wishbone will be developed within a continuation of the core
router project.

Other potential extensions to the core network could result from fur-
ther studies of applications and traffic types. There are provisions for fur-
ther extensions already in the protocol, which should make this possible
even with backward compatibility to the current protocol set.

12.2 Extensions to the tool chain

There are always extensions that can be made in the tool chain so this is
an obvious area for further work. Possible extensions to the stimuli gen-
erator includes support for more statistical models, e.g. Markov chains. A
possibility to model more complex dependencies would also be nice.

143

144 Future Work

A tool for communication and processing scheduling would be an-
other very useful addition to the toolchain. This tool should be aware of
both task scheduling of the subsystems and transfer scheduling on the
network. A possible input could be as simple as an annotated system de-
scription using communicating tasks together with a system mapping to
an executable system specification.

12.3 System simulator

Extending and changing the simulator to include support for external
simulations of the subsystems would turn the simulator into a “super
simulator” than can be used to evaluate the entire system. There are two
methods to do this, either to use the current simulator kernel as basis for
the system simulator or to change the current simulator so that it can be
plugged into the system simulator. The latter option seems like the most
promising since this will allow the system simulator design to be as open
as possible.

12.3.1 System simulator integration

The purpose of the system simulator is act as an umbrella under which
the other simulators can coexist within a single system simulation. With
such a simulator it is possible to get the full picture of the system design at
an early stage. A multitude of different simulators should be supported
so that high-level behavioral models on algorithm level can be used in
the beginning and then gradually refined until the implementation level
is reached.

The single most important part of the system simulator is the interface
to plug-in simulators. This API must be capable of connecting anything
from MATLAB to RTL simulations. The system simulator should be event
driven to allow easy integration of any kind of simulator into the system
simulator. This will give the all-important infrastructure necessary to im-
plement simulations using heterogeneous models at different layers of

12.3 System simulator 145

abstraction.

An attempt to create such a simulator is the Simulation Bridge pro-
posed by Nagendra et al. [1]. The bridge functionality is to supply the
individual simulators with clock triggers so that the synchronicity of the
simulators can be kept. The reference does not give a clear view on how
the integration is done. Fummi et al. [2] have made and effort to inte-
grate instruction-set simulators within the GNU Debugger (GDB) with
SystemC models based on the GDB remote debugging interface. This type
of integration is nice since it is based on a universally agreed on interface
that is supported by all platforms with GDB support.

12.3.2 Cycle and bit true simulations

The system simulator must support both cycle and bit true simulations for
the integration to get the maximum accuracy in the results. Bit true com-
munication between subsimulators can easily be achieved through bit-
handling communication primitives. Getting the system simulator cycle
true is a more tricky problem because of synchronization issues between
the subsimulators.

The first step towards accurate synchronization is to give the system
simulator a global notion of absolute time that can be translated into clock
cycles for the different subsystems. The second step is to keep the simu-
lators synchronized at all times to allow events to be passed between the
simulators at the correct time instances. This will allow all events gener-
ated in one simulator to be passed to another simulator at the correct time
in the simulation.

12.3.3 Challenges

There are a number of challenging areas left to conquer apart from the
integration issue. The previously mentioned detailed synchronization of
different simulators, the inter-simulator communication formats, and get-
ting the necessary simulation speed are some challenges.

146 Future Work

Another challenge is to increase the performance of the instruction-set
simulators that generally are to slow today. A new implementation style
for these to achive simulation speeds beyond one million instructions per
second would further enhance the simulation infrastructure, making sys-
tem simulations even more useful for early stage evaluation of system
performance.

12.4 Application case studies

There is always room for more case studies or more thorough modeling
of the previous case studies to evaluate the network, toolchain, etc. Pos-
sible applications include but are not limited to media processing, radio
baseband, and network processing. Example applications are transcoding
gateways, software-defined radio basestations, and network equipment.

Bibliography

[1] G. D. Nagendra, V. G. P. Kumar, and B. S. Sheshadri, “Simulation
bridge: a framework for multi-processor simulation,” in Proceed-
ings of the Tenth International Symposium on Hardware/Software Codesign
(CODES), pp. 49–54, May 2002.

[2] Franco Fummi, Stefano Martini, Giovanni Perbellini, and Massimo
Poncino, “Native iss-systemc integration for the co-simulation of
multi-processor soc,” in Proceedings of the design and test in Europe
(DATE) conference, pp. 564–569, Feb. 2004.

