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Abstract

Networks are becoming increasingly popular for use as
on-chip interconnects. The problems with specification and
performance evaluation increase with these solutions com-
pared to the traditional interconnect. This paper describes
the design and simulation environment developed in the
SoCBUS network-on-chip project. This environment is used
as a basis to develop the benchmarking procedures neces-
sary to assess the performance of the networks. Two bench-
marking examples are presented and used for evaluation of
the SoCBUS network. These examples show how the simu-
lation environment can be used to find the load bottleneck.
They also show the appropriateness of the SoCBUS solution
for (hard) real-time systems.

1. Introduction

A core part of almost all electronic designs is the inter-
nal communication infrastructure. Today this is mostly con-
structed as a shared bus or by using dedicated point-to-point
links. The buses use time-division multiplexing (TDM) to
allow multiple communications to share the media. This is a
very simple and useful solution that is applicable for all de-
signs with reasonable demands on the communication per-
formance in terms of bandwidth, latency, flexibility, quality
of service (QoS), etc. The other extreme is point-to-point
links where the situation is opposite. All flexibility is gone
but the physical performance is much higher.

The interconnection problem can be subdivided into
many problems. Four of the most important physical prob-
lems that must be addressed by the interconnect structure
are:
• Port format adaptation - Different intellectual property
(IP) cores tend to adhere to different interconnection stan-
dards.
• Speed difference between IP cores.
• Connectivity - A set of IP cores must be able to commu-
nicate with each other in a way that often cannot be fully
predicted at the chip design time.
• Bandwidth of communication channels - Both the actual
bandwidth of a single transmission is interesting as well as

the number of possible concurrent transmissions.
The concept of using networks as on chip interconnect

has reached a broad acceptance in both the academic society
as well as industry today [1], [2]. The SoCBUS project at
Linköping University was started in 1999 and the result so
far is a complete proposal for a network on chip. Behavioral
models for the network components have been extracted and
implemented. These models have been used to investigate
the behavior of the SoCBUS network. Different SoCBUS
routers have been implemented at the register transfer level
(RTL). Our achievements show that all four subproblems
described above have been addressed as presented in earlier
papers [3], [4].

We have realized the importance of benchmarking to find
the bottlenecks in networks on chip. In this paper we present
an outline of the benchmarking process and two examples
of benchmarks. These benchmarks are used to show the va-
lidity of the real-time application domain for the SoCBUS
project. Sections 2 and 3 give a brief introduction to net-
works on chip and the SoCBUS project. Section 4 in-
troduces the design environment and simulation flow for
SoCBUS. Definitions of benchmarks and bottlenecks are in-
troduced in section 5. Sections 6 and 7 defines the example
benchmarks and summarizes the simulation results. Finally,
in section 8, we draw some conclusions and outline future
work in this area.

2. Networks on chip

Lately there has been a move in usage of networks from
communication between systems to communication within
systems. Extending this trend further there is an obvious
possibility to use networks on chip. But the demands on
network design change considerably when moving the de-
sign towards lower levels, shorter distances, and physically
smaller implementations. One of the main issues is the
physical size of the network components used. No longer
can a network interface or a router occupy an entire board
or chip. Rather it has to fit in a space considerably smaller
than a simple on-chip processor system of a few hundred
thousand gates. Preferably, the silicon cost for the connec-
tion network should be less than 10% of the silicon cost for
the (custom) functions.
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Figure 1. Overview of a SoCBUS network

This leads to restrictions on size of the components - es-
pecially memories - used in the network. Because of the
rather stringent demands on size the network components
must be kept reasonably simple. This in turn puts restric-
tions on such things as network protocols, signaling com-
plexity, and buffering of data in the switches.

3. SoCBUS network

The network considered in this paper is the SoCBUS
project at Linköping University. This system uses a hy-
brid packet-circuit switching method known as packet con-
nected circuit (PCC) [5]. This approach uses a small rout-
ing packet that traverses the network and sets up a circuit
switched route for the bulk payload data to follow. In gen-
eral, any network consumes a lot of memory for data buffer-
ing. These data buffers also give longer transport latency
which is not acceptable on a chip. By using the PCC con-
cept, both the need for buffers and thus the latency penalty
are eliminated. The drawback is that a failed routing will
cause a retry which may lead to increased congestion.

