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Abstract

With the ever increasing demands on processing power and communication on a
single chip the industry is facing a huge obstacle in closing the gap between pos-
sible complexity and achieved complexity, the so called design gap. A possible
path out of this is the increase (re-)use of intellectual property (IP) blocks from
within the company or from other suppliers. We have identified the problem area
in the on-chip communication between IP blocks where the time-division multi-
plex buses are quickly becoming saturated.

Another problem arising with the increased use of deep submicron manufac-
turing technologies is the relatively long delay of wires compared to the gates.
This problem forces the synchronous part of a chip to either shrink or run at a
slower speed. With the goals of keeping the clock rate and increasing the com-
plexity the only feasible solution is to use smaller synchronous subsystems that
communicate asynchronously. This approach is known as globally asynchronous
but locally synchronous (GALS).

This thesis presents the work on a bus replacement for on-chip communi-
cation. The goal of this bus replacement is to achieve very high performance
compared to the old solution while allowing for higher flexibility, GALS style
implementation, and simpler verification of the system.

With this goal in mind we investigated the possible topologies for a switched
on-chip network (OCN) and concluded that a 2-d mesh or torus is the most appro-
priate. To keep the latency low we decided on a pseudo-circuit switched network
using the 2-d mesh. We have developed a novel approach for route setup in the
circuit switched network called packet connected circuit (PCC) which allows very
short latency both for routing and payload transfer while having a very low silicon
cost.

A simulator for this network has been implemented together with behavioral
models of the network components. Simulations have shown that the PCC concept
is not very suitable for general purpose processing platforms but that it is very
suitable for a hard real time system that uses some communication scheduling.
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Chapter 1

Introduction

1.1 Background

As the transistor feature size continue to decrease the level of integration has con-
tinued to rise. Still with no end to the scaling in sight the industry is faced with
tremendous demands on the chip designs. There are several faces to this beast
where the design productivity gap and the verification complexity together with
the sheer cost of failure are the most pronounced.

The cost of failure, e.g. lost time-to-market (TTM) and extra labor cost for
fixing the errors, is hard to tackle. The only way to avoid this is to make sure that
the chip is correct on the first try.

With this background it is easy to understand that the only feasible way to suc-
cess in the future will be the increased (re-)use of intellectual property (IP) blocks.
The IP blocks can be of any type, from processor cores (e.g. ARM processor) via
programmable and configurable functions to entirely hardwired ASIC functions.
The IP blocks come in two flavors, hard and soft IP. The hard IPs consist of com-
plete layouts which are foundry dependent while the soft IPs in principle are sets
of RTL code that can be synthesized for any semi-custom cell library and the soft
IPs are thus foundry independent.

With a roughly constant clock frequency in the IP blocks and the increasing
impact of wire delay due to process scaling it has been predicted that the size of
the IP blocks will stay roughly constant. A maximum of 250 k gates per block
at 1 GHz should be feasible without insurmountable difficulties [1]. The way
to increase the functionality of the chips with this limitation in mind is not to
increase the complexity of each IP block but rather to increase the number of IP
blocks on the chip. With this development it is clear that the on-chip inter-block
communication will become significantly heavier over time.

As the design cost of complex integrated circuits will become ever higher in

3
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the foreseeable future there will be an increasing demand for flexibility in the
chips allowing them to fit more and more applications without redesign of the
hardware.

In the light of these predictions and current problems it makes sense to develop
a novel integration procedure that will allow higher design productivity, increase
the flexibility, and cut the time-to-market. This thesis presents a system for on-
chip communication and presents the general method of usage together with some
simulations on the system performance.

1.2 Traditional buses

The traditional bus for both on-chip and off-chip communication is the time-
division multiplex (TDM) bus.

Typical examples of the traditional bus are the ISA and PCI buses used in
personal computers [2]. The older ISA bus became the de facto standard of the
industry after its introduction in the early 1980s and has been phased out from
production in desktop PCs only in the last few years, but it is still going strong
in the embedded PC market showing the incredible historical success of the ISA
solution.

Besides the slow clock rate and narrow width used in the ISA bus, the ma-
jor drawback is the fact that the bus can only have one master. All these draw-
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backs were attacked by some of the biggest PC hardware manufacturers when
they jointly developed the PCI bus.

The PCI bus work according to the TDM principle where a master has to ask
an arbiting unit for access to (“ownership of”) the bus. Then the bus is occupied
for a number of clock cycles while the transfer is taking place. During this period
no other can access the bus than the current sender. Multiple masters are possible
in the PCI setup and they have to compete with each other to gain control of the
bus. This is done through an arbiter unit that all masters must be connected to.
This arbiter will select which master will get control of the bus when multiple
requests are present at the same time. Another way to increase the maximum
throughput of the PCI bus is to divide it further into bus domains that communicate
through bus bridges. The bus bridges connect two (or more) PCI buses so that a
master on one bus can access a slave on another bus. This will give the advantage
that both buses can perform different transfers at the same time as long as the
bridging function is not necessary for any transfer.

1.2.1 ARM AMBA bus

The on-chip counterpart for the PCI bus is the AMBA bus from ARM, Inc. [3],
with their second version well established on the market and the third version
coming. In the recent years the AMBA has become more or less of a de facto
standard for on-chip communication tightly coupled to the success of the ARM
processor series for all kinds of embedded system designs from simple laundry
machine controllers to highly advanced mobile phone base-stations. The AMBA
bus is divided into two bus layers. The fist is called the Advanced High-speed
Bus1 (AHB) and is used for demanding communication such as CPU to memory
and CPU to co-processor communication. The second is known as the Advanced
Peripheral Bus (APB) and is a lower speed bus that is mainly used for commu-
nication to the lower speed I/O peripherals, e.g. serial ports. The AHB/APB
solution is very similar to the PCI solution for PCs. A typical system architecture
using AMBA can be found in fig. 1.2. The given reason for dividing the bus into
AHB and APB is that the simple peripherals, e.g. a UART, that do not need high
speed communication should not have to implement the complex high speed bus
interface required for the AHB. Another reason is that the AHB will have fewer
interfaces connected to it and will thus be possible to run at a higher frequency.

The AHB is a multi master bus while the APB is a single master bus. The
single master on the APB is the bus bridge and all transfers have to be initiated
by this bridge. All transfers to and from the APB slaves must be initiated by the

1There is also a simplified version of the AHB that is called Advanced System Bus (ASB). This
is used when some of the advanced features of the AHB, e.g. split transactions, are unnecessary.
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bridge which in turn is initiated by a transfer on the AHB. In the case where an
APB slave wishes to tell the processor that there is data to send this has to be done
through other means such as interrupts.

One of the drawbacks with multi-master TDM buses in general is the arbiter
needed to control access to the bus. The purpose of the arbiter is to decide which
master has control of the bus at any given time. So when a master wishes to initiate
a transfer on the bus the master signals a request to the arbiter. In a case where
more than one master requests access to the bus at the same time the arbiter has to
select one in accordance to some priority scheme. The selected master will then
be signaled a bus access grant for the requested bus transfer.

The performance of the AMBA AHB is somewhat scalable since the widths of
the data (and address) buses can be increased. The minimum recommended width
is 32 bits giving a theoretical bandwidth of 4 bytes per cycle. The AHB supports
pipelined bus transfers so if there are no transfers that require any wait states a
figure quite close to this might be achieved. The APB on the other hand specifies
a maximum width of the data bus of 32 bits and all transfers take two clock cycles.
This together will yield a maximum throughput of 2 bytes per clock cycle.

The bridge between the AHB and the APB is very simple. The main job is
to translate between the different bus signals and generate the appropriate control
signals for the APB. If the APB is run at the same frequency as the AHB the
penalty for accessing the APB is at least one wait state. If the APB runs at a lower
frequency this has to be taken into account when calculating the penalty. Running
the APB at half the frequency will yield a three wait states transfer penalty.

1.2.2 Problems with traditional buses

The traditional TDM bus is associated with some problems that do not affect the
performance in a significant way when the number of connected ports are small
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but that quickly become a problem when that number starts to rise. The first
problem is the arbiter that has to connect separately to each of the connected
ports that has master capabilities, i.e. the possibility to initiate a transfer. This
arbiter will quickly become a bottleneck since the design has to be adaptable to
the number of master ports. The second problem is the shared media that is used
for transfers. There is a hard limit on the amount of data sent over the shared
media in any time period and when the number of transfers increase the bandwidth
available to each of them will decrease.

The only solution seen so far to tackle these problems is to divide the bus into
several smaller bus domains that each have their own TDM bus and communicate
with each other using bus bridges. While the use of bridges will allow for a higher
compound bandwidth in the system it will also introduce a further disadvantage
when communicating across domain borders. In order to guarantee the transfer
the master will initiate a transfer that will be accepted by the bridge who will
then wait for bus ownership on the destination bus before the transfer can take
place. This situation leads to a high overhead for inter-domain transfers that will
affect the performance on both the initiator and destination buses. The bus bridge
solution is seldom feasible for more than three bus domains.

There are also some very good properties of the TDM bus where the first and
foremost is the simplicity. The knowledge of TDM buses are widespread and since
most bus implementations are similar to each other leading to very short learning
time for new users. This simplicity also allow for a high observability and simple
verification of the bus. Other good properties include that a TDM bus has a fixed
cycle cost and very low latency. There is very little or no need for buffers at the
bus interface and there are no buffers at all in the bus.

1.3 References

[1] C. Svensson, “Electrical interconnects revitalized,” inunpublished
manuscript, http://www.ek.isy.liu.se/˜christer/CSPapers.htm, 2001.

[2] PCI Special Interest Group, “PCI 2.3 specification,”
http://www.pcisig.com/specifications, 2002.

[3] ARM, Inc., “AMBA 2.0 specification,”http://www.arm.com.
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Chapter 2

On-chip networks

2.1 On-chip networks

With a move from traditional TDM busses to on-chip networks (OCNs) the com-
munication infrastructure of the chip can allow significant - up to hundredfold or
more - increase in the available bandwidth. This is possible since an OCN uses
point-to-point links between the switches in the network. The primary reason for
the increase in bandwidth is the multiple resources that are available for trans-
fers in the OCN compared to the TDM bus. This multitude of resources allows
for several concurrent transmissions to take place at the same time thus giving
significantly higher bandwidth.

In general an on-chip network is a like any other network. The biggest differ-
ences are that the on-chip network reside in a much more controlled environment
and that the demands on bandwidth and latency are higher. A generalized on-chip
network, see fig. 2.1, is a means to connect different IP blocks together. The sim-
plest “network” is just an instance of the TDM bus but the network could just as
well be a completely connected crossbar switch that can connect any IP block to
every other IP block.