Part VII

Appendix

147

Appendix A

Tool Implementation
Details

A.1 Details on the simulation flow

The simulator in the SoCBUS project is tailored to the task of simulating
on-chip networks. The simulator is used in conjunction with a in-house
stimuli generator tool according to the simulation flow in figure A.1. The
inputs to the flow are the traffic and network models, represented in XML.
The XML formats are described in appendix B.

A.1.1 Stimuli generator implementation

The stimuli generator will take a traffic model (in XML), that can use both
statistical distributions and deterministic data, as input and generates a
deterministic set of stimuli for the simulator. An overview of the pro-
gram flow of the stimuli generator can be found in figure A.2. The stimuli
are generated for each traffic class described in the XML model file. The
stimuli are generated iteratively within a class if the class is periodic or
described as a statistical process.

The generated stimuli is always based on absolute time stamps (i.e. it
is scheduled) so the basic information in the stimuli file is just the source,

149

150 Tool Implementation Details

Component
models

Results

Simulator

Network modelStimuli file

Stimuli generator

Traffic model

Figure A.1: SoCBUS simulation flow

destination, start time, and size for each transfer. If the stimuli is speci-
fied using dependenies this will also be included. The generated stimuli
is stored using a simple text format which can easily be read by the simu-
lator. The stimuli generator has been implemented using C++.

A.1.2 Simulator implementation

The simulator will take a network description (in XML) together with a
stimuli file to run the simulation. By disconnecting the stimuli from the
network description it is easy to run simulations with exactly the same
stimuli on a different network setup to see the relative performance of the
different networks. It is also easy to use exact copies of the network for
different traffic situations to see how the traffic style affects the network
performance. Both of these variations are necessary to get a broad view
of the network performance and will be discussed later in the paper.

The tool is implemented in C++ to achieve high simulation speeds.
Using C++ for the tools also allows extensions to be made to them in
this commonly known and efficient programming language. All network
component models (routers, links, sources, destinations, etc.) are imple-
mented as compiled-in behavioral models written in the same program-

A.1 Details on the simulation flow 151

Start

Stop

in XML
Read model

Expand and calculate
models iteratively

Sort and save
stimuli

(a) Program
flow

Start

Pick a traffic
from model

Increase
local time

Local time
exceeds sim?

More traffic
available?

Stop

No

Yes

No

Generate a transfer from
deterministic numbers or
calculation of statistical

models

(b) Model calculation
flow

Figure A.2: Stimuli generator program flow chart

ming language as the simulator.

The simulator is event based in a fashion similar to a typical VHDL
simulator. Every time a network component generates an event a mes-
sage is created. These event messages are distributed to the proper desti-
nations through a message server. The central message server handles all
time ordering of events/messages through a message queue. This guar-
antees that the events will happen in the correct order independent of the
order in which they have been created.

An overview of the internal program flow in the simulator can be
found in figure A.3(a). The simulator starts by reading a network de-

152 Tool Implementation Details

Start

Stop

Read network description
and setup network models

Read a set of stimuli

More messages
in queue?

Write statistics

Dispatch events to
models and handle

according to subcharts

More stimuli
available?

Yes

Yes

No

No

(a) Program flow

Idle Transfer

Done

Request

(b) State diagram for each router input

Get event message
from message server

Type of
event?

Start (Router idle)

Routing
request

Update internal
state information

Stop (Router idle)

Save request and set
next state to transfer

Clock

Other

(c) Event handling flow for the idle state in
the router

Figure A.3: Simulator flow chart with partial message handling for a
router model

scription in XML. This description is then translated into a network setup
using the appropriate network component models within the simulator.
The network description contains four distinct parts, sources/destina-
tions, routers, links, and optional routing tables. Each of these parts will
cooperate to give the full network picture. If a routing table is not de-
clared for a router (using the possibility given in the network model) a
minimal distance based routing table produced by Dijkstra’s algorithm
will be used [1].

After the network description has been parsed, a chunk of the stimuli

A.2 Simulation models of network components 153

is read1. This reading of stimuli is basically only a transfer from a file to a
central stimuli list in memory. When the stimuli have been read, the event
message server is triggered.

The handling of the messages in the models differ dependent on which
model is the target of the message. An example of the event handling is
shown in figure A.3(c). This is the flowchart for a router input that is in
the idle state (see figure A.3(b)). As can be seen in the figure the router
only accepts a routing request in the idle state. The state will then change
to transfer meaning that the port has been locked. If a routing request
can not be granted the negative acknowledgment will be generated in the
transfer state. The state will then be changed to idle.

When more stimuli are needed another chunk of stimuli is read and
the event message serving continues. This continues until no more stimuli
are available and the message queue runs out of messages. At this stage
the simulation is finished. The final step is to write the measurements
taken during simulation to a statistics log file.

