

Fully flexible baseband DSP processors for
future SDR/JTRS

Dake Liu, Eric Tell, Anders Nilsson (J)1 and Ingemar Söderquist1, 2

1Dept of Electrical Engineering, Linköping University, Linköping, Sweden
Email: {dake, erite, andni, ingemars}@isy.liu.se

2Saab AB, Linköping, Sweden
Email: ingemar.soderquist@saabtech.se

Abstract. A real SDR/JTRS (Software Defined Radio / Joint Tactical Radio System)
transceiver can be linked to any public or private radio system. The transceiver
baseband processor must adapt to the actual radio channel coding and shall manage
ISI, mobility, synchronization, and different interferers. Current baseband solutions
are unable to fulfil these requirements because of limited flexibility.

A fully programmable baseband DSP processor (BBP) was designed by a research
team in Linköping University, Sweden and fabricated using 0.18 µm digital CMOS
technology. The BBP can handle 802.11a, b, g, and GSM/GPRS by running
different software on the same processor. The power consumption is less than
100mW running 802.11a peak reception mode at frequency 160MHz. The die size is
only 2.9mm2, about half compared to non-programmable solutions thanks to the
high hardware utilization. The new BBP facilitates a fully programmable baseband
processor for any current available radio link standard for SDR and JTRS.

1. Introduction
Three kinds of processors can be found in a communication terminal, DSP baseband
processors (BBP), DSP application processors (APP), and micro controllers (MCU). BBP
covers all operations between ADC/DAC and the MAC (Medium Access Control) layer.
The function coverage of a baseband processor is given in Figure 1.

A baseband DSP processor (BBP)

A baseband receiver

A baseband transmitter

APP DSP
MAC/L3

Channel
coding

modulation

Symbol
shaping

Demodulation
Sy

nc
hr

on
iz

a-
tio

n

RF/IF
analog
ADC

FEC

I

Q

I

Q

I

Q

DAC
and

power
RF

MAC/L3
APP DSP

 I

Q

Figure 1 A BBP in a radio communication transceiver

From different way of modulation and demodulation, a classical BBP should be designed
either for high speed simple symbol radio system (e.g. CDMA) or for low speed symbol
carrying many bites (e.g. OFDM). A BBP receiver can also be implemented based on
synchronous reception or an asynchronous reception. However, for SDR, all different
classical architectures must be converged into one processor. Furthermore, a SDR BBP
must take heavy tasks in a communication system and requires high performance because:

1. BBP must manage heavy computing for radio channel estimation and adaptation in
order to manage the ISI (Inter Symbol Interference) problem.

2. The heavy task of channel estimation and adaptation must be repeated frequently
because the estimated radio channel changes fast under high mobility conditions.

3. For synchronous receiving, the BBP must lock the de-mapping frequency and phase
to the frequency and phase of the DA converter of the transmitter.

4. BBP must manage the baseband DSP processing on both word level and bit level
with low computing latency to eliminate burst and other random interferences.

5. Heavy computing of channel decoding algorithms must be supported by BBP to
recover data from noisy channels, for example Viterbi or Turbo decoders.

6. To design a practical baseband processor, we must use limited processing precision
and adapt ultra high dynamic range. Complicated and fast gain control is required.

7. We must schedule executions of BBP tasks in a short time interval because the
computing latency is limited by the MAC/L3 requirements.

8. For software defined radio, the BBP must be able to manage both synchronous
reception and asynchronous reception.

It is difficult to design a high quality Baseband IC to fulfil requirements listed above,
especially with high performance and low power consumption. Classical Baseband IC was
not programmable. By mapping tasks in every step in the receiver and the transmitter,
baseband DSP use to be implemented as an ASIC with many modules performing
computing algorithms and these modules are controlled by a micro controller (for example
ARM7) or a programmable DSP processors (for example TI C55).