2.2 On-chip vs. general purpose networks

It is very easy to compare the on-chip network to a general purpose network for
computer communication such as the Internet. There are some important differ-
ences that must be taken into account when comparing the two classes of net-
works. The most important is that the on-chip network is a well known and static
network whereas the general purpose network can change over time as users plug
in their computers, routers go down, etc. The on-chip network in general also
must have much higher performance when considering real-time transmissions.

9
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Figure 2.1: A generalized on-chip network

2.2.1 The OSI model

It is common to use the seven layer OSI reference model, see fig. 2.2 to de-
scribe the network protocols and divide them into layers, from the physical to the
application layer. This division into several layers is suitable for both the under-
standing of networking concepts and for describing the protocol requirements in
general purpose networks. The OSI model is also used by some research groups
for on-chip networks to divide the design into protocol layers [1]. But in the case
of on-chip networks it is more doubtful if the division into the seven layers is
really useful. The main reasons is that the OCN is fixed and virtually fault-free
under certain physical design rules. This means that once a network has been laid
down in silicon it will not change on the lower layers, i.e. transport layer down to
physical layer. The upper layers will - as in a general purpose network - be depen-
dent on the application and endpoint hardware/processing and can not be decided
by the network implementation. The seven layers can still be used to explain the
implementation but should not decide the block partition or implementation of the
physical system.

2.3 Network topologies

There are a multitude of topologies that can be used for an OCN. The concept of
an OCN is very similar to that in a network for parallel computing so that is an
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obvious area for inspiration. Most textbooks in the area have a comprehensive
description of the different topologies and their pros and cons. The books by
Hwang and Xu [2] and Culler et al. [3] have been used as references for this
work.

There are several basic structures, e.g. trees, meshes, tori, and cubes. The tree
structures most commonly seen arek-ary trees and fat trees.

The k-ary tree is very simple since all nodes (except the root node) havek
down connections and one up connection, see fig 2.3(a). This simplifies wiring
but the big drawback is the bottleneck near the root where all traffic crossing that
boundary need to go through a single node, thus giving a bisection bandwidth1 of
only one link capacity.

The fat tree, see fig 2.3(b), avoids the drawback of thek-ary tree by creating
multiple trees so that the capacity at every level is the same as at the leaves. This
gives the maximum bisection bandwidth that can be achieved in a tree since all
levels have the same capacity. The latency is also low compared to thek-ary tree.
The main drawbacks with the fat tree are the complexity of wiring and the problem
with fan-in and fan-out due to the many ports. A strongly related topology is
the butterfly. The butterfly uses very much the same connection style as the fat
tree but have a lower fan-in and fan-out. Each switched is connected upwards to
two switches and downwards to two switches. This solves some of the problems
compared to a fat tree but increases the problem with wiring complexity and area

1Bisection bandwidth is the bandwidth across the boundary that divides the network in two
equal halves.
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consumption since the height of the butterfly tree will be higher.
The array-style networks can have very different properties dependent on di-

mension, size, and degree of the nodes2. Starting from one dimension networks
we get the linear array or ring, see fig. 2.3(c), dependent on whether the ends
are connected together or not. Compared to the TDM bus the linear array has the
added possibility to run several transmissions on smaller sections of the array at
the same time but the performance will be similar to that of a TDM bus if many
transmissions are long distance (i.e. from end to end). The bisection bandwidth is
on link for a linear array and two links for a ring.

If the dimension is increased by one we get a 2-d mesh , see fig. 2.3(e), or a
2-d torus, see fig. 2.3(f). The mesh and torus have the added advantage over the
linear structures that there are multiple links leading in the same direction and thus
there are more than one way to reach from one node to another in the network.
This allows for a increase by the square root of the number of nodes (assuming
a square network), in the bisection bandwidth compared to the linear array. The
same increase in bisection bandwidth can be found in the torus compared to the
ring. The topology of the 2-d mesh and torus networks can be exploited further
if the traffic patterns are fairly well known so that IP blocks that communicate
frequently are located close to each other. This optimization will give an even
higher performance for the 2-d network after synthesis.

The array- and mesh-style networks are just special cases of the so calledk-ary
n-cube . Thek is the number of nodes in each dimension andn is the dimension. A
binary 3-cube is the most basic form of ak-ary n-cube, see fig. 2.3(d). The cubes
continue the increase in bisection bandwidth and may have up to the bandwidth
of kn links dependent on the values ofk andn.

2.4 Packet and circuit switching

The basic switching style in a network can be divided into two areas. The first (and
oldest!) is the circuit switching technique that are used very much in old-fashion
telephone networks. The circuit switching will require that a path is open from
the source to the destination before any transmission can take place. The good
thing with circuit switching is that when a circuit has been established the source
have perfect knowledge of the available bandwidth and very good knowledge of
the transmission latency. The drawbacks are the fact that the circuit has to be
established before any transmission can take place and that the resources occupied
by the circuit is unavailable to other transmissions. Further drawbacks are that

2The node (or switch) degree denotes the number of ports on the node, e.g. a 4th degree node
has got four ports.
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the circuit switched network need some central resource controller and that the
flexibility is lower than for packet switching.

The second technique is the packet switching. In packet switching the data
that is to be sent will be assembled into a packet by the source. The source will
then send the packet to the network that forwards the packet to the destination.
The biggest advantage for packet switching compared to circuit switching is that
less resources are used exclusively for the same transmission and there is thus
a possibility to time-share the resources more aggressively. Another good thing
is that a packet switched network do not need a central resource controller. The
drawbacks are that each switch will be more complex, that buffers are needed to
avoid deadlocks, and that the data latency is generally longer.

2.5 References

[1] Iikka Saastamoinen, David Sigüenza-Tortosa, and Jari Nurmi, “Interconnect
IP node for future system-on-chip designs,” inIEEE int’l workshop on Elec-
tronic design, Test, and Applications, 2002.

[2] K. Hwang and Z. Zu,Scalable parallel computing. McGraw-Hill, 1998.

[3] D. E. Culler, J. Pal Singh, and A. Gupta,Parallel computer architecture, A
hardware/software approach. Morgan Kaufmann Publishers Inc., 1999.
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Chapter 3

SoCBUS overview

3.1 SoCBUS introduction

This chapter introduces the SoCBUS solution developed by me and my colleagues.
The results introduced in this chapter are the lions share of my research contribu-
tion so far. The following chapter deals with a more thorough investigation of the
routing principles and algorithms used. Then the methodologies and tools used
are described in the next chapter followed by a short OCN survey. The next three
chapters contain three conference papers, two that have been presented and one
that is currently under review, that show parts of the research in more detail.

The main interest of our switched interconnect research project, known as
SoCBUS, is to achieve a well-behaved switched network style interconnect for
on-chip communication in hard real time systems. There are several secondary
goals where the most challenging is to try to use the on-chip network as a means
to cut integration verification time when using several IP blocks on a single chip.

The SoCBUS project has resulted in a network using a two-dimensional mesh
topology with switches in every mesh crossing. The mesh topology was chosen
after a thorough investigation into many different possible topologies because of
the simplicity in use and implementation, both on register transfer level (RTL) as
well as physical level. In principle there is nothing that restricts us to the mesh
topology and very small adjustments would be enough to use a two-dimensional
torus topology. The only real difference would be that the basis for routing deci-
sions changes and thus other routing tables would be necessary.

From a high level perspective the network using the standard two-dimensional
mesh topology will consist of a number of tiles, see fig. 3.1. Each tile is made up
of one switch connected to one IP block through a wrapper. The four ports of the
tile are connected to the neighboring tiles.

17
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Figure 3.1: Network connected processing tile

3.2 Packet connected circuit

The network uses a novel style circuit switching where a request packet traverses
the network finding its way to the destination. While doing this the packet trail is
locked and used as a circuit connection for the payload transfer. If a route can not
be established, i.e. the packet can not find a free exit from a switch leading closer
to the destination, the attempt is canceled and the request has to be retried. We
call this novel approach for packet connected circuit or PCC for short. There are
several advantages with PCC. Two clear advantages are that there is no need for
buffers in the switches and that the PCC scheme is inherently free from deadlocks
since there is no situation where a routing request will wait for another routing
request to finish. Also the payload transfer latency can be kept at the minimum of
one bus clock cycle per switch as soon as the route is established.

The drawback is the fact that a PCC routing failure will result in a completely
new routing attempt. This drawback would be significant for a general purpose
computing platform interconnect where the designer has got very little control of
the communication scheduling. Another drawback is that the resource will be
locked as soon as a routing request has passed by and will not be unlocked until
the routing request has failed or the transfer is finished.

In a hard real time system we generally have to have some communication
scheduling in order to achieve the appropriate levels of bandwidth, latency, etc.
With a perfectly scheduled communication pattern we can get almost to the theo-
retical bandwidth limit with roughly 90 % bandwidth efficiency for a 10x10 net-
work where the mean transferred data size is 100-200 words per transfer. When
some unscheduled traffic is present the bandwidth usage of the network must be
decreased to allow for the uncertainties introduced by that traffic.

The PCC scheme uses a basic four-phase route setup, see fig. 3.2(a). (I) The
first phase starts with the source sending a request packet to its local switch. The
switch then decides on a route that will lead closer to the destination, locks the
corresponding output, and passes on the request. This is then repeated for every
switch that the route passes through until the request has reached the destination.
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Figure 3.2: Two successful circuit setups

(II) The second phase is then started with the destination returning a positive ac-
knowledgment to the last switch that in turn passes the acknowledgment on to the
previous switch and so on. (III) When the acknowledgment has reached the source
the third phase is started. During this phase the source will send the payload data
sequentially through the switches to the destination at high speed. (IV) When the
data stream ends the fourth phase is performed consisting of a cancel request that
passes through the network and while doing that unlocks the resources.

If any switch along the path is unable to fulfill the request it will return a
negative acknowledgment. The negative acknowledgment will traverse the chain
of switches to the source. As a switch sees the negative acknowledgment it will
unlock the output that has been locked for this particular route. If this situation
occurs the source will have to retry the routing request until a positive acknowl-
edgment arrives, see fig. 3.2(b).

