
Design of a System-on-Chip Switched Network and its Design Support �

Daniel Wiklundy, Dake Liu

Dept. of Electrical Engineering
Linköping University

S-581 83 Linköping, Sweden

Abstract —As the degree of integration increases, the
on-chip communication is becoming a bottleneck. A
solution to this problem is to use an on-chip switched
interconnect network. Such a system-on-chip network
was proposed in 2000 by the same authors. In this
paper we present the system-on-chip network in de-
tail together with the design flow support. The choice
of topology for the network as well as some ways to
use the network to overcome the future physical im-
plementation issues of wire delay and to gain perfor-
mance is also discussed. To aid the design choices of
the network, a behavioral simulator has been created.
The importance of the behavioral simulator is clearly
shown from the design flow and the design and im-
plementation of this simulator is discussed in detail.

Keywords — System-on-chip, network, switch, simu-
lation, design flow

I. Introduction

With the trend towards highly integrated system-on-
chip designs with many on-chip processing resources
like processors, DSPs, and ASICs, the on-chip commu-
nication is soon becoming a bottleneck. Classically
this would be done with a traditional time-division
multiplexed (TDM) bus as shown in fig 1a. This bus
suffers from the clear bottleneck of the shared media
used for the transmission. There is also a need for a
bus-global arbiter in a multi-master setup with such
a bus. This is nevertheless the topology used today
by many companies in the system-on-chip arena, e.g.
Sonics Inc. [1]. A better way of communication is to
resemble the way networks for parallel computers are

�This work is supported by the Integrated Electronics (INT-
ELECT) program of the Swedish Foundation for Strategic Research
(SSF). Daniel Wiklund is a Ph.D. student at the division of Computer
Engineering and Dake Liu is the chairman professor of the division
of Computer Engineering. Phone +46 13 28 8965, fax +46 13 13 9282.

yCorresponding author, email: danwi@isy.liu.se

A
rb

ite
r

C C C C

TDM bus

C C C C C

C C C C C

C C C C C

a

b

Fig. 1. Comparison of traditional TDM bus and a
switched interconnect bus replacement

generally designed, see fig 1b, that do not suffer from
those problems.

Networks for parallel computing are generally im-
plemented with rather long latency and limited per-
formance due to the constrains set on the system in
the context of limited link bit width, requirements on
fault tolerance, etc. To move the network from parallel
computers into a communications system-on-chip re-
quires different hardware/software protocols to attain
much higher performance and much lower latency.

We have previously proposed the use of a two-
dimensional switched network for system-on-chip
communication [2]. Later work by Dally and Towles
[3] and Sgroi et al. [4] confirm the general trend to-
wards on-chip networks.

The expected result of this research project is a gen-
eral platform for system-on-chip integration using the
two-dimensional network as the interconnect struc-



specification
HW port

specification
SW protocol

Code generator and configurator Switch
routing
code

Drain
wrapper

code

Source
wrapper

code

Configuration code

Implementation

Performance analyzer
Behavior simulator

Debugger

On−chip
network
libraries

Fig. 2. Design flow for a on-chip network design

ture. The platform should be easy to use and ease the
burden of verification during the system-on-chip inte-
gration phase.

II. A new system-on-chip integration flow

The intended design flow for system-on-chip integra-
tion using the switched on-chip network is depicted
in fig 2. The user input is the specification and re-
quirements needed to configure the on-chip network
with core interface wrappers for the specific applica-
tion. This is the hardware interface specification for
the cores (e.g. processing and storage elements) that
are to be connected in the system-on-chip design as
well as the requirements on bandwidth, latency, etc.
put on the network hardware to support the necessary
transfers. The software protocol interface specification
and requirements are also needed as user input in the
design.

The configuration and network control code is then
generated and synthesized based on the on-chip net-
work library together with the user input data to cre-
ate both behavioral and structural descriptions of the
interconnect network.

This code can then be used in the behavioral sim-
ulator to ensure correctness and to generate a num-
ber of different benchmarking informations to make
sure that the specification is fulfilled. After behav-
ioral verification the structural description is used as
a part in the integration of the system-on-chip design
to achieve the final implementation.

III. Theoretical performance of network
topologies

In order to determine the most appropriate topology
for the system a thorough investigation of the advan-
tages and drawbacks of a number of common topolo-
gies were done during the prestudy phase.

A short summary of the theoretical performance for
some of these network topologies can be found in ta-
ble 1. The ring topology is very easy to implement
but is subject to the same fundamental limitations as a
normal bus since the only available resource for trans-
mission at a node will be occupied whenever a trans-
mission wants to pass that node. On the other hand,
the more powerful topologies like fat trees are very
complex when it comes to wiring.