A non-programmable digital baseband ASIC consists of many complex multiplier-
accumulators (CMAC), many look up tables (LUT), many small memories, and many
FSMs (Finite State Machines). A direct ASIC solution is implemented by mapping
algorithm dataflow into circuits. Hardware reuse and multiplexing is almost impossible
because the complexity of an ASIC must be limited and verification time of an ASIC must
be acceptable. An example of implementing IEEE802.11a/b into an ASIC requires up to 8
real-valued MACs, 17 CMACs, 15 LUTs, and many small memory blocks. Including
control and memory buffers, the equivalent gate count of this solution could be up to 500k
gates, yet it is neither flexible nor scalable.

The assembly instruction set will be investigated in chapter 2. The processor core
architecture and hardware accelerators will also be discussed and investigated. Furthermore
task and loop level scheduling including hardware acceleration will be discussed. Finally,
conclusions are drawn based upon silicon test chip.

2. Instruction set architecture of our programmable BBP

We investigated instruction set architecture of programmable BBP following eight listed
requirements in the previous chapter. Two datapaths are necessary in a BBP. The complex
datapath is designed to accept complex data format and to execute complex convolution

and complex FFT translations. The real data path is designed to manage miscellaneous
functions including the BBP super-mode and SW FSM, the mapping / de-mapping, AGC
and AFC, channel decoding, and data quality control.

IEEE802.11a b and g standards were first used as requirements to form our BBP instruction
set architecture. At least 4000 MIPS were expected for channel estimation or payload
reception. 100% programmability is not feasible. Fortunately, a BBP does not need 100%
programmability. The same as designing other ASIP (Application Specific Instruction set
Processor) the essential issue in design of programmable BBP is to find the right partition
of programmability and configurability. Taking IEEE802.11a/b as examples, we list tasks
in following table 1. In this table, the MIPS cost is defined as the number of instructions
required to process a certain task divided by scheduled time for that task. The MIPS costs in
table below are based on a complex datapath being able to run one complex arithmetic
operation (e.g. Complex MAC) per cycle. The cost does not include hidden MIPS costs of
memory access for operands and results.

Table 1 Partition of main transceiver algorithms and map them to processor or accelerators
Tasks Function Algorithms MIPS a/b HW usage
Receive Filter Anti alias & BPF Complex FIR convolution 1200/440 accelerator
Packet detection Start synchronization Auto correlation Σ xi*xi-τ 80/44 processor
Energy detection Antenna diversity Auto Correlation 80/44 processor
Freq. offset est. Rotor coefficient FFT / phase decision 100/44 processor
Ch-estimation channel modelling FFT, FSM 160/80 processor
Payload Rotor Rotor Vector product 40/22 processor
IFFT/FFT IFFT/FFT 64 points FFT and IFFT 60/- processor
Normalization Normalization 1/x and vector product 40/- processor
Ch-compensation Sub carrier compensate LMS adaptive algorithms 80/20 processor
De-mapping symbols to bits Decision FSM 40/22 accelerator
De-interleaving Permutation Permutation algorithm 260/- accelerator
Descrambling Bit permutation Y = x7+x4+1, algorithm 80/16 accelerator
Viterbi decoding Viterbi decoding ACS and acceleration 1700/- accelerator
Channel coding Convolution coding Convolutional coding 160/- accelerator
Mapping Modulation Look up table 80/11 accelerator
Symbol shaping Low pass filter Two Real FIR convolution 1200/220 accelerator
RAKE receiver 4 fingers receiver FIFO buffer / sum up taps -/242 accelerator
De-spread Despread 11 taps convolution -/88 processor
CCK decoding CCK decoding DWT decoder -/280 accelerator
CCK coding Modulation CCK FSM -/70 processor
Spreading Spread Vector multiplication 11 processor

Notice that we actually do not need to execute all tasks in the table above at the same time.
Algorithms are actually distributed into eight different operating modes in Figure 2. An
example of a timing critical path is the processing of the long preamble in IEEE802.11a.
This requires at least 20k clock cycles to be performed within 8 microseconds. This equals
at least 2500 MIPS (not including FEC/Viterbi). Running a processor at the frequency
much more than 2500 MHz is obviously impossible and we must either lower the MIPS
cost or must perform several operations in parallel. There are three ways to lower the MIPS
requirements: Reducing or hidden the memory access cost; instruction level acceleration;
and moving tasks out of the processor core by hardware acceleration.