The primary network components are the routers and the
wrappers. These are connected to each other according to
the topology of the network. The topology can be arbitrary
but we propose the use of a two-dimensional mesh as an ini-
tial topology for synthesis purposes, see Fig. 1. There are
several reasons to propose a mesh topology but the most ob-
vious is that is maps well onto the flat surface of a chip with
short wires and simple routing. This mesh can then be opti-
mized by adding and removing routers and links according
to the demands put on communication by the application.
Of course, other initial topologies, e.g. fat trees, are also
possible as a starting point in the design.

3.1. SoCBUS routers

The routers are the core component within the network.
The PCC approach results in simple routers in the network
with no need to buffer the data in the router except for re-
timing purposes. This allows the routers to be kept at a min-
imum in size while maintaining high throughput.

The current implementation of a router shows a data la-
tency of one clock cycle at 16 bits data width and a clock
rate of 1.2 GHz in a 0.18 um technology. The latency ex-
perienced during route setup is 6 cycles per router [6], [7].
The only buffering done in the routers is one word per input
port used for retiming purposes.

3.2. SoCBUS wrappers

The wrappers are the interfaces that connect the local IP
block(s) to the network. The purpose of these wrappers is
to allow a specific network format without putting (too se-
vere) constraints on the interfaces allowed to the rest of the
design. It is not possible to create a generic wrapper that
will take any I/O format and transform this into the network
format. There will rather be a set of wrappers for different
style connections on the IP side.

The most efficient use of the network is probably mes-
sage passing but the transition from the current design style
will require that transaction style (e.g. read, write, cache
line fetch, etc.) must be supported by the wrappers (and the
network).

4. Design environment

The main design difference from designs based on tra-
ditional interconnect structures (e.g. buses) is that the com-
plexity in assessing the overall performance of a network on
chip is significantly higher. The design environment must
be able to support such a performance assessment through
analysis or simulation. Simulation has been chosen as the
primary method in the SoCBUS project because of the dif-
ficulties involved in accurate analysis of a system.

The design environment consists of design libraries and
simulation support. The design libraries contain component
implementations and simulation models. The simulation
models are used together with a simulator. This simulator
takes descriptions of the traffic and network and does a per-
formance evaluation for this setup.

The typical flow for a network on chip design, see Fig. 2,
starts with an application or an application domain. From
this it is possible to extract the communication patterns and
demands that should be put on the network. This is done
in a similar fashion as would be done for a classical TDM
based interconnect structure. Generally, this step must be
done with great care to make sure that the extracted traffic
model matches the actual communication behavior in the
application.
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Figure 2. Design flow for network on chip based
systems

After the analysis of the application an initial network
can be synthesized. This network is used in simulations to
assess the performance of the network solution under the
considered traffic model.

It is rather obvious from the above that simulations are a
very important step in the design flow. The simulations are
not only needed to achieve good system performance at low
cost but also to guarantee success at all [5], [8].

4.1. Details on the simulation flow

The simulations for the SoCBUS projects are done us-
ing an in-house simulator, developed by the authors, that
is tailored to the task of simulating on-chip networks [4].
The simulator is used in conjunction with a in-house stim-
uli generator tool according to the simulation flow in Fig. 3.
The inputs to the flow are the traffic and network models,
represented in XML.

The traffic model is completely decoupled from the net-
work topology. The mapping of traffic sources and des-
tinations are done using literal names in the model files.
Each named source/destination must be present as a named
source/destination in the network model. If a source named
“Src” has been specified in the traffic model there must also
be a wrapper/IP block connection named “Src” in the net-
work model. This allows the allocation of connections be-
tween wrappers and routers to be done entirely in the net-
work model.

The generated stimuli uses absolute time stamps (i.e. it is
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Figure 3. SoCBUS simulation flow

scheduled) so the information in the stimuli file is just the
source, destination, start time, and size for each transfer.

The simulator is event based in a fashion similar to
a typical VHDL simulator. All network components
(routers, links, sources, and destinations) are implemented
as compiled-in behavioral models written in the same pro-
gramming language as the simulator. Every time a net-
work component generates an event a message is created.
These event messages are distributed to the proper destina-
tions through a message server. The central message server
handles all time ordering of events/messages through a mes-
sage queue. This guarantees that the events will happen in
the correct order independent of the order in which they
have been created. The simulator is implemented in C++
to achieve high simulation speeds. Using C++ also allows
extensions to be made to the tools in this commonly known
and efficient programming language.