More information, some simulations, and further analysis of the PCC scheme
can be found in chapter 4 and in paper 3, see chapter 9.
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3.3 Switch implementation

The switch node for SoCBUS is a fairly regular structure, see fig. 3.3, with a
simple state machine for each input that takes care of state tracking in the trans-
missions. The input finite state machines (FSMs) communicate with each other
through the arbiting and locking block that handles request collision arbiting and
output port locks. The arbiter and lock block controls the crossbar that connects
the inputs to the outputs. The simplicity of the switch is because most of the
switching functionality is handled at the inputs and none of it is handled at the
outputs. Another contribution to the simplicity is the fact that all ports are equal.
In principle it is possible to change the number of ports on the switch to an ar-
bitrary number and connect the switches according to a arbitrary topology. Of
course there is a practical limit on the number of ports since the complexity of
both the crossbar and the arbiter will be too high to achieve high performance.

When a request is received at one of the port the corresponding input FSM
reacts accordingly by decoding the destination address into possible outputs from
the switch. An internal request to lock one of the possible outputs is then sent to
the arbiting and locking unit that selects a suitable output from these and locks
this. When the lock is set the crossbar connection is made from input to output
and the request can be passed on to the next switch along the route.

The input FSM will then wait for an acknowledgment from the receiving end.
If the acknowledgment received is negative this means that the network was un-
able to fulfill the routing request and thus the resources are freed. If the acknowl-
edgment is positive the input FSM will keep the route open until a route cancel
request is received from the source.

3.3.1 Routing

The routing principle described in chapter 2 is implemented in the switch as a
static knowledge table . This table holds the information for the switching deci-
sions. Each entry in the table shows the possible outputs that will take the route
closer to the destination. Each entry thus has five bits of information correspond-
ing to the five outputs of a switch. The states of the five bits simply show which
outputs will lead closer to the destination. For a network of 16x16 switches this
static table will be 1280 bits in total.

The static knowledge in the table is combined with the dynamic state of output
locks to select the appropriate output for a routing request. The lock status show
the currently unused outputs that can be claimed for the current routing request. If
multiple outputs are available the switch will decide which to take according to a
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Figure 3.3: Generalized switch implementation

dynamic priority1. This dynamic priority typically follows a round robin scheme
so that the average load will be roughly equal between the output ports which
would equalize the load in the network compared to a static priority approach.

When two (or more) routing requests want to use a single output at the same
time the switch must arbitrate between them. This is done in very much the same
way as the output selection described in the previous section with a round robin
scheme so to lower the likelihood of starvation2.

3.4 Wrappers

The interface between the network and the IP blocks is intended to be imple-
mented through wrappers that handle the format conversion, necessary buffering,
asynchronous clock domain bridging, and network signaling. The wrappers can
either connect directly to an IP block or connect to a local bus with several IP
blocks as suggested by Wielage and Goossens [1]. Thus different wrappers can
have very differing formats on the IP port and must be able to cope with a huge

1It would be very simple to implement a static priority if that is desirable in some applications.
2Starvation has not been addressed as a problem so far in the project. Further investigations

into this will be conducted in the future research.
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range of possible IP port clock rates. Most effort in the research so far has been
on the network design and implementation and the wrappers are still mainly a part
of the future research in the project.

3.5 Physical implementation

Since deep submicron chips will have increased delay in the wires compared to the
logic the path towards the globally asynchronous but locally synchronous (GALS)
design methodology seems like the only way to go. This adds yet another problem
for the on-chip network to solve in the bridging between different local clock
domains in the IP blocks. The relatively long delays for wires also make the on-
chip network in itself impossible to implement in a fully synchronous way.

In the light of these fact the physical implementation of the SoCBUS network
is proposed to use a mesochronous3 clocking scheme for the signaling internal to
the network. This will allow for a fairly straight-forward implementation where
there is no need for FIFOs and other circuitry needed in an asynchronous bridging
within the network. It is enough to have simple retiming circuits on the edges of
each switch to synchronize the incoming signals with the local clock phase. The
asynchronous bridging is then moved to the wrappers where the probability of the
IP block and the network running at the same clock frequency is fairly low.

The mesochronous clocking scheme has some very interesting consequences
such that the wire lengths between switches can be very different between differ-
ent switch pairs. Since the signal retiming is done per link it does not matter if the
delay of the wires is several clock cycles.

3.6 References

[1] Paul Wielage and Kees Goossens, “Networks on silicon: Blessing or night-
mare?,” inEuromicro Symposium On Digital System Design (DSD 2002),
(Dortmund, Germany), Sept. 2002. Keynote speech.

3Mesochronous means same clock frequency but unknown phase.



Chapter 4

Routing analysis

4.1 Introduction

With the basic PCC scheme introduced in chapter 3 we still need some algorithm
to select which output to take from a switch in order to get to the destination.
A thorough investigation into the published material on routing algorithms was
conducted and the conclusion from this was to keep the algorithm as simple as
possible. The reason for this was that there were no shown advantages in the pa-
pers that were worth the extra complexity. We selected a very simple minimum
path length routing where every output link taken will lead closer to the destina-
tion. Since the network is a rectangular mesh it is trivial to realize that there is
at most two and at least one output that will lead closer to the destination. The
first situation is when the destination is not in the same row or column as the
current switch. If the destination is somewhere up to the right both the up and
right outputs will take the request an equal distance closer to the destination. The
other situation is when the destination is in the same row, the same column, or
connected directly to the current switch.

The contents of this chapter is a rather mathematical analysis of the routing
algorithm used for the SoCBUS project simulations so far. The main focus here
is the routing for a two-dimensional mesh but some results for a two-dimensional
torus are also presented. All results that are not for the 2-d mesh will be marked
explicitly.

23
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4.2 Basic principles

4.2.1 Addressing

The first thing is to define the addressing scheme of the network. The addressing is
part of the basis that the following calculations stem from. The switches are iden-
tified by their coordinates in the mesh so that the upper left corner is considered
to be(0; 0). This addressing is used solely for the discussions in this chapter.

Definition 1 Each node in the network has an address tuple(x; y) that is the
distance (along the x- and y-axis, respectively) from the upper left corner of the
network as seen in a picture. The upper left corner has the address(0; 0).

It should be noted that we do not use the physical grid coordinates above to
identify the IP blocks. Instead an arbitrary mapping of addresses to coordinates
is used for addressing the IP blocks and these are the actual addresses used when
performing routing.

Definition 2 Each wrapper (or IP block) has an associated addressA. The ad-
dresses are found using an arbitrary (one on one) mapping between theseAi and
the associated switch nodes (i.e. where the wrappers are connected) addresses
(xi; yi).

4.2.2 Path length

A central issue in the analysis of resource usage for the network is the path (route)
lengths for every possible route. The path length is defined as the Manhattan
distance between the switches or IP blocks (or wrapper). This is calculated by
summing the number ofswitch node inputsconsumed by the route. In the distance
between wrappers we must also take into account the switch input consumed by
the wrapper to switch interface.

Lemma 1 The path length (using Manhattan distance) between twonodes(xi; yi)
and(xj; yj) is the sum of absolute differences between the two node addresses.

ln = jxi � xjj+ jyi � yjj (4.1)

Lemma 2 The path length (using Manhattan distance) between twowrappersAi

andAj is the sum of absolute differences between the two associated node ad-
dresses plus one.

lw = jxi � xjj+ jyi � yjj+ 1 (4.2)
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With the path lengths as a background it is now fairly straight-forward to cal-
culate the mean distance between all IP block pairs in the network. This mean
distance is a direct measure of the mean resource consumption for random traffic
transfers in the network.

Theorem 1 The mean path length between wrappers in a network of sizeX, Y is
the sum of the mean distances along each dimension divided by the total number
of nodes.

lwm =

PX
i=1

PX
j=1 ji� jj+PY

i=1

PY
j=1 ji� jj

XY
+ 1 (4.3)

Lemma 3 For a square network of sizeX, X the mean distance equation in the-
orem 1 is simplified.

lwmeq = 2

PX
i=1

PX
j=1 ji� jj
X2

+ 1 (4.4)

It is very interesting to compare the square network case for a 2-d mesh and
for a 2-d torus. The torus will have a shorter mean distance because of the wrap-
around connections at the edges.

Lemma 4 For a square torus network of sizeX, X the mean distance is based
on the minimum distances in both directions.

lwmeq = 2

PX
i=1

PX
j=1min (ji� jj ; X � ji� jj)

X2
+ 1 (4.5)

4.3 Static analysis

All examples and calculations in this section will be based on a 10 x 10 network
but everything is applicable to any size.

A 10 x 10 network has been statically analyzed to find the routing density
for the network. The routing density show how many of the total amount of the
possible routes that go through every node. This density is a measure on the
distribution of the routing across the network and should preferably be as flat as
possible.

Assuming minimum path length routing and only one turn per route1 the dis-
tribution of fig. 4.1 is found. The actual figures used in the graph is shown in table
4.12. The graph is (as expected) perfectly symmetrical around the center.

1May be slightly stupid, see section 4.4.1.
2Since the data is symmetrical along the two centers only the upper left quadrant of the table

is shown.
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Figure 4.1: Number of routes consuming an input port of switch (10x10)

The number of possible routes in the network is

rposs = X2Y 2 (4.6)

since there areXY nodes and for each node there isXY possible destinations
(including itself).

Calculating the mean path length for a square network of size (10x10) is done
using eqn. 4.4.

lwmeq (10) = 2
330

100
+ 1 = 7:6 (4.7)

Table 4.1: Number of routes that use an input port of the switch for a 10x10
network.

0 1 2 3 4

0 280 440 560 640 680
1 440 600 720 800 840
2 560 720 840 920 960
3 640 800 920 1000 1040
4 680 840 960 1040 1080
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Lemma 5 Considering eqn. 4.6 and theorem 1 the total average inport usage in
a network with totally random traffic is

rinport = rposslwm (4.8)

Lemma 5 shows that the total number of used input ports for all possible routes
is 76000 which is consistent with the simulation results shown in fig. 4.1.

As is apparent from fig. 4.1 the most congested area is the center with roughly
11% of all routing3 going through (at least) one of the four center nodes while only
less than3% going through the corner nodes. The conclusion that can be drawn
from this result is that communication between IP blocks that are far from each
other in the network preferably should be avoided. This is also apparent from the
network traffic simulations conducted in paper 3, see section 9.7.

Since the torus will have shorter mean distance it is interesting to compare
the inport usage for the torus with the mesh. The inport usage for the torus is
calculated using eqns. 4.5 and 4.8.

lwmeq_Torus (10) = 6:0 (4.9)

rinport_Torus (10) = 10000 � 6:0 = 60000 (4.10)

This gives the situation where the average route usage per switch for a com-
plete 2-d torus will be a flat surface at the level of 600. This is almost half of the
peak value in the mesh. This flat route usage is a desirable advantage and the use
of a torus should be investigated further.