IE
EE

80
2.

11
a

Receiving short preamble (not a timing critical path)

Receiving long preamble (timing critical path)

Receiving 64/16/4 QAM and BPSK payload (timing critical path)

Transmitting mode (not a timing critical path)
IE

EE
80

2.
11

b

Receiving preamble (timing critical path)

Receiving low rate payload (timing critical path)

Receiving high rate payload (timing critical path)

Transmitting mode (not a timing critical path)

Figure 2 Scheduling plan for IEEE802.11a/b baseband DSP

To accelerate tasks on instruction level, we need to conduct benchmarking carefully. The
basic rule for instruction optimization is to find 10%-90% locality, i.e. to find 10% of
instructions running during 90% of the time. The result is given in the following table:

Table 2: seven most used instructions for a baseband DSP processor

Instructions Functional specification
Complex FFT or IFFT A butterfly in one clock cycle + bit reversal addressing
Complex convolution with implied
modulo addressing

For I = 1 to N do {Complex REG <=
Complex REG + V1[i] * (Conjugate of) V1(or 2)[i]}

Complex vector product For I = 1 to N do {V3 [i] <= V1[i] * (Conjugate of)V2[i]}
Sum energy of a vector For I = 1 to N do {accumulator <= Re (V[i]2)+Im (V[i]2)}
ABS approximation of complex data REG <= Approximation of a complex (Real2 + Imaginery2)1/2
Fast modulo FIFO memory access Memory access with implied modulo addressing
Look up table (single step / vector mode) REG2 <= Memory [Segment + REG1]

By using a CMAC (Complex multiplication and accumulation unit) in the datapath and
smart address generators, the MIPS requirement can be lowered by about 6 times. This
decrease the MIPS cost from ~2500 MIPS to ~420 (FEC arithmetic not included). Memory
accesses still consume about 30% to 50% of the total MIPS. By using memory sharing and
DMA techniques we further reduce the MIPS cost by 30%. By these measures we have
reached a final MIPS costs to ~300 MIPS. All opportunities of hardware acceleration were
carefully investigated under the flexibility requirement. All recurring fixed functions were
identified and hardware accelerators were designed with enough configurability. After
hardware acceleration, the MIPS cost of preamble processing was only about 150 MIPS
including MIPS consumed by the super mode program.

Table 3 Accelerators make the programmability feasible

Accelerators Functions Usage
FIR filter Configurable complex / dual integer data types Anti aliasing and symbol shaping
1/x circuit Accelerates 1/x and gives a result per cycle Normalization
De-mapper Accelerates it and gives one result per cycle BPSK/QPSK/16QAM/64QAM
Inerleaver Accelerate permutation and its addressing Block interleaving de-interleaving
CRC/Scrambler A configurable CRC/SCR polynomial circuit CRC, scrambling, descrambling
Conv encoder Circuit to accept configurable conv polynomial Encoding convolution codes
Viterbi decoder Trellis decoding, ACS (Add compare select) Decoding convolution codes
DMA manager Manage DMA and bus connector of memories SOC platform

3. Architecture and implementation of our programmable BBP

A programmable baseband DSP processor and its CMAC are given in Figure 3 and figure
4. The Silicon implementation is shown at the left part of figure 5 and the system level
firmware scheduling is shown at the right part of figure 5. The scheduling shown in figure 5
is for reception of 64QAM modulation and it consumes the most MIPS. The chip was
fabricated using 0.18um digital CMOS silicon with 6 metal layers. To be able to share the
digital system clock with the AD/DA converters, the processor runs on 154MHz for 11b
and 160MHz for 11a. The die size of the implemented BBP is 2.8 mm2, and the chip size of
the BBP is 4.9 mm2 including 120 pins. This silicon cost does not include a Viterbi
decoder. With Viterbi decoder, the total die area is estimated to 4 mm2 including all
memories.