A.2 Simulation models of network components

All network related models that are used in the simulations are based on
the implementations that have been made at the register transfer level
in Verilog. The first router implementation of the router model uses six
cycles for a routing decision and one cycle for transferring data and ac-
knowledgments and is the router that have been most used during simu-
lations.

The links are modeled as a simple discrete time delay of zero or more
cycles. The basic IP subsystem is currently also modeled in a rather simple
fashion. The IP block and the wrapper are seen as a single entity that will
generate and consume transfers directly according to the stimuli file.

Models are easily changed or added if new implementations of com-
ponents are made or the need to model certain IP blocks in a more thor-

1The simulator reads the stimuli file in smaller fragments because of memory require-
ment issues.

154 Tool Implementation Details

ough fashion arises. Multiple models for a single component type are
supported and are selected through model names in the network descrip-
tion file. A simple API is used to implement the models in C/C++.

A.3 Tool usage

A.3.1 Stimuli generator

Command line options

stimuli [-i input.xml] [-o output.sti] [-y] [-ddddd...]

The command line flags for the stimuli generator are:

-i input Specification of test case XML input
-o output Specification of output stimuli file
-d Debug mode (verbose)
-y Yacc debug mode (very verbose)

A.3.2 Simulator

Command line options

sim -i input.xml [-ddddd...]

or

sim -n input.xml -s input.sti

-t output.tra -l log.txt [-ddddd...]

The command line flags for the simulator are:

-i input Setup file input (XML) (Not to be used with -n, -s, -t, -l)
-n input Network model input file (XML) (Not to be used with

-i)
-s input Stimuli input file (Not to be used with -i)
-t output Trace output file (Not to be used with -i)

A.3 Tool usage 155

-l output Log output file (Not to be used with -i)
-d Debug mode (verbose)

-d also enables trace mode in the simulations

Simulator setup input file

The setup input file is a convenient method to specify all input and output
files at once. The setup file is a XML file with the following structure:

<SIMCONFIG>

<NETWORK>networkfile</NETWORK>

<STIMULI>stimulifile</STIMULI>

<TRACE>tracefile</TRACE>

<LOG>logfile</LOG>

</SIMCONFIG>

A.3.3 Network generator

Command line options

netgen -n input.xml [-s stem] -o outdir [-ddddd...] [-v]

The command line flags for the simulator are:

-n input Network model input file (XML)
-s stem Stem for generated file names
-o outdir Output directory
-v Show version
-d Debug mode (verbose)

Function description

The network generator will generate a set of files saved into the directory
given by the -o flag. All filenames will be prefixed with the stem given
by the -s flag.

156 Tool Implementation Details

Bibliography

[1] Harry R. Lewis and Larry Denenberg, Data structures and their algo-
rithms. Harper Collins Publishers, 1991. ISBN 0-673-39736-X.

Appendix B

XML Formats

B.1 Notation

This chapter uses XML notations extensively. The definitions used for the
XML structure uses the basic notation of regular expressions shown in
table B.1.

The contents of a XML file is hierarchically built with one top (or outer)
tag. All contents within the XML file is contained in this outer tag. All
other tags are defined within the context of a mother tag. A tag that is
defined within the context of a mother tag is of course dependent on the
instantiation of the mother tag.

All XML tags adhere to a certain structure. All tags are containers,

Table B.1: Notation of tags

Form Description

tag One occurence of “tag”
tag? Zero or one occurence of “tag”
tag+ One or more occurences of “tag”
tag* Any number of occurences of “tag”
tag1/tag2 Either an occurence of “tag1” or an occurence of “tag2”

157

158 XML Formats

i.e. they have a start and a stop. A container will have contents (but the
contents can be empty). A generic XML tag will look like this:

<TAG argument1="value1" argument2="value2">Contents</TAG>

A container with empty contents can be written as a single entity that is closed
by a trailing slash:

<TAG argument1="value1" argument2="value2"/>

B.2 General specifications

B.2.1 Model names

All the names for blocks, routers, and links must be unique within the network
since these are used for identification purposes in the network. It is not possible
to give the same name to, e.g. both a router and a block.

B.2.2 Frequencies, times, and lengths

The XML parser allows the use of suffixes for different quantitys. It is possible to
use kHz, MHz, and GHz for frequencies. Times can be described using ps, ns, us,
ms, and s. Whitespace is not allowed between the number and suffix. The default
suffix for frequencies is kHz. An empty suffix on a time value implies that the
value is in clock cycles.