4.4 Possible improvements

4.4.1 Avoiding blocking

Some simple simulations with one-step misrouting allowed in case of congestion
have been conducted. One-step misrouting means that the routing may turn along
a non-profitable (i.e. not leading closer to the destination) link to avoid the con-
gestion situation if the destination is in the same row or column as the current
switch. The drawback is that it might only move one step along the new column
or row before returning to the current one. The risk with this is that the route will
look like the trail of a snake, see fig. 4.2. This one-step misrouting was shown in
the simulations to have an adverse impact on performance.

Since the basic problem here is that when the routing request has entered the
row (or column) of the destination there is no way to reroute around a blocking

3All routing here means the total switch inport usage for the default routes between every
sender/receiver pair.
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route and still maintaining the minimality. Thus a simple improvement is to post-
pone entering the row (or column) of the destination for as long as possible just
to make sure there is more than one minimal path to the destination. This feature
have not been simulated yet.

Figure 4.2: Possible bad situation with misrouting

4.4.2 Flattening the density

One important improvement is to try to flatten the routing density by “smearing”
the peak over a larger area. This is a non-trivial problem because the routing
decision might need to be dependent not only on the destination but also on the
source.

The interesting thing here is that the total volume under the graph in figure 4.1
has to be constant (according to lemma 5) so the only possible improvement is to
make the graph flatter.

4.4.3 Traffic optimization

The most important optimization for network efficiency is to allocate the network
ports to IP blocks in such a way that the mean traffic path lengths for the finished
system is lowered. This can be achieved by doing the IP block-to-network switch
connection allocation based on the traffic knowledge retrieved in system simula-
tions. Since a system-on-chip implementation of a communication system will
have quite well-known and well understood traffic patterns this knowledge can be
used in the step of synthesizing a SoCBUS instance for the specific chip to get
this important advantage of traffic localization. One of the important goals of the
SoCBUS project is to enable such knowledge based network synthesis.
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4.5 Conclusion

The calculations and simulations presented in this chapter have shown that the
current routing algorithm is minimal concerning switch-input occupation when
blocking does not occur. The most important thing left for investigation is to find
an optimal (or near optimal) route distribution across the network. It would also
be interesting to see the impact on performance of the non-minimality because of
blocking in more detail. Some more investigation into the value of using a torus
is interesting as well.
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Chapter 5

Research methodology and
achievements

5.1 Introduction

This chapter is a brief summary of the research flow in the project so far and
an outlook towards the future. Some methods and tools that have been used in
the research are also described. The final part of this chapter summarizes my
achievements so far that are related to the SoCBUS project.

5.2 Prestudy

An early prestudy of the demands, design space, and design goals for the SoCBUS
project were conducted in my thesis work for the M.Sc. degree [1]. This prestudy
focused on the basics of on-chip networks and the demands on these. The prestudy
was continued after the publication of the thesis with further investigations into
the specifics of on-chip networks.

5.3 Behavioral simulator

As a means of evaluation we developed a behavioral simulator model for the net-
work components and a simulator for this model was developed[2, 3]. The behav-
ioral simulator is cycle true1 and is implemented using object oriented program-
ming in C++. The main objectives when implementing the simulator were to make
a tool available for design space exploration and to be able to find bottlenecks and
prospective problems.

1The simulator also supports bit true simulations if the models are designed accordingly.

31
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The simulator have been used to simulate the different design choices taken
so far. This include the topology choice, routing principles, routing tables, and
switch implementation details.

5.4 Hardware

Currently a register transfer level model of the switch is being developed accord-
ing to the descriptions in this thesis. This model will be used for further simula-
tions as well as synthesis experiments for gate count, area, and power estimations.

A couple of simple wrappers for synchronous serial ports are also being devel-
oped for the SoCBUS project partly to be used for testing the SoCBUS network
in simulations and hardware implementations. The next step in hardware devel-
opment is the creation of a more complex high speed wrapper for a standardized
bus interface, e.g. the AMBA AHB interface.

5.5 Synthesis

The ultimate goal of the research project is to create a bunch of libraries that can
be instantiated in a design and synthesized together with IP blocks and memories
to create a complete chip. This synthesis should allow for traffic pattern knowl-
edge based optimizations to attain a certain transfer locality advantage with lower
average network resource usage compared to the non-optimized case.

5.6 Achievements

My main achievements so far in this project is the specification and simulation
of the network together with the development of the PCC routing scheme and a
behavioral simulator.

Inspiration for a project like this can be found everywhere since the design
choices for an on-chip network are vast and the literature that are related to topol-
ogy, routing, etc. for parallel computers and other networks are plentiful. From
this origin the prestudy was successfully completed with much knowledge gained
in the special purpose networks field.

This knowledge was used to specify the mesh network topology and the ba-
sic circuit switching requirements to attain a high performance, low latency on-
chip network. The components used in this network have been specified together
with an interconnection link design based on low-voltage mesochronous signal-
ing. The low voltage signaling style with limitation analysis and physical design
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is researched in another group at our department and in close cooperation with us
[4].

The routing was thoroughly investigated and a novel packet based setup cir-
cuit switching scheme was developed by me and my advisor, Prof. Dake Liu.
This novel scheme, packet connected circuit (PCC), is based on a routing request
packet traversal of the network to connect the circuit from sender to receiver.

Based on the SoCBUS specification and the PCC routing scheme I developed a
network simulator and behavioral models that later have been used for simulating
both random traffic patterns as well as special traffic patterns from case studies in
communications.
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Chapter 6

On-chip network survey

6.1 Introduction

The on-chip network research has only been around for a couple of years with
some of the oldest publications from 2000. In these years many research projects
have been started and most are still at the proposal stage with very little published
quantitative data as evidence for the appropriateness of each approach. This chap-
ter gives a brief overview of some of the more well-known projects from both
universities and companies.

6.2 Survey

6.2.1 Université Pierre et Marie Curie

One of the first suggestions for an on-chip network is from Université Pierre et
Marie Curie in Paris, France [1]. A packet based fat tree connected network was
suggested for the implementation of an on-chip network. The performance results
are good but not very suitable for systems with real-time constrains on the com-
munication because of the very varying latencies. In their experiments they found
that a small fraction (less than 0.1 %) of the transmissions would have a latency of
150 cycles or more while the average would be somewhere around 20 cycles. The
OCN also has got the clear disadvantage of both big area (mostly due to buffers)
and complex wiring.

6.2.2 Stanford

Prof. Dally et al. at Stanford proposed a two-dimensional torus network, see
fig. 2.3(f), for on-chip purposes [2]. Their proposal uses datagram (send-and-
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forget packets) based transport with virtual channels and local buffers for avoiding
deadlocks. The total memory cost for one switch is then roughly 40 kilobits. They
have estimated the silicon overhead to be around 6.6 % including buffers, wires,
and switches. The routing can either be pre-scheduled to meet hard real time
constrains or dynamic for general-purpose traffic.

6.2.3 Tampere Institute of Technology

Saastamoinen et al. at the Tampere Institute of Technology in Finland have pro-
posed an OCN that uses SCI (scalable coherent interface) style asynchronous links
between switches [3]. The topology constrains or the silicon overhead of their pro-
posal is not clear from their publications. The interfaces between network and IP
blocks are handled by the use of wrappers.

6.2.4 Sonics, Inc

Sonics, Inc. is a system-on-chip integration company that have a product suite
for simplified integration of multiple IP blocks in one chip. The center of their
methodology is the SiliconBackplane packet based connection network [4]. The
SiliconBackplane is a linear array (see fig. 2.3(c)) with a token passing scheme
to allow the use of the linear interconnect. The interconnect also uses a kind of
wrappers, called MicroNetwork Agents, to connect between the IP blocks and the
network.

The success so far for Sonics is probably mostly because of the complete inte-
gration flow for IP block reuse and not because of an extremely high performance
of the interconnect. The SiliconBackplane interconnect is just a central part to
make the flow possible.

6.2.5 Philips Research

Philips research has a OCN project called the ÆTHEREAL NOS [5]. This project
is a hybrid packet switched and time division circuit switched network inspired
by the asynchronous transfer mode (ATM) general purpose network with guar-
antees on quality-of-service. The network both supplies guaranteed throughput
and latency through the time division circuit switch as well as best-effort packet
switching without packet loss.

6.2.6 Other industry projects

There are several projects in the industry but there have not been any details undis-
closed at the time of writing. The facts that the on-chip network field is very new,
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that there is no established way of doing OCNs, and that there are no products
released yet make the companies very restrictive in undisclosing any detail.
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Daniel Wiklund and Dake Liu
Department of Physics and Measurement Technology

Linköping university,
SE-581 83 Linköping, Sweden

Abstract

With the increased use of IP cores in chip designs, an increasing amount of time is
spent on design and verification of glue logic. To solve this problem together with
the bottleneck problem of arbitration based buses, a novel approach in system-on-
a-chip interconnect has been investigated. The approach is based on a switched
interconnect structure, with small crossbar switches connected in a mesh for in-
tercore communications with low latency in system-on-chip solutions. The inter-
faces between the interconnect network and the cores are handled by configurable
wrappers that adapt the port parameters from core to network format. The core
functionality of the interconnect network can be fully verified with a fairly low
work effort even when configurable, so the main problem for cutting verification
time is the quite complex wrappers. The concept is to make the wrappers highly
configurable yet needing short verification time in an application by making a
fairly complete verification of the wrappers for all configurations. How this can
be achieved is under investigation. The approach described in this paper is mainly
aimed for use in communication equipment where high bandwidth and low la-
tency is essential.

7.1 Introduction

With the recent advances in communication systems, the classical way of build-
ing electronics is becoming infeasible due to the inherent problems with speed,
power consumption, physical size, and so forth. These problems have forced the
industry to use higher and higher levels of integration to keep up with competition
and customer demands. Nowadays, many products are implemented using only a
few or even a single chip. The trend towards higher integration is associated with
new problems such as design complexity, higher economic risk, heavy verification
work, as well as physical problems like power and clock distribution. Since many
chip designs use intellectual property cores, the main problem beside verification
of the IP cores is the complexity of glue logic and interconnects. Something has
to be done to cut the design and verification complexity of the glue logic and in-
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terconnects in order to allow even larger designs to be accomplished successfully
on time. The trend towards more and more battery powered designs where power
efficiency is a main objective implies that the clock rates in the system should not
be unnecessarily high. This together with the problem of clock distribution will
lead to designs that may use several clock domains. Thus a good way to bridge
between clock domains is needed. The current bus solutions for system-on-a-chip
designs are almost all based on a shared synchronous media and uses arbitration
to allow several initiators to use the bus. This is the classical way of implement-
ing interconnects that has been used for many years. This bus type is rapidly
becoming a major bottleneck for system performance in system-on-a-chip solu-
tions as an increasing amount of data is transferred between different parts of a
chip. Especially, it is impossible to use a classical bus for central services in com-
munication, such as a radio base station or a gateway for voice over IP. In order
to increase the performance of interconnections, buses based on arbitration must
be exchanged for novel architectures that allow higher compound bandwidth as
well as greater simultaneous connectivity. The concept of networks in system-on-
chip design has a lot of similarities with networks for parallel computers, although
many requirements differ between the two areas. The single largest difference is
that while computers emphasize on compound bandwidth, latencies are often the
most critical in communications. There is also a big difference in that the jobs are
better known at the design stage in applications in the communications field than
for computers. The routing algorithms for parallel computer networks also require
high tolerance against dynamic faults such as broken cables and nodes. This is a
fairly small problem in on-chip networks since the system is less susceptible to
failures.