DM1
R

adio frontend

Accelerator

Filter

A
ccelerator

A
ccelerator

BBP core (CMAC, ALU), SOCBUS

DMn... ...

Application processor

Figure 3 Architecture of a programmable BBP and its CMAC

ADD/SUB

ADD

RMR IMI

NxN
MUL

NxN
MUL

NxN
MUL

NxN
MUL

ADD

RMI IMR

AR
AI
CR
CI

OPA=AR+jAI
OPC=CR+jCI

Re output Im output
ACRR ACIR

BR
BI

ADD/SUB

SUB SUB

2Nb 2Nb

2Nb 2Nb 2Nb 2Nb

OPB=BR+jBI

Circuit using
solid lines are
for CMAC

Added circuit
with dash lines
are for FFT

Figure 4 Simplified CMAC datapath

.

FEC
symbol 1

FEC
symbol 2

MAC I/F
symbol 1

Receiving
symbol 1

Receiving
symbol 2

Receiving
symbol 3

Receiving
symbol 4

De-mod
symbol 1

De-mod
symbol 2

De-mod
symbol 3

ACK 2.21mm

2.
21

m
m

Figure 5 silicon implementation and task level (inter symbol) scheduling

4. Conclusions

Programmable baseband processors are required in SDR systems. By using advanced
hardware parallelization techniques, hardware acceleration techniques, memory sharing
technique, and custom static scheduling in super mode SW, we have demonstrated a
programmable baseband DSP processor for IEEE802.11a/b/g as well GSM/GPRS. The
silicon cost is considerably less comparing to custom ASIC solutions. The power
consumption is not higher than the power consumption of an ASIC when an operand
masking technique is applied in the datapath.

5. Acknowledgements and Future work

The research [1-4] has been partly financed by SSF via Stringent centre of Linköping
University and partly financed by Socware (ISA) Sweden.

The flexibility of the demonstrated BBP is not enough to support even more demanding
wireless standards (TD-SCDMA or WCDMA for example). We are currently working on a
second demonstrator based on a VLIW/SIMD mixed architecture.

We are currently working with Saab to demonstrate a configurable dynamic link based on
programmable BBP, RF front-end and processing experience from electronic warfare
systems [7]. Our goal is to establish a programmable BBP platform for different levels of
applications including low power JTRS terminals and broadband link for flight vehicles.

References

[1]. Dake Liu and Eric Tell, Low-Power Baseband processors for Communications, chapter 23 in Low power
Electronics Design, edited by C. Piguet, CRC 2004, ISBN 0849319412.

[2]. Anders Nilsson, Eric Tell, and Dake Liu, An accelerator architecture for programmable multi-standard
baseband processors, in Proc. of WNET2004, July, 2004, Canada.

[3]. Eric Tell and Dake Liu, A Hardware Architecture for a Multi-Standard Block Interleaver, Moscow,
Russia July, 2004

[4]. Eric Tell and Dake Liu, A Converged Hardware Solution for FFT, DCT and Walsh Transform, in Proc. of
ISSPA2003, July, 2003, Paris France

[5]. Heiskala, H. and Terry, J. T., OFDM Wireless LANs: A Theoretical and practical guide, Sams Publishing,
2002, ISBN 0672321572.

[6]. IEEE Std. 802.11a-1999 and IEEE Std. 802.11b-1999
[7]. Ingemar Söderquist, CMOS Circuits for Digital RF Systems, Linköping studies in science and technology.

Dissertation, No 775, 2002. ISBN 91-7373-427-2, October 2002

