
CONFIGURATION BASED ARCHITECTURE FOR
HIGH SPEED AND GENERAL PURPOSE

PROTOCOL PROCESSING

Dake Liu, Ulf Nordqvist, and Christer Svensson
Dept. of Physics and measurement, Linköping University,

58183, Linköping, Sweden, Phone +46 13 28 {1256, or 5816, or 1223}
Email: {dake, ulfnor, christer}@ifm.liu.se

Abstract - A novel configuration based general purpose protocol
processor is proposed. It can perform much faster protocol processing
compared to general purpose processors. As it is configuration based,
different protocols can be configured for different applications. The
configuration makes compatibility possible, it also makes very fast
protocol processing on the fly. The proposed architecture can be used as a
platform or an accelerator for network based applications.

Key words: Protocol processor, configurable logic, Parallel Processing,
SoC.

BACKGROUND

Networking has been developing very fast. More and more protocols are
emerging for different applications. Higher process performances are
requested by applications. Requirements could be recognized as:

1. Multiple ports and multiple Gigabits per second real time framing and de-
framing.

2. To pre-process as much protocol jobs as possible before memory accesses.
3. A general, simple, fast, and flexible architecture for different kinds of

protocols.
4. A built in protocol learning and automatic configuration capability.
5. Low power, high speed, and memory (size and access) efficient

architecture.

Two kinds of protocol processors are available on the market now, one is a
specific single protocol limited ASIC (we call it SPASIC in this paper),
another is the processor based general-purpose CPU (we call it GPCPU in this
paper).

None of them can fit the requirements for future computer
communications. The first one, SPASIC, is used only for one protocol or a few



specific protocols included in the design. Naturally, it does not support future
protocols. The second one, GPCPU, can not work at very high speed because
of the general architecture. As a redundant and speed limited architecture, it is
not the best for a relatively stable and control-extensive flow. From another
point of view, the protocol processor must be compacted because it is often
used as a pre-processor and as a small part in a certain kind of application.
Therefore, the redundant architecture is not suitable for embedded or
integrated solutions.

Most solutions available now use a specific circuit to process the protocol
flow, and use a GPCPU for switching, routing, and other applications. Because
of the limited SPASIC architecture, future flexibility is limited. For multiple
applications, more SPASIC cores are integrated to cover more protocols. This
makes the system redundant.

We need to recognize the protocol of the in coming package and then
configure the processor to fit the protocol because the system might be used in
the variable environments. Therefore, a new architecture is strongly requested,
which is as fast as a SPASIC, as flexible as a GPCPU, and as simple as
possible.

PROBLEMS CAN BE SOLVED BY OUR SOLUTION

The system proposed is a new architecture for control-extensive processes, for
example, protocol processing. One example is to take the data package from
Manchester decoder as inputs and perform fast pre-process for different level
of protocols, for example, from Ethernet to IP and even up to TCP on the fly.

We can solve all problems mentioned above by introducing the super
pipeline serial processor SPSP. It executes the protocol processing based on a
booted and predefined configuration. Since the control is based on the
configuration instead of software programs, SPSP can process protocols in real
speed, e.g. Gbit Ethernet. After booting, the configuration HW can be shut
down, which gives possibilities of low power. Following this way, the
application, for example, IP Telephone, or IP switching can be separated from
the protocol framing and de-framing. The advantages are:

1. Framing and de-framing is performed in a separate core, it acts as a
platform or an accelerator and makes more application integration possible.

2. Separated SPSP as stand-alone machines working at high speed with a
standard implementation.

3. All functional blocks inside SPSP are self-contained and configured,
therefore the adaptation to long-term unpredictable future is possible.



4. The protocol can be recognized by this solution and a correct configuration
can be booted to SPSP after the recognition process. We define this feature
as a self-learning and self-adaptation for any product used for different
environment (home RF for example).

The architecture executes protocol processing based on both pre-configured
setting and a real time control program. The pre-configured setting processes
the protocol in every cycle inside each field of a data frame. The real time
control program only works on the higher level such as branch decisions,
macro selections, and job hand over. Thus, the processing speed can be much
higher because there is no program (which is slow in principle) involved in
sub level processing. By planning the configuration, the architecture can
supply as good flexibility as a GPCPU gives.