7.2 Bus system overview

The bus system considered consists of four major parts. These are the sender and
receiver wrappers, the network and the switching nodes as found in the overview
of the system in figure 7.1. The purpose of each of these parts will be explained
later in this paper. Wherever it is needed, a core may have several wrappers con-
nected, both senders and receivers, in order to allow the communication that is
necessary for the core.

The dataflow in the system is that when a core needs to send data over the
bus system, a route is first set up to the receiver. This route is then locked dur-
ing the entire time that a transfer is in progress. After that, the actual payload
will be delivered through the interconnection network and finally the route is can-
celled and the resources that were in use will be available again. Since the system
should have as low latency as possible, a circuit switched technique is used. Packet
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Figure 7.1: Interconnect system overview

switched systems tend to have too much overhead in packet header processing and
buffering. A circuit switched system can also guarantee the latency and available
bandwidth for one transmission since no other transmissions can use the route
concurrently.

The tasks of the wrappers are to adapt the port and transfer parameters be-
tween the cores and the interconnect network. The main parameters that need to
be handled are data width, data rate, clocking and synchronization. The config-
uration and control block performs general control tasks such as supervising the
network, doing initial setup and run-time configuration. This block also monitors
the network for faults.

7.3 Network architecture

There are several network topologies that are worth considering for the bus sys-
tem. The most commonly seen in parallel computers are fat trees, meshes and tori
[1]. A fat tree is the best choice from a connectivity point of view, but the fat trees
are complex when seen from a wiring perspective and will thus consume more
silicon area.

The network architecture that most closely resembles the layout of a chip is
a mesh. The dimension of the mesh is limited to a fairly low number in order
to fit on a chip without problems. Higher dimensions lead to better performance



7.4 Switching node 45

but also lead to more complex switching nodes. The simplest solution here is to
use a two-dimensional mesh with common 4-input / 4-output crossbar switches
and links that allow duplex DMA connections. The links may be either true full
duplex, but may just as well use time division duplex or some other technique to
allow for full duplex at the DMA level.

For a small system (up to some 8 or 16 nodes), it is possible to use a fat tree
as network topology. For larger systems, a 2-D mesh is more suitable since it has
simple wiring while using a single switch type. This circumvents the problem with
extensive and complicated wiring to achieve good connectivity since this problem
does not occur in a low-dimensional mesh.

7.4 Switching node

The actual routing in the network is done in the switching nodes. The nodes
consist of a crossbar switch, a routing controller and some buffers (if needed).
The crossbar does the actual switching while the routing controller decides what
way to route incoming data through the crossbar. The crossbar is able to route
incoming traffic to any output except the port that leads back to the previous node.
More than one route can go through the crossbar as long as each route uses input
and output ports that are not occupied by another route.

Buffers in the switches should be avoided, since buffering inevitably will in-
crease latencies in the network. Buffering is almost always needed in a packet
switched network because the switches must buffer the incoming packet when-
ever there is congestion or if the routing decision takes time. In order to keep a
low latency and high bandwidth in the network, it is better to use a circuit switch-
ing strategy that sets up an entire route and then sends the data as quickly as
possible along the route. The route is then released immediately when the transfer
has ended so that the resources become free as soon as possible.

7.5 Routing algorithms

Routing algorithms for interconnect networks come in many flavors. One major
feature that distinguishes different algorithms is whether the algorithm uses de-
terministic or adaptive (dynamic) routing. Deterministic algorithms always use
the same route between two ports, while a dynamic algorithm can use different
routing each time. Other important issues in routing are deadlock and indefinite
postponement. Since the algorithm should be robust considering these issues, the
algorithm must be both fair and free from deadlocks.

Simple deterministic routing algorithms, such as the west-first algorithm are



46 Paper 1

easy to show if they are fair and deadlock free or not. The west-first algorithm
(also known as X-Y routing) [1] has both of these qualities, but it is too simple to
be usable in the system outlined in this paper. The major flaws are that it has no
built-in fault tolerance and that it is very inflexible.

Dynamic algorithms generally have better performance under heavy load than
the simpler deterministic ones. The trade-off here is that a dynamic algorithm calls
for a more complicated and possibly slower routing controller in the switching
nodes. Another drawback is that a dynamic algorithm is much more complicated
than a deterministic algorithm when it comes to deadlock issues. The concept of
proving deadlock freedom is much harder with a dynamic algorithm than for a
deterministic one.

A suitable routing algorithm is a variation of the pipelined circuit-switching
algorithm found in the work by Gaughan and Yalamanchili [2]. If a deterministic
algorithm is to be used, the routing algorithm developed by Badr and Podar [3]
is suitable. Since both of these algorithms are developed for parallel computers,
some modifications will probably be needed to adapt them to the bus system. Both
algorithms have some built-in fault tolerance that makes the system more robust
against failures in the network.

7.6 Wrappers for network-core connections

In order to allow IP cores from different vendors and with different interfaces
to coexist on the bus, the wrappers need to be very flexible. This flexibility is
achieved by making the wrappers highly configurable. This in turn leads to big
problems at the verification stage where the wrappers must be proven correct for
every possible configuration. If this is not done, the wrappers and the bus system
must be verified in every application it is used in.

The wrappers should take care of such tasks as synchronization, clocking and
adoption of data parameters. All of these can be of very various types. Synchro-
nization can for example be achieved by using one or more extra signals (e.g.
strobe or mask), self clocked data or through an asynchronous handshaking proto-
col. Clocking can also be done in many ways, such as positive or negative slope,
dual edge and self clocked data. All this lead to a very complicated wrapper that
needs to be simplified at the design-time configuration in order to save die area and
power. Since all the different configurations will lead to different simplifications
at the ASIC design phase, it is very hard to prove that the system is correct in all
cases. Verification of these kind of configurable systems is an area where much
more research needs to be done. The current standardization effort by the VSI
Alliance is interesting since it may simplify the wrappers considerably if most IP
providers will follow the standards.
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7.7 Configuration

Configuration of the bus system must be done at several levels. First, at the ASIC
design stage where the ports of each wrapper are configured in accordance with
the ports of the corresponding core. This may include such things as port widths,
clocking and synchronization. The second level of configuration is done during
the software design stage, where the system is directed towards a specific appli-
cation with e.g. fixed routes. Finally, the system is configured while the system is
running. This includes things like on-the-fly routing.

Many parts of the configuration could be done at more than one level. What
to configure at each level is determined by trade-off between flexibility and com-
plexity. The later the configuration is done the more flexible system you get, but
at the expense of possibly larger silicon area and higher power consumption.

7.8 Related work

The concept of switched networks for on-chip solutions has surfaced quite re-
cently. Because of this there is not very much work available on these kinds of
systems. One of the few is the work by Guerrier and Greiner [4]. They have
reached a high bandwidth, strong connectivity, and reasonable silicon area. The
drawback is that they use a packet switched fat tree topology that has the inherent
drawbacks of a quite high average latency and a probability to get prohibitively
high latencies for some packets. The maximum usage is in practice also limited
to approximately 40%-50%. This means that their solution is not very suitable for
chips in communication systems.

7.9 Conclusions

For an efficient interconnect network to be designed, a lot of issues need to be
considered. The most promising design consists of a 2-D mesh with crossbar
switches that uses adaptive routing. This leads to simple physical routing of wires
on the chip combined with good performance and fault tolerance. For smaller
system, a fat tree can be considered instead of the 2-D mesh, but with considerable
differences in the routing compared to the mesh.

In order to allow different IP cores to connect to the bus system, wrappers
need to be designed that are highly configurable in respect of data parameters,
clocking, synchronization and so forth. The verification of these wrappers is a
major obstacle since they have to be fully verified in order to allow easy integration
with the other parts of a chip.
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In most respects, the configurability must be high for the bus system to be
usable in as many applications as possible. While this work primarily emphasizes
communications, computers can also be considered a candidate for this system.
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Abstract

As the degree of integration increases, the on-chip communication is becoming a
bottleneck. A solution to this problem is to use an on-chip switched interconnect
network. Such a system-on-chip network was proposed in 2000 by the same au-
thors. In this paper we present the system-on-chip network in detail together with
the design flow support. The choice of topology for the network as well as some
ways to use the network to overcome the future physical implementation issues of
wire delay and to gain performance is also discussed. To aid the design choices
of the network, a behavioral simulator has been created. The importance of the
behavioral simulator is clearly shown from the design flow and the design and
implementation of this simulator is discussed in detail.

8.1 Introduction

With the trend towards highly integrated system-on-chip designs with many on-
chip processing resources like processors, DSPs, and ASICs, the on-chip com-
munication is soon becoming a bottleneck. Classically this would be done with
a traditional time-division multiplexed (TDM) bus as shown in fig 8.1a. This bus
suffers from the clear bottleneck of the shared media used for the transmission.
There is also a need for a bus-global arbiter in a multi-master setup with such
a bus. This is nevertheless the topology used today by many companies in the
system-on-chip arena, e.g. Sonics Inc. [1]. A better way of communication is to
resemble the way networks for parallel computers are generally designed, see fig
8.1b, that do not suffer from those problems.

Networks for parallel computing are generally implemented with rather long
latency and limited performance due to the constrains set on the system in the
context of limited link bit width, requirements on fault tolerance, etc. To move
the network from parallel computers into a communications system-on-chip re-
quires different hardware/software protocols to attain much higher performance
and much lower latency.
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Figure 8.1: Comparison of traditional TDM bus and a switched interconnect bus
replacement

We have previously proposed the use of a two-dimensional switched network
for system-on-chip communication [2]. Later work by Dally and Towles [3] and
Sgroi et al. [4] confirm the general trend towards on-chip networks.