4.2. Simulation models of network components

All network related models that are used in the simula-
tions are based on the implementations that have been made
at the register transfer level in Verilog. The current imple-
mentation of the router model uses six cycles for a routing
decision and one cycle for transferring data and acknowl-
edgments. The links are modeled as a simple discrete time
delay of zero (or more) cycles. The sources and destinations
are currently also modeled in a rather simple fashion. The
IP block and the wrapper are seen as a single entity that will
generate and consume transfers according to the stimuli file.

Models are easily changed or added if new implementa-
tions of components are made or the need to model certain
IP blocks in a more thorough fashion arises. Multiple mod-
els for a single component type are supported and are se-
lected through model names in the network description file.
A simple API is used to implement the models in C/C++.



5. Benchmarking and bottlenecks in on-chip
networks

A benchmark is the combination of (traffic) specifica-
tion and results (generally in terms of a performance es-
timate) that has been used and achieved in the process of
benchmarking. The benchmarking process will have differ-
ent goals, e.g. finding the effective bandwidth (i.e. accepted
load), latency, optimal transfer sizes, etc. depending on the
final application (domain) for the system.

The limiting factor in any application, whether it is com-
putation, communication, or something else is commonly
called a bottleneck. The aim of the benchmarking process
is generally to find the bottlenecks in a system.

In a one dimension bus the fundamental bottleneck is the
shared medium. This is a bottleneck can be described using
basically a scalar value telling the total amount of data that
can be transferred within a given time period. This value
shows little dependence on the number of sources and des-
tinations, the size of transfers, etc. In a multidimensional
system the bottleneck will be considerably more complex
and will require multiple variables.

6. Benchmark specification examples

A typical benchmark situation will involve a specific pat-
tern of transfers. This is the basis for the benchmark and
will model the behavior of the surrounding system. Here
we present two simplified examples.

6.1. Common specification

The two following traffic model cases have some general
constrains/specifications in common. These are:
• The network is a 2-d mesh of size 8 by 8.
• All routers have one full duplex wrapper/IP block con-
nected to each.
• The simulations are run for 1.000.000 cycles.
• The statistics are captured between 10% and 90% of the
simulation time.

The primary goal of the example benchmarks is to find
the accepted load bottleneck in the system. The accepted
load is the traffic that is actually transferred across the net-
work. The counterpart is the offered load, i.e. the amount of
traffic that the sources try to put into the network.

6.2. Random transfers

The random transfers benchmark is to a large extent un-
constrained. The closest real system would probably be a
general purpose computing system, i.e. a parallel computer.
The specification is as follows:
• All sources generate equal number of transfers during the
simulation time.
• All transfers end up in a random destination.

• The transfers are distributed randomly over the simulation
time according to a flat distribution.
• All transfers are of random size within the interval 32-
1200 words according to a flat distribution. (616 words per
transfer on average.)

6.3. Data plus control

The data plus control case can be though of as a very sim-
plified model for many complex signal processing applica-
tions. It involves semi-deterministic, frequent data transfers
intermixed with more infrequent but non-deterministic con-
trol information transfers. This example does not in any
way claim to be a model of any real system but will - to
a certain extent - model the typical behavior of many tele-
com applications. The system considered will involve 64
processing blocks connected to an 8 by 8 router network.
Two of the processing blocks will run a real-time operating
system (RTOS) and therefore dispatch the tasks to the other
blocks through control messages.

The simplified specification can be summarized as fol-
lows:
• No data transfer will be over a distance longer than three
hops (links). This means that all processing blocks will only
be able to communicate with their nearest neighbors, see
Fig. 1.
• The data transfers will be scheduled hard and will contain
between 32 and 1200 words (randomly chosen) of informa-
tion. Thus the data packets are on average 616 words.
• The control transfers will always originate in one of the
two RTOS blocks and end in one of the other blocks. Con-
trol here is on the level of application control and has noth-
ing to do with the network level control.
• The control transfers are randomly 10-30 words in size.
• There are a total of 100 control messages during the simu-
lation time. This means that the ratio data/control messages
will vary from 64 and up.