During the prestudy phase the different topolo-
gies were thoroughly studied from a theoretical per-
spective resulting in the conclusion that the two-
dimensional mesh is most suitable for on-chip net-
works. The main advantages of the two-dimensional
mesh is the good performance to resource ratio, the
ease of routing, and that the topology is very easily
mapped onto a chip.

IV. Network components

The network can be seen as a two-dimensional ma-
trix of tiles shown in fig 3. These tiles are made up
of three components except for the IP core. These are
the switch nodes, the source wrappers, and the drain
wrappers. In addition to these there is a simple control
circuit with global responsibility.

The purpose of the source and drain wrappers is to
isolate the port formats of the custom cores used in the



Table 1. Theoretical performance of different network topologies assuming N cores along the edges.
Ring 2-d Mesh Binary tree Benes Network Fat Tree

No of nodes N (N=4)2 2N � 1 NlogN 2N=4�1

Links Bidirectional Bidirectional Bidirectional Unidirectional Bidirectional
Bisection BW 2

p
N 1 N N

Wiring complexity Low Low Low High High
Max wire length Low Low Medium High High

Routing complexity Low Medium Low Medium High
W

ra
pp

er

IP
 C

or
e

Switch

Fig. 3. Network connected processing tile

system from the network format to make it possible to
ease the task of verification of the whole system-on-
chip design. This is done by using configurable wrap-
pers at the ports between the network and the cores.
The wrappers can be thoroughly verified for the dif-
ferent possible configurations together with the rest of
the network system so that only the interfaces have to
be verified at the system integration phase, thus alle-
viating the verification task.

The switch nodes are responsible for routing the
data transport streams between source and drain
ports. The choice of implementation of the switch
nodes mainly affect the connectivity and routing la-
tency in the network.

V. Configuration and control layering

In order to make a usable system, the network compo-
nents have to be configured according to the chip de-
sign requirements. Additional configuration and con-
trol tasks have to be carried out during runtime. These
tasks of configuration and control can be divided into
different groups that reflect the level of physical or vir-
tual links that are affected by the configuration and
layering is shown in table 2. The layering can also be
seen as a protocol hierarchy in the implemented sys-
tem where lower levels are implemented as hardware
fixed protocols and upper levels are implemented as
software controlled protocols.

The data transport layer includes the data link pro-

Table 2. Configuration and control layering
Data transport Data package

Data link protocol
Link setup Physical configuration

Addressing and routing
Contention control
Other (FEC, buffering, etc.)

Circuit Network control
Switching nodes
Wrappers

tocol for control of source-drain transfers and handles
transmission-specific configuration information such
as packet sizes. The link setup layer is at the wrapper-
switch or switch-switch level and controls contention
control and physical configurations such as clocking
and framing of data. The final layer is the circuit layer
that handles the low-level configuration of the net-
work parts.

VI. Physical implementation

The physical implementation of network components
can be realized in a number of ways. The realiza-
tion should preferably help in overcoming some fun-
damental problems that are becoming more and more
pronounced in modern processes. One obvious prob-
lem is that with the increasing size of chips and shrink-
ing feature size that are available, the globally syn-
chronous way of building electronics is rapidly be-
coming infeasible due to wire delays. One way of
alleviating this problem is to design the chips us-
ing smaller cliques of synchronous logic (up to 250k
gates [5]) that communicate using asynchronous or
mesochronous (i.e. same clock but unknown phase)
links using a masked clock from the data source.

The fact that the complexity in the network compo-
nents is fairly low and most functions can be heav-
ily pipelined implies that the clock-rate of the network



can be relatively high. Since the network is distributed
by its nature the delays in the wires can be very long,
up to several cycles, compared to the clock period of
the network. This suggests that the network should be
implemented in a mesochronous fashion using simple
retiming circuits [6].

By making the core wrappers the bridge between
the clock domains used in the cores and the network
this “globally asynchronous” principle can be imple-
mented with a minimum of verification effort com-
pared to the principles used today.

Also by using a very high clock rate (compared
to the cores) in the network it is possible to show a
very low apparent latency despite a higher number of
pipeline stages in the network.

VII. Behavioral simulator

It is clear from the design flow that the importance
of the behavioral simulator is very high. This simu-
lator can not only be used as a tool in the customer
implementation flow but also as a platform for early
cost evaluation of performance and complexity of dif-
ferent implementations and schemes, e.g. for routing
and switching.

The input to the behavioral simulator is the gener-
ated code for switches with the routing code and the
code for source and drain wrappers. The code contain-
ing the configuration (network size etc.) is also input
to the simulator. Also an user supplied description
of the transmission traffic patterns are needed for the
best simulation results.

The simulator runs the complete network respon-
sible for both control setup and data transport for a
period of time and checks the data to ensure func-
tional correctness. The simulator also collects perfor-
mance measurements such as momentarily and aver-
age available bandwidth, maximum and average la-
tency, and contention measures.