The expected result of this research project is a general platform for system-
on-chip integration using the two-dimensional network as the interconnect struc-
ture. The platform should be easy to use and ease the burden of verification during
the system-on-chip integration phase.

8.2 A new system-on-chip integration flow

The intended design flow for system-on-chip integration using the switched on-
chip network is depicted in fig 8.2. The user input is the specification and require-
ments needed to configure the on-chip network with core interface wrappers for
the specific application. This is the hardware interface specification for the cores
(e.g. processing and storage elements) that are to be connected in the system-on-
chip design as well as the requirements on bandwidth, latency, etc. put on the
network hardware to support the necessary transfers. The software protocol inter-
face specification and requirements are also needed as user input in the design.

The configuration and network control code is then generated and synthesized
based on the on-chip network library together with the user input data to create



52 Paper 2

specification
HW port

specification
SW protocol

Code generator and configurator Switch
routing
code

Drain
wrapper

code

Source
wrapper

code

Configuration code

Implementation

Performance analyzer
Behavior simulator

Debugger

On−chip
network
libraries

Figure 8.2: Design flow for a on-chip network design

Table 8.1: Theoretical performance of different network topologies assumingN
cores along the edges.

Ring 2-d Mesh Binary tree Benes Network Fat Tree

No of nodes N (N=4)2 2N � 1 NlogN 2N=4�1

Links Bidir Bidir Bidir Unidir Bidir
Bisection BW 2

p
N 1 N N

Wiring compl Low Low Low High High
Max wire length Low Low Medium High High
Routing compl Low Medium Low Medium High

both behavioral and structural descriptions of the interconnect network.
This code can then be used in the behavioral simulator to ensure correctness

and to generate a number of different benchmarking informations to make sure
that the specification is fulfilled. After behavioral verification the structural de-
scription is used as a part in the integration of the system-on-chip design to achieve
the final implementation.

8.3 Theoretical performance of network topologies

In order to determine the most appropriate topology for the system a thorough
investigation of the advantages and drawbacks of a number of common topologies
were done during the prestudy phase.

A short summary of the theoretical performance for some of these network
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topologies can be found in table 8.1. The ring topology is very easy to implement
but is subject to the same fundamental limitations as a normal bus since the only
available resource for transmission at a node will be occupied whenever a trans-
mission wants to pass that node. On the other hand, the more powerful topologies
like fat trees are very complex when it comes to wiring.

During the prestudy phase the different topologies were thoroughly studied
from a theoretical perspective resulting in the conclusion that the two-dimensional
mesh is most suitable for on-chip networks. The main advantages of the two-
dimensional mesh is the good performance to resource ratio, the ease of routing,
and that the topology is very easily mapped onto a chip.

8.4 Network components

W
ra

pp
er

IP
 C

or
e

Switch

Figure 8.3: Network connected processing tile

The network can be seen as a two-dimensional matrix of tiles shown in fig 8.3.
These tiles are made up of three components except for the IP core. These are the
switch nodes, the source wrappers, and the drain wrappers. In addition to these
there is a simple control circuit with global responsibility.

The purpose of the source and drain wrappers is to isolate the port formats of
the custom cores used in the system from the network format to make it possible
to ease the task of verification of the whole system-on-chip design. This is done
by using configurable wrappers at the ports between the network and the cores.
The wrappers can be thoroughly verified for the different possible configurations
together with the rest of the network system so that only the interfaces have to be
verified at the system integration phase, thus alleviating the verification task.

The switch nodes are responsible for routing the data transport streams be-
tween source and drain ports. The choice of implementation of the switch nodes
mainly affect the connectivity and routing latency in the network.



54 Paper 2

8.5 Configuration and control layering

In order to make a usable system, the network components have to be configured
according to the chip design requirements. Additional configuration and control
tasks have to be carried out during runtime. These tasks of configuration and
control can be divided into different groups that reflect the level of physical or
virtual links that are affected by the configuration and layering is shown in table
8.2. The layering can also be seen as a protocol hierarchy in the implemented
system where lower levels are implemented as hardware fixed protocols and upper
levels are implemented as software controlled protocols.

Table 8.2: Configuration and control layering
Data transport Data package

Data link protocol
Link setup Physical configuration

Addressing and routing
Contention control
Other (FEC, buffering, etc.)

Circuit Network control
Switching nodes
Wrappers

The data transport layer includes the data link protocol for control of source-
drain transfers and handles transmission-specific configuration information such
as packet sizes. The link setup layer is at the wrapper-switch or switch-switch
level and controls contention control and physical configurations such as clocking
and framing of data. The final layer is the circuit layer that handles the low-level
configuration of the network parts.

8.6 Physical implementation

The physical implementation of network components can be realized in a number
of ways. The realization should preferably help in overcoming some fundamental
problems that are becoming more and more pronounced in modern processes. One
obvious problem is that with the increasing size of chips and shrinking feature size
that are available, the globally synchronous way of building electronics is rapidly
becoming infeasible due to wire delays. One way of alleviating this problem is
to design the chips using smaller cliques of synchronous logic (up to 250k gates
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[5]) that communicate using asynchronous or mesochronous (i.e. same clock but
unknown phase) links using a masked clock from the data source.

The fact that the complexity in the network components is fairly low and
most functions can be heavily pipelined implies that the clock-rate of the net-
work can be relatively high. Since the network is distributed by its nature the
delays in the wires can be very long, up to several cycles, compared to the clock
period of the network. This suggests that the network should be implemented in a
mesochronous fashion using simple retiming circuits [6].

By making the core wrappers the bridge between the clock domains used in the
cores and the network this “globally asynchronous” principle can be implemented
with a minimum of verification effort compared to the principles used today.

Also by using a very high clock rate (compared to the cores) in the network it
is possible to show a very low apparent latency despite a higher number of pipeline
stages in the network.

8.7 Behavioral simulator

It is clear from the design flow that the importance of the behavioral simulator
is very high. This simulator can not only be used as a tool in the customer im-
plementation flow but also as a platform for early cost evaluation of performance
and complexity of different implementations and schemes, e.g. for routing and
switching.

The input to the behavioral simulator is the generated code for switches with
the routing code and the code for source and drain wrappers. The code containing
the configuration (network size etc.) is also input to the simulator. Also an user
supplied description of the transmission traffic patterns are needed for the best
simulation results.

The simulator runs the complete network responsible for both control setup
and data transport for a period of time and checks the data to ensure functional
correctness. The simulator also collects performance measurements such as mo-
mentarily and average available bandwidth, maximum and average latency, and
contention measures.

The output contents of the behavioral simulator, see table 8.3, is divided into
three main areas to evaluate the correctness, performance of the network, and cost
to implement and verify the network. The configuration and verification cost is
estimated from the amount of change in the network system needed for the current
configuration. During development of the network components this can be used
for evaluation of design choices that affect different costs and benchmarks to allow
for trade-offs between different design issues such as increased cost of switches
compared to increased connectivity and data throughput.
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Figure 8.4: Object structure of the behavioral simulator network model

Table 8.3: Output generated by the behavioral simulator
Benchmark Connectivity eval

Data throughput eval
Latency evaluation

Functionality Correctness
Cost Circuit selection cost

Protocol selection cost
Control subsystem cost
Configuration cost
Verification cost

8.8 Behavioral simulator implementation

The behavioral simulator is developed using object oriented programming in C++.
The simulator is implemented using a message passing structure to resemble the
structure of the real network system. The simulator is event-driven and both bit
and cycle true in its execution.

The object structure of the simulator can be found in figure 8.4. The leaf
nodes in the system branch corresponds to the actual network components except
for the switch that is subdivided into its subtask components where the arbiter is
for local arbiting between the ports of a switch. The setup branch is the message
passing support for the simulator. This program structure is very suitable for the
simulation of an essentially message-passing hardware like the on-chip network
presented in this paper.
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8.9 Behavioral simulator output

Taking one simulation result as an example of output from the simulator, we
considered the case where cores are only connected to the switches along the
edges, the switches use the deterministic dimension-order routing algorithm, and
the “packets” use only a single cycle for transmission between switches. As the
network in this example does not use any kind of retry mechanism all blocked
packets will be dropped. A plot of the relative number of successful transmissions
compared to all initiated transmissions with a mean usage (i.e. the probability that
a core wishes to send) of 20% can be found in figure 8.5. The network size is the
number of switches along each dimension. Thus the number of cores is equal to
the size times four (i.e. because of four edges) and the number of switches is equal
to the size squared. In this example we did not consider resending dropped packets
and the possibility of deadlocks was eliminated through the algorithm choice.

Although this is a relatively simple implementation of the switch nodes and
will not be relevant in a real system, it is interesting too see that it is very clear
from the simulations that the relative number of successfully received transmis-
sions decreases as the size of the network increases and thus the number of senders
increases. This is basically due to the congestion that occurs near the center of the
network when using dimension-order routing near the saturation limit.
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8.10 Future work

The next step is to use the network-on-chip behavioral simulator to evaluate the
appropriateness of different implementations of the parts that make up the network
system.

Work is currently taking place to fund a demonstrator system for the Socware1

program based on the switched network-on-chip that is described in this paper.
The demonstrator will focus on routing heavy communications in real-time appli-
cations.

We will also evaluate different schemes of connecting the cores to the network
as well as implement and evaluate different routing algorithms for the network.

8.11 Conclusions

The concept of an on-chip switched network as a platform for system-on-chip
integration is discussed and an analysis of network topologies prompts for the use
of a two-dimensional network. An appropriate design flow is introduced and the
importance of a behavioral simulator in this flow is clearly shown.

The simulator design and implementation is discussed as an platform for eval-
uation of the design choices and cost trade-offs in the network parts, such as rout-
ing algorithms and switch connectivity constrains.

The physical implementation is discussed and it is suggested to use a higher
internal clock rate in the network system to gain even more performance compared
to traditional buses.
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Abstract

With the current trend in integration of more complex systems on chip there
is a need for better communication infrastructure on chip that will increase the
available bandwidth and simplify the interface verification. We have previously
proposed a circuit switched two-dimensional mesh network known as SoCBUS
that increases performance and lowers the cost of verification. In this paper, the
SoCBUS is explained together with the working principles of the transaction han-
dling. We also introduce the concept of packet connected circuit, PCC, where
a packet is switched through the network locking the circuit as it goes. PCC
is deadlock free and does not impose any unnecessary restrictions on the sys-
tem while being simple and efficient in implementation. SoCBUS uses this PCC
scheme to set up routes through the network. We introduce a possible application,
a telephone to voice-over-IP gateway, and use this to show that the SoCBUS have
very good properties in bandwidth, latency, and complexity when used in a hard
real time system with scheduling of the traffic. The simulations analysis of the
SoCBUS in the application show that a certain SoCBUS setup can handle 48000
channels of voice data including buffer swapping in a single chip. We also show
that the SoCBUS is not suitable for general purpose computing platforms that ex-
hibit random traffic patterns but that the SoCBUS show acceptable performance
when the traffic is mainly local.