The lengths of packets can be described using b for bits, B for bytes (8 bits), W
for words (16 bits), and L for longwords (32 bits). Each of these can be prefixed
with k (103) and M (106). No suffix implies the native word lenght given by the
<BUSWIDTH/> tag.

B.3 Traffic model

B.3.1 XML structure

The basic traffic specification describes each traffic by source, destination, starting
time, and transfer size. These parameters are enough to model a system where

B.3 Traffic model 159

the communication is (at least partially) scheduled. More complicated or unpre-
dictable traffic flows will require the use of dependencies in the traffic specifica-
tion.

The traffic model is completely decoupled from the network topology. The
mapping of traffic sources and destinations are done using literal names in the
model files. Each named source/destination must be present as a named source/des-
tination in the network model. If a source named “Src” has been specified in the
traffic model there must also be a wrapper/IP block connection named “Src” in
the network model. This allows the allocation of connections between wrappers
and routers to be done entirely in the network model.

The XML document describing the traffic model must follow the structure
shown in table B.2 and figure B.1. An example of such a XML document is shown
in the following listing:

<TMODEL>

<TITLE>Title of model</TITLE>

<BLOCKS>

<BLOCK>Block 0</BLOCK>

<BLOCK>Block 1</BLOCK>

</BLOCKS>

<CLOCKRATE>100MHz</CLOCKRATE>

<SIMULTIME>1ms</SIMULTIME>

<BUSWIDTH>16</BUSWIDTH>

<TRAFFIC>

<TRAFFIC>

<SOURCE>Block 0</SOURCE>

<SOURCE>Block 1</SOURCE>

<DESTINATION>Block 0</DESTINATION>

<DESTINATION>Block 1</DESTINATION>

<PERIOD>10000</PERIOD>

<TASK>

<WORKING>

<EVENT_QUANTITY>

<VALUE>10</VALUE>

</EVENT_QUANTITY>

<EVENT_LENGTH>

<MATH_MODEL>

160 XML Formats

<MODEL_NAME>UNIFORM</MODEL_NAME>

<PARAM>

<PARAM_NAME>A</PARAM_NAME>

<PARAM_VALUE>32</PARAM_VALUE>

</PARAM>

<PARAM>

<PARAM_NAME>B</PARAM_NAME>

<PARAM_VALUE>1200</PARAM_VALUE>

</PARAM>

</MATH_MODEL>

</EVENT_LENGTH>

<EVENT_POSITION>

<VALUE>1</VALUE>

</EVENT_POSITION>

</WORKING>

</TASK>

</TRAFFIC>

</TMODEL>

Table B.2: XML tag description for the traffic model

Tag Contents Args

TMODEL TITLE? None
BLOCKS
CLOCKRATE
SIMULTIME
BUSWIDTH
TRAFFIC+

TITLE The title text None

BLOCKS BLOCK+ None

BLOCK The block name None

CLOCKRATE The clock rate None

SIMULTIME The simulation time None

BUSWIDTH The bus width (in bits) None

TRAFFIC SOURCE+ None
DESTINATION+

B.4 Network model 161

Tag Contents Args

PERIOD
OFFSET?
TASK+

SOURCE Source name None

DESTINATION Destination name None

PERIOD Period time None

OFFSET Offset time None

TASK DEPENDENCY? None
DURATION
IDLE / WORKING

DEPENDENCY Dependency specifier None

DURATION Task duration time None

IDLE Empty None

WORKING EVENT_QUANTITY None
EVENT_LENGTH
EVENT_POSITION

EVENT_QUANTITY VALUE / MATH_MODEL None

EVENT_LENGTH VALUE / MATH_MODEL None

EVENT_POSITION VALUE / MATH_MODEL None

VALUE The value None

MATH_MODEL MODEL_NAME None
PARAM+

MODEL_NAME The model name None

PARAM PARAM_NAME None
PARAM_VALUE / MATH_MODEL

PARAM_NAME Parameter name None

PARAM_VALUE Parameter value None

B.4 Network model

The network model contains the complete description of a network with sources,
destinations, routers, and links. The network model also contains a description of
the connectivity between these components within the network.

162 XML Formats

A network model document consists of four parts. The first part defines all the
sources/destinations connected to the network. The second part defines all the
routers while the third part defines the links and how they are connected between
other components. The last part is optional and may contain custom routing tables
for the routers.

A network model is described as an XML document according to the specifi-
cation in this chapter.