These specifications are implemented in the traffic model
to form two test cases. The test cases are used to exercise
the network in the simulator to produce a set of results. By
repeating the benchmark implementation test cases with in-
creasing intensity (i.e. total number of transfers for a given
time) in the traffic it is possible to find the maximum perfor-
mance in the form of effective bandwidth.

7. Results

7.1. Random transfers

The total number of links in the network system is 1761.
Assuming a use of three links per connection (i.e. minimum
distance) we get a theoretical maximum accepted load of
approximately 59 word per cycle.

1An 8 by 8 network means 2 · 7 · 8 = 112 links between routers and 64
links to wrappers.
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Figure 5. Total router occupation vs. data router
occupation per port for the random case

Fig. 4 shows the offered vs. accepted bandwidth as a
function of intensity. From the figure the saturation point
of the network is around 470 transfers per million cycles.
This corresponds to approximately 18.5 transferred words
per cycle.

Fig. 5 shows the average time (in %) that the router inputs
are locked vs. the time that data is actually sent. The figure
also shows the ratio between these figures. The ratio goes
up significantly around the saturation point showing that the
PCC scheme actually will worsen the situation beyond the
saturation point for random transfers.

This is further corroborated by Fig. 6. This graph shows
the total number of routing blockings vs. the number of
blockings due to a busy destination. This distinction is im-
portant because if the destination is busy two (or more) in-
coming transfers try to use the same port at the same time
which of course is impossible. This is primarily a problem
of the higher level system scheduling. But in this case the
vast majority of the blockings are due to network situations
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Figure 6. Total blockings vs. blockings because
of busy destination for the random case

which shows that the network performance is the primary
constrain for the overall performance.

7.2. Data plus control

Fig. 7 shows the offered vs. accepted load for the
data+control test. As can be seen in the figure the load bot-
tleneck is appearing at an intensity of about 650 transfers
per source and Mcycle. This corresponds to an accepted
load of approximately 35 words per cycle compared to the
theoretical maximum of 59. This shows that this particular
“application” and network combination performs at roughly
60% of theoretical maximum and that it performs on the
level of between 35 and 59 conventional TDM buses with
global connectivity.

Fig. 8 shows that the impact of the saturation point on the
routing lock overhead is smaller than for the random case.
This is due to the shorter average distances in the routing
setup.

It is important to note is that Fig. 9 shows the opposite
situation compared to the random case. Almost all of the
routing blockings occur because of busy destinations, i.e.
the system level scheduling. This implies that the perfor-
mance of the network in reality is higher for a system with
better traffic scheduling.

Embedded systems for (hard) real-time applications gen-
erally need to be scheduled. This is necessary in order to
meet the rather stringent requirements on timing put on the
system. This implies that the on-chip interconnect will have
reasonably well scheduled traffic that will lower the desti-
nation busy blockings to a minimum and raise the overall
network performance closer to the theoretical boundary.

8. Conclusions and future work

This paper identifies the importance of the simulation en-
vironment in the context of design flow for network on chip
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control case

0 200 400 600 800 1000 1200
0

10

20

30

Lo
ck

in
g 

an
d 

da
ta

 fo
r r

ou
te

rs
 p

or
ts

 (%
)

Data per router port (%)
Lock per router port (%)
Lock/data ratio

0 200 400 600 800 1000 1200
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Intensity per source (transfers/Mcycles)

Lo
ck

in
g 

tim
e/

D
at

a 
tra

ns
fe

r t
im

e

Figure 8. Total router occupation vs. data router
occupation per port for the data + control case

designs. With the origin in the design and simulation flow
developed for the SoCBUS network on chip project, two
benchmark examples have been implemented and simulated
to find the load bottleneck in the network. The results from
the benchmarks show the validity of using a circuit switched
network for (hard) real-time applications. Also shown is the
importance and impact of the system level scheduling on the
interconnect performance.

The upcoming tasks are to model and simulate several
application examples from the networking and telecom area
to find the bottlenecks and performance in these cases. Two
applications that will be investigated are the baseband DSP
part of a 3G basestation and a (Internet) network core router.
These simulations will be done during spring 2004. Simul-
taneous work includes a more elaborate wrapper for con-
nection to the OCP/Wishbone bus and improvements to the
router design.
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