9.1 Introduction

System-on-chip (SoC) designs pose many challenges on the designers. Design of
a complex SoC with limited time and resources is a major hassle in the industry
already today. With further technology progress and the ever increasing demands
on integration there are a number of problems that quickly become big issues, e.g.
design time and verification.
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The major direction out of some of these problems is to make use of (both
external or internal) intellectual property (IP) blocks, i.e. complete subsystems -
like a microcontroller or a DSP - that can be integrated on chip together with other
IP and custom logic to make up the complete system-on-chip product.

As the number of IPs on a chip increases there is an increasing demand of
high performance communication between the IPs. The current solution when
implementing SoCs with multiple processors, ASICs, memories, etc. is to use a
time-division multiplex (TDM) bus, e.g. the AMBA bus from ARM, Inc [1]. The
fundamental limits in this kind of bus is the arbiter used for a multi-master setup
and the shared media.

Another problem when designing complex chips using IP blocks is the veri-
fication of the interfaces between the IPs, the communication structure, and the
custom “glue” logic generally used to connect them. To alleviate the problems of
verification and performance we have proposed a two dimensional mesh network,
called the Linköping SoCBUS [2].

This paper is divided into three main parts. Sections 9.2 through 9.4 dis-
cusses general issues concerning SoC networks as a concept as well as the pro-
posed SoCBUS with network architecture and transaction handling. Section 9.5
introduces an example of a possible hard real-time application, the PSTN/VoIP
gateway. Sections 9.6 and 9.7 briefly introduces the simulator and discusses the
stimuli and simulation results for our SoC network using random pattern traffic
and the PSTN/VoIP gateway example. Finally the paper is closed with a descrip-
tion of some future work and the conclusions in sections 9.8 and 9.9.

9.2 The SoCBUS as a bus replacement on chip net-
work

Since the shared TDM bus is becoming a bottleneck many researchers and com-
panies have realized the need of a better way of handling the on-chip communica-
tions. With the widespread knowledge in general purpose computer networks at
hand, researchers saw a great possibility of using networks not only for off-chip
communication but also for on-chip communication. fig. 9.1(a) shows a tradi-
tional TDM bus setup and fig. 9.1(b) show the switched network counterpart. It
is obvious even from a quick glance that the possible performance is significantly
higher for the network based solution.

Several research groups around the world are currently involved in research on
on-chip networks. A common feature among almost all of these research projects
is that they use packet switching [3, 4] following the seven layer OSI model [5].

The seven layer OSI model was developed with general purpose networks in
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Figure 9.1: Comparison of traditional TDM bus and a switched interconnect bus
replacement

Table 9.1: The seven OSI layers and their coverage in the SoCBUS system
7 Application layer Not covered by SoCBUS
6 Presentation layer Can be covered by wrappers
5 Session layer Can be covered by wrappers
4 Transport layer Covered by SoCBUS
3 Network layer Covered by SoCBUS
2 Link layer Covered by SoCBUS
1 Physical layer Covered by SoCBUS

mind and is not necessarily applicable directly to all types of networks. One such
network type where the layered approach of implementation is unsuitable is on-
chip networks. The reason is that there is some fundamental differences between
a general purpose network (e.g. Internet) and an on-chip network. The general
purpose network is in principle unknown, i.e. nodes can be added and removed
at any time, the topology is not fixed, and so on, while the on-chip network is
well-known since it is fixed at the time of chip manufacturing.

With this additional knowledge of the network infrastructure it is possible to
group several layers of the OSI model and therefore simplify the hardware and
software while at the same time cut latency in the network. Our proposed solu-
tion has a broad coverage of the OSI-model, see table 9.1, with a minimum of
complexity.

A network using circuit switching has low complexity switching nodes be-
cause their main function only is to connect an incoming link to an outgoing link.
Deadlock avoidance is easily achieved since the circuit setup can either succeed
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Figure 9.2: A 4x3 node switched network with wrappers and IP blocks

or fail but it can not stall somewhere in the process. Packet switching inarguably
leads to more complex switching nodes since the node in order to avoid deadlocks
either have to buffer every packet in its entirety before routing it to the next node,
the node have to use several virtual channels [6], or the node has to restrict the
possible paths [7].

Packet switching also suffers from latency problems where the packet delay
through the network can be several hundred or even several thousands of cycles
dependent on routing algorithms and switch implementations [8]. One example
is where a fully buffering implementation of a packet switched network transfers
128 bytes of information between two diagonally opposite corners of a 8x8 mesh.
The time spent in the network would then be more than128 � 15 = 1920 cycles.
Even for a wormhole routing network there is a possibility that the packets will
be stalled for long times due to other traffic. This is because there is always a
statistical distribution of packet delays in a packet switched network which also
creates the possibility for packets to arrive out-of-order to the destination. Circuit
switching has a clear advantage over packet switching since the data latency is
only dependent on the distance and there is no dependency on other factors, e.g.
other traffic in the network. All data is also guaranteed to arrive in the same order
as sent. The only dependency on the traffic situation in a circuit switched network
is when setting up a route.
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9.3 SoCBUS architecture

A thorough investigation of different network topologies were conducted [9] and
a two dimensional mesh was considered to be the most suitable for on-chip net-
works. This is also the common topology proposed by most other researchers
[3, 4, 10]. The main reasons for selecting a the two dimensional mesh instead of
other topologies such as hexagons, butterflies, or tree are that a two dimensional
mesh have an acceptable wire cost, reasonably high bandwidth, and that it is easy
to group IPs that communicate a lot so that they do not consume an unnecessary
high amount of resources in the network.

The network, see fig. 9.2, uses five port switches that allocate four ports to
connect to adjacent switches and one port to connect to the local IP block interface
(port). The local IP port is connected through a wrapper to the local IP block. The
wrappers handles IP and network port differences such as transaction handling,
port width, endianness, etc. The wrappers also contain any necessary buffers
and does the bridging between the IP block clock domain and the network clock
domain.

The interfaces internal to SoCBUS all use the same physical format, see fig.
9.3. In total 11 wires are used in each direction where eight wires carry forward
going data and routing request packets, one wire is used for forward control, and
two wires are used for reverse control. The forward control handles framing of
transmissions and clock information to allow for easy retiming of the transfers
when using mesochronous clocking (i.e. same frequency but unknown phase) [9].
The reverse control carry the acknowledgments. The diagonal lines in the figure
represents an identical interface to the local IP wrapper port.

The simplicity of the SoCBUS components allow for an implementation of
switches and the network side of wrappers with very low logic depth, i.e. 6-8 gate
delays. With this low logic depth it is possible to run the SoCBUS at 1.2 GHz in
a 0.18 micron technology process. This is four times the maximum expected IP
block clock frequency of 300 MHz in the same process. This difference in clock
rates will further mask the latency since a four cycle latency in the network will
look like an one cycle latency to a core.

Considering the high clock rate and the distributed nature of an on-chip net-
work, the wire delays between the components become a serious problem if using
traditional synchronous design methodology. In order to allow for wire delay
and skew we propose the use of mesochronous (i.e. same frequency but unknown
phase) clocking with signal retiming in the system. Using mesochronous clocking
and retiming still requires the wires delays within a link to have reasonable skew
but allows the design to use links that have differing delays without any problem.
To further simplify the connection of network components we propose using opti-
mized drivers and transmission-style wires [11, 12]. This gives many advantages,
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Figure 9.3: Interface between switching nodes and wrappers within the network

e.g. no repeaters are necessary, the system consumes a minimum of power, and
there is no need of laying out the network in an ordered fashion on chip.

9.4 Network transaction handling

9.4.1 Route setup flow

The network transactions consist of four to six phases dependent on whether the
first try routing is successful or not. A successful transaction, see fig. 9.4(a),
has four phases. (I) First a request is sent from the source to the network. As
this request finds its way through the network the route is temporarily locked and
can not be used by any other transactions. (II) The second phase starts when the
request reaches its destination an acknowledge is sent back along the route and the
locks are changed to permanent1 locks. (III) When the acknowledge has returned
to the source the third phase starts. This phase holds the actual transfer of data
payload. (IV) Finally after the data has been transferred a cancel request is sent
that releases all resources as it follows the route.

If a route is blocked in a node the routing request is canceled by (Ia) the block-
ing switch returning a negative acknowledge to the source, see fig. 9.4(b). (Ib) The
source must then retry the route at a later stage which means that the additional
two phases (nAck and retry) might need to iterate.

9.4.2 PCC: Packet connected circuit

We refer to the novel hybrid circuit switching with packet based setup introduced
in the previous subsection as “packet connected circuit” or PCC for short. The

1Permanent refers to the current transaction time span only.
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Figure 9.4: Two successful circuit setups

PCC has very nice properties in several areas as follows:

� The PCC is deadlock free since no resources are locked while waiting (in-
definitely) for other resources.

� The routing hardware in the switching nodes become very simple when no
special cases, stalls, or virtual channels must be considered.

� Need for a minimum of buffering capable of holding just a request package
is needed in the switching nodes.

� PCC gives the lowest possible latency of just one retiming latch pipeline at
each switching node.

� There is no inherent limit on route selection algorithms in the PCC scheme.

9.4.3 Routing

After studying publications on routing algorithms and performing some simple
experiments it was decided to go for a simple minimum path length routing. Each
switch has the knowledge of the general direction to each destination, i.e. north,
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Figure 9.5: Data flow architecture of a PSTN/VoIP gateway chip

west, south, east, down, and combinations of these, e.g. north-west. Since the
network do not change when the chip has been designed this knowledge is static
and decided at the time of network layout design. The routing decisions are simply
based on the destination address and the known direction. If there are more than
one direction that leads to the destination one is selected according to a round
robin scheduling. If the primary selection is occupied the second choice will
be used instead. If there are no free outputs that lead towards the destination
the routing will fail and the switch will return a negative acknowledgment to the
source.