The output contents of the behavioral simulator, see
table 3, is divided into three main areas to evaluate
the correctness, performance of the network, and cost
to implement and verify the network. The configura-
tion and verification cost is estimated from the amount
of change in the network system needed for the cur-
rent configuration. During development of the net-
work components this can be used for evaluation of
design choices that affect different costs and bench-
marks to allow for trade-offs between different design
issues such as increased cost of switches compared to
increased connectivity and data throughput.

NETWORKCORE

SRC/DEST LINK SWITCH

ROUTER ARBITER SWITCHER

PORT
* *

SYSTEM

SUPPORTMSGSRV

SETUP

SIMULATOR

*

Fig. 4. Object structure of the behavioral simulator
network model

Table 3. Output generated by the behavioral simula-
tor

Benchmark Connectivity eval
Data throughput eval
Latency evaluation

Functionality Correctness
Cost Circuit selection cost

Protocol selection cost
Control subsystem cost
Configuration cost
Verification cost

VIII. Behavioral simulator
implementation

The behavioral simulator is developed using object
oriented programming in C++. The simulator is im-
plemented using a message passing structure to re-
semble the structure of the real network system. The
simulator is event-driven and both bit and cycle true
in its execution.

The object structure of the simulator can be found
in figure 4. The leaf nodes in the system branch cor-
responds to the actual network components except for
the switch that is subdivided into its subtask compo-
nents where the arbiter is for local arbiting between
the ports of a switch. The setup branch is the mes-
sage passing support for the simulator. This program
structure is very suitable for the simulation of an es-
sentially message-passing hardware like the on-chip
network presented in this paper.

IX. Behavioral simulator output

Taking one simulation result as an example of out-
put from the simulator, we considered the case where



0 5 10 15
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
Relative success in transmission as a function of network size

Fig. 5. Example of simulator results

cores are only connected to the switches along the
edges, the switches use the deterministic dimension-
order routing algorithm, and the “packets” use only
a single cycle for transmission between switches. As
the network in this example does not use any kind of
retry mechanism all blocked packets will be dropped.
A plot of the relative number of successful transmis-
sions compared to all initiated transmissions with a
mean usage (i.e. the probability that a core wishes to
send) of 20% can be found in figure 5. The network
size is the number of switches along each dimension.
Thus the number of cores is equal to the size times
four (i.e. because of four edges) and the number of
switches is equal to the size squared. In this example
we did not consider resending dropped packets and
the possibility of deadlocks was eliminated through
the algorithm choice.

Although this is a relatively simple implementation
of the switch nodes and will not be relevant in a real
system, it is interesting too see that it is very clear from
the simulations that the relative number of success-
fully received transmissions decreases as the size of
the network increases and thus the number of senders
increases. This is basically due to the congestion that
occurs near the center of the network when using
dimension-order routing near the saturation limit.

X. Future work

The next step is to use the network-on-chip behavioral
simulator to evaluate the appropriateness of different
implementations of the parts that make up the net-
work system.

Work is currently taking place to fund a demon-

strator system for the Socware1 program based on the
switched network-on-chip that is described in this pa-
per. The demonstrator will focus on routing heavy
communications in real-time applications.

We will also evaluate different schemes of connect-
ing the cores to the network as well as implement and
evaluate different routing algorithms for the network.

XI. Conclusions

The concept of an on-chip switched network as a plat-
form for system-on-chip integration is discussed and
an analysis of network topologies prompts for the use
of a two-dimensional network. An appropriate design
flow is introduced and the importance of a behavioral
simulator in this flow is clearly shown.

The simulator design and implementation is dis-
cussed as an platform for evaluation of the design
choices and cost trade-offs in the network parts, such
as routing algorithms and switch connectivity con-
strains.

The physical implementation is discussed and it is
suggested to use a higher internal clock rate in the
network system to gain even more performance com-
pared to traditional buses.

XII. References

[1] Wingard, “Fully-pipelined fixed-latency commu-
nications system with a real time dynamic band-
width allocation,” US Patent 5948089, 1999.

[2] D. Wiklund and D. Liu, “Switched interconnect
for system-on-a-chip designs,” in Proc of the IP2000
Europe conference, 2000.

[3] W. J. Dally and B. Towles, “Route packets, not
wires: On-chip interconnection networks,” in Proc
of the DAC, 2001.

[4] M. Sgroi et al., “Addressing the system-on-chip
interconnect woes through communication-based
design,” in Proc of the DAC, 2001.

[5] C. Svensson, “Electrical interconnects revitalized,”
in http://www.ek.isy.liu.se/˜christer/CSPapers.htm,
2001.

[6] F. Mu and C. Svensson, “Self-tested self-
synchronization circuit for mesochronous clock-
ing,” IEEE Transactions on Circuits and Systems, vol.
48, no. 2, pp. 129–140, 2001.

1Socware is a national Swedish government research and educa-
tion program in electronics.