B.4.1 XML structure

The XML document describing the network model must follow the structure shown
in table B.3 and figure B.2. An example of such a description can be found in the
following listing:

<NETWORKMODEL>

<BLOCKS>

<BLOCK>blockname0</BLOCK>

<BLOCK>blockname1</BLOCK>

</BLOCKS>

<ROUTERS>

<ROUTER>routername0</ROUTER>

<ROUTER>routername1</ROUTER>

<ROUTERS>

<LINKS>

<LINK>linkname0

<PORT>blockname0.0</PORT>

<PORT>routername0.0</PORT>

</LINK>

<LINK>linkname1

<PORT>blockname1.0</PORT>

<PORT>routername1.0</PORT>

</LINK>

<LINK>linkname2

<PORT>routername0.1</PORT>

<PORT>routername1.1</PORT>

</LINK>

</LINKS>

B.4 Network model 163

<ROUTINGTABLES>

<TABLE>routername0

<ENTRY>blockname0.0</ENTRY>

<ENTRY>blockname1.1</ENTRY>

</TABLE>

</ROUTINGTABLES>

</NETWORKMODEL>

Table B.3: XML tag description for the network model

Tag Contents Args

NETWORKMODEL BLOCKS None
ROUTERS
LINKS
ROUTINGTABLES?

BLOCKS BLOCK+ None

BLOCK The block name MODEL=”value”

ROUTERS ROUTER+ None

ROUTER The router name MODEL=”value”

LINKS LINK+ None

LINK PORT MODEL=”value”
PORT DELAY=”value”

PORT modelname.portnumber None

ROUTINGTABLES TABLE+ None

TABLE ENTRY+ None

ENTRY The table entry None

This example shows a complete network system with two blocks connected
to two routers. The routers are also connected to each other and the routing table
is specified for one of the routers. All sections in the example are mandatory with
the exception of the <ROUTINGTABLES> container.

The routingtable <ENTRY> tag contains one entry in the routing table. The
syntax is destination_name.output_port_number. If the routing table is
not explicitly given it will be filled for minimum path length routing using Dijk-
stra’s algorithm. The routing table example above is equivalent to the table that

164 XML Formats

would be generated automatically.

B.4 Network model 165

TMODEL

SOURCE+ DESTINATION+ PERIOD OFFSET TASK+

DEPENDENCY? DURATION? IDLE/WORKING

EVENT_QUANTITY EVENT_LENGTH EVENT_POSITION

MODEL_NAME PARAM+

MATH_MODELVALUE

PARAM_NAME PARAM_VALUE MATH_MODEL

TITLE? BLOCKS CLOCKRATE SIMULTIME BUSWIDTH

TRAFFIC+BLOCK+

Figure B.1: Tag structure for a traffic model/test case

BLOCKS

BLOCK*

ROUTERS

ROUTER*

ROUTINGTABLES?

TABLE+

ENTRY+

NETWORKMODEL

LINKS

LINK*

PORT PORT

Figure B.2: Tag structure for a network model

166 XML Formats

Index

abbreviations, xxiv

acknowledgments, ix

Amdahl’s law, 11

applications, 13

background, 3

bandwidth, 30

benchmark, 96

benchmarking, 81, 101

examples, 104

method, 102

processors, 99, 101

bottleneck, 96

chip testing, 34

circuit, 52

virtual, 42, 47

configuration, 61

contributions, 8

core router, 113

dataflow applications, 13
deadlock, 50

design environment, 79

design flow, 80

development cost, 4

Ethernet, 114

implementation
router, 60, 69
tools, 149

Internet mix, 118

latency, 30, 46, 119, 135

mapping, 19, 116, 128
measurement technique, 98
model

network, 161
traffic, 158

Moore’s law, 3

MPI, 16

network generator, 82, 90, 155

network model format, 161
networks, 35, 39

objective, 5
OSI model, 41
overview, 8

packets
long, 66

167

168 Index

short, 69
parallelization, 12
performance, 97, 121

physical format, 60
platform based design, 13

Rabaey’s key tenets, 15
processing flow, 126
profiling, 17
protocol

link level, 66

PCC, 63
transaction level, 62

quality of service, 42

reliability, 32
router, 58
routing, 48

distributed, 48, 64
nonminimal, 48
source, 48, 64
turn model, 50
wormhole, 47

scheduling, 19, 132

scope, 5
simulation, 81, 117, 135

flow, 82
simulator, 16, 154

architecture, 86
system, 144

speculative sending, 68

stimuli, 85
generator, 85

stimuli generator, 154
switching, 45
synchronization, 26

topology, 43
arbitrary, 44
mesh, 44, 59
torus, 44

traffic model, 81, 83
traffic model format, 158

verification, 33
virtual channels, 51

WCDMA, 125
wormhole routing, 47
wrapper, 58

XML, 157