9.5 Application: The PSTN / VoIP gateway

As an example of a system where an on-chip switched network is suitable we
have selected a gateway connecting between both the public switched telephone
network (PSTN) and voice-over-IP (VoIP). The data flow architecture for such a
gateway chip is shown in fig 9.5. The architecture supports PSTN to PSTN, PSTN
to VoIP, VoIP to PSTN, and VoIP to VoIP connections. In addition to this it also
supports echo canceling and A-law/u-law companding. The connections to the
chip is typically T1/E1 (24/30 channels) or even up to OC-3 (capable of carrying
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Figure 9.6: Software architecture for a PSTN/VoIP gateway

2048 channels) for PSTN and Ethernet for VoIP. This hardware architecture is
used as a basis for the software architecture, see fig 9.6, and has been suggested
by the industry [13].

We propose using the SoCBUS switched interconnect for dynamic connec-
tions of program loading, payload delivery, computing buffer passing, and control
signaling in this architecture. A simplified version of the architecture has been
used for simulations, see section 9.7.2, to show the suitability of SoCBUS as an
interconnect structure for hard real-time systems.

9.6 Simulation environment

In order to assess the performance of our proposed network we have developed a
cycle true behavioral simulator for our SoC network and showed the usefulness
both in the research as well as the customer design flow [9]. This behavioral
simulator is event driven and implemented in C++.

The simulator uses models of the state machine in the switching nodes and
the network end of the wrappers. A slightly simplified state chart for the specific
implementation of the PCC scheme state machine for a switching node used in
our simulations can be found in fig. 9.7. The switch starts up in the idle state
(1) waiting for a request. When a route request packet is received the switch tries
to find a route (2) that is available and leads towards the destination. If such a
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route is not found a negative acknowledgment is returned to the sender (3). If a
route is found this is locked (4) and the switch passes the request packet on via the
output (5). The switch then waits for an acknowledgment to be received from the
output (6). If a negative acknowledgment is received the switch will release the
lock and pass on the negative acknowledgment (3). If the result were a positive
acknowledgment the switch passes the acknowledgment on to the source (7) and
enters the transfer state (8). When the transfer is finished and the request cancel is
received from the source the switch will release the lock (9) and return to idle. As
can be seen in the figure, the switch FSM states are closely related to the transfer
transaction phases.

9.6.1 Latency analysis

There are two primary types of latency in the network. One is related to the route
setup time and one is related to the payload transfer. Both latencies are linearly
dependent on the distance between source and destination. The route setup latency
consists of first the request handling latency that is minimum of four bus cycles
per switch for request buffering and route selection. The second part of the route
setup latency is the acknowledgment latency that is one cycle per switch.

Since the network is circuit switched the data transfer latency is just one cycle
per switch to allow for retiming.

Due to the high internal clock rate in the SoCBUS the latency will appear
lower from the IP block perspective. With a SoCBUS clock of 1.2 GHz and the
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typical IP block clock frequency of 300 MHz the apparent latency will be only
a fourth. The route setup latency for every switch will appear as 1 cycle and the
data transfer latency as 0.25 cycles.

9.7 Stimuli and simulations

9.7.1 Random pattern stimuli

Two sets of stimuli has been used in the simulations of the network. The first
stimuli is random pattern communication with different mean usage levels. The
stimuli simply consists of a set of transfers from a random source to a random
destination at a random time with a random length where the random numbers
have uniform distribution over specific intervals. This random communication
patterns do not consider whether the destination port is occupied. Thus there is
always a risk of the destination not being reachable at the time of transfer and can
be rejected at the switch connecting to the destination port. The random pattern
stimuli is mainly useful for modeling a general purpose computation platform.

A plot of the relative first-time blocking rate vs the mean usage for a 8x8
network can be found in fig 9.8. The mean usage here is defined as the ratio
of used payload bandwidth at the sources divided by the maximum theoretical
bandwidth of the sources (i.e. 64 GByte/s at 1 GHz). Three different cases have
been simulated. The first case, see fig 9.8(a), uses a completely random transfer
pattern. The second case, see fig 9.8(b), limits the distance of half of the transfers
to four hops while the second half is still random using the maximum limit of 15
hops. Finally in the third case, see fig 9.8(c), all the transfers are using the short
distance of four hops maximum. As can be seen in the graphs, the network is
not suitable for totally random traffic but can be acceptable if the traffic is mainly
local and only occasionally uses longer distances. The reason is that the longer
distance transfers consume more resources in the network that may be needed by
other transfers and thus the probability of blocking increases.

With the random pattern simulations showing bad performance compared to
the theoretical limit we propose using a pre-runtime static scheduling [14] of most
communications and allowing a certain slack to allow some intermittent unsched-
uled traffic.

9.7.2 PSTN/VoIP gateway

To simulate the PSTN/VoIP gateway introduced in section 9.5 we assume a model
that has 7x7 switches running at 1 GHz where the memory swapping ports is con-
nected to the topmost switches and the inputs and outputs are connected to the
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leftmost nodes. The rest of the network is filled with 18 processors that perform
a first layer of computation (e.g. echo canceling) and 18 processors that perform
a second layer of computation (e.g. companding). The data flow in this simu-
lation setup is that voice data arrives and is routed to the appropriate processor.
The associated computing buffer is downloaded from the swap memory and the
processing is done. When the computations have finished, the computing buffer
is swapped to memory and the output from the processor is routed to the second
layer processor. The second layer processor does basically the same thing and its
output is sent to the correct output.

With a basic frame for a voice transfer of 4 ms that contains 32 bytes of data
in conjunction with all swap buffers being 200 bytes each simulations have shown
that the network capacity is up to 48000 voice channels with 0% blocking when
consuming a total bandwidth of 12.8 GBytes per second if the network accesses
are scheduled appropriately. The limit here is the port usage of sources and des-
tinations that saturates before the network bandwidth is used up. Also this would
require that a processor can sustain computing one voice channel in 1.5 us which
is possible with the high end processors available today. The real limiting factor
in such a gateway chip would most likely be the power consumption.

This limit of 48000 channels assume perfect scheduling of transfers which is
not feasible in a real product. Even with significantly worse scheduling it would
be possible to run a chip that handles 5000 channels together with a certain level
(3-5%) of communications that are not scheduled. This is probably the real-life
limit of a real gateway product based on issues such as risk of failure and economy.

9.8 Future work

The simulator is finished and will be used to get more simulations to prove the
concept for a broader set of real-time applications. Further work is currently be-
ing done on the implementation of the SoCBUS and the goal is to build a demon-
strator system that uses the SoCBUS concept. Currently the switching nodes are
being implemented together with some example wrappers covering a few com-
mon interfaces. We further look into the verification of the system and the impact
on system integration.

9.9 Conclusions

A two dimensional network for on-chip communications, the SoCBUS has been
introduced. The operational principle of the SoCBUS using packet connected
circuit, PCC, has been analyzed and explained in detail.
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We have shown with simulations that the system is not suitable for general
purpose computation platforms that exhibit random traffic patterns because of the
high probability of route blocking when running without schedule. We also show
that limiting the distance of communication in the random pattern case will allow
a much higher bandwidth usage without saturation.

We further show that a pre-runtime static scheduling of communications ap-
proach is necessary for a hard real-time embedded system to be able to use a sig-
nificant percentage of the theoretical maximum bandwidth. Using this approach
we show the appropriateness for one particular application, a PSTN/VoIP gate-
way capable of handling up to 48000 voice channels simultaneously with perfect
scheduling and that the SoCBUS will be capable of supporting a level of 5000
voice channels even with realistic scheduling and some unscheduled traffic.
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(b) Short and mean distance
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(c) Short distance only

Figure 9.8: Relative first-time blocking ratio vs mean used payload bandwidth
using random pattern stimuli



Part IV

Appendix

77





Appendix A

Simulator overview

A.1 Introduction

This appendix is an introduction to the network simulator developed as a part of
the research project. This include snippets of my paper to the Swedish System-
on-Chip Conference in 2002 [1] which is not used as a part of this thesis. Much
of the information in this appendix can also be found in paper 2, see chapter 8.

A.2 Simulator background

Because of the vast space of different design and implementation decisions in-
volved in such a network, a behavioral simulator has a very high importance in
the design flow for system integration using the switched system-on-chip network.
The same behavioral simulator can also be used to evaluate and select the different
design parameters, e.g. routing algorithms and switching schemes, while design-
ing the actual network. The goal with the simulator is to have a general simulator
for all simulation needs within the project, whether it may be network design de-
cisions or final chip implementation evaluation.

The input to the behavioral simulator is the models for network components
with a configuration setup including network size etc. A description of the traffic
patterns in the specific setup is also necessary to get relevant simulation results.

The current simulator runs behavior level C++ models of the components so
the simulator output will be on a behavioral level. The functionality of the behav-
ior models must be verified against the RTL code for the components using some
other means of simulation.
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NETWORKCORE

SRC/DEST LINK SWITCH

ROUTER ARBITER SWITCHER

PORT
* *

SYSTEM

SUPPORTMSGSRV

SETUP

SIMULATOR

*

Figure A.1: Object structure of the behavioral simulator network model

A.3 Behavioral simulator implementation

The behavioral simulator is developed using object oriented programming in C++.
The simulator is implemented using a message passing structure that resembles
the structure of the real network system. The simulator is event-driven and both
bit and cycle true in its execution.

The object structure of the simulator can be found in figure A.1. The leaf
nodes in the system branch corresponds to the actual network components except
for the switch that is subdivided into its subtask components where the arbiter is
for local arbiting between the ports of a switch. The setup branch is the message
passing support for the simulator. This program structure is very suitable for the
simulation of an essentially message-passing hardware like the on-chip network
presented in this paper.

The kernel is implemented using an event mechanism similar to those used
in VHDL simulators using event lists and delta cycles to keep track of absolute
time ordering of events. This implementation is very simple and efficient while
allowing considerable flexibility in the simulation setup. It is also very general
allowing the simulator kernel to be used in other simulators if needed.

A.4 Stimuli generation

The stimuli for the simulator can either be generated by a third party program, e.g.
as a result of system simulations on process or behavioral level, or be generated
in the stimuli generator accompanying the simulator. This stimuli generator can
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create stimuli in accordance to some standard patterns such as completely random
traffic, random traffic mixed with shorter mean distance traffic, etc.

A.5 Conclusions

A very simple yet powerful simulation kernel has been implemented using C++.
This kernel has then been used as a basis to build a complete behavioral simulator
for the evaluation of design and implementation decisions in the SoCBUS on-chip
switched network. A stimuli generator has also been developed as a tool for the
simulator.

A.6 References

[1] D. Wiklund, “Implementation of a behavioral simulator for on-chip switched
networks,” in Proceedings of the Swedish System-on-Chip Conference
(SSoCC), March 2002.
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