APPLICATION OVER VIEW

The motivation is to make a platform for all possible network applications.
Part of the possible applications supported by the platform can be listed:

1. Fast framing, de-framing for the Internet switching: G-bits Ethernet source,
and destination address extraction, fast IP DA and SA extraction etc.

2. Predict the memory allocation: relax memory traffic, payload reordering,
etc.

3. Fast queue and priority check for the real time network applications.
4. For certain applications the products recognize the protocol of the coming

data, and boot the protocol configuration after learning.
5. The user can boot different protocols for different applications.
6. For fast prototyping or SoC integration.

ARCHITECTURE

We introduce a new architecture that can work towards the physical limits
of CMOS [3]. It can be implemented using conventional ASIC design flow,
and can be configured by program to suit different kinds of protocol
applications. The proposed architecture is divided into two parts. The first,
which is the key part namely Super Pipeline Serial Processor (SPSP). Serial
here does not mean bit serial, it is a byte or word based serial architecture. The
second part is a normal micro controller, µC, it supports the SPSP
configuration, the interface between SPSP and the application, and the real
time high level job control. The SPSP can work much faster than the micro
controller can.



The proposed architecture executes the protocol process based on both
programs and pre-set configurations. The program only controls macro jobs,
which are based on the frame rate instead of the byte rate. The pre-set
configuration controls real time protocol processing at high speed with
relatively fixed control and working mode. Therefore, the program control
induced speed limit is completely eliminated.

The proposed architecture is configured for a specific protocol before the
protocol process. The configuration is performed by writing coefficients and
control codes into control registers in a Function Page, FP. All Function Pages
are scheduled in the order, in which the protocol is processed in sequence.

For implementation convenience, data coming into every functional page is
pipelined. Functional pages are connected one by one following the job
schedule. Each FP manages its process in its own sub field. For example, the
FP for CRC manages only the CRC check on the fly. Another example, the FP
for header matching only matches the protocol header for its synchronization.

The System block diagram is given in Fig. 1. The left part is SPSP and the
right part is µC for configuration, applications and for supporting applications.
Different protocols can be executed according to the configuration given by
µC. The µC performs the service support. Which is divided into three parts.
The first part is booting, including the boot of configurations for all FP and

Fig. 1. System block diagram

SPSP µC

by
te

 b
as

ed
 s

hi
ft

er
 r

eg
is

te
r 

counter 
and 

controller

re
gi

st
er

 c
ha

inF
P

F
P

F
P data buffer 

configurate 
vectors

m
ic

ro
co

nt
ro

lle
r 

co
re

control memory

bit to byte

F
P

: F
as

t A
C

K

application interface

in
te

rf
ac

e
in

te
rf

ac
e

byte to bit



programs in the counter and controller. The second part is SPSP monitoring,
including check SPSP executing status, receive and transmit payload data, and
send interactive control. The third part is to coordinate SPSP with the
application hardware. The configuration is performed during the power on
boot. When the protocol of the incoming data is unknown, the booting is
performed for the protocol recognition first and secondly, the normal
configuration according to the result of the recognition is booted. The SPSP
top level architecture is given in Fig. 2. Following functions will be allocated
as FP’s in the SPSP given in the above figure:

1. Matching: It finds the synchronization point by recognizing the preamble.
2. Error checking: Check errors according to the coding of the protocol.
3. The field extraction: It extracts fields and accelerates processes further.
4. Level hierarchy transparent process: The HW can make levels of

network hierarchies transparent. The upper level payload can be extracted.
5. Payload management: To measure the length of the payload and to

validate the correctness of the data. Then allocate the data into a suitable
position.

6. Application interfacing: Before data allocation, check the application,
find the possibility to send data to the application on the fly.

7. Fast acknowledgement: The acknowledgement can be compiled in an
easy and fast way according to extracted fields.

Fast ACK as an important function is performed on the fly in SPSP.
Necessary messages such as DA and SA are kept for building up the fast

….

Fig. 2. Data flow of the SPSP

sh
if

t i
n 

da
ta

 in
 b

yt
e 

fo
rm

at

FP
1:

 m
at

ch
in

g

FP
2:

 E
th

er
ne

t D
A

F
P

3:
 E

th
er

ne
t S

A

FP
4:

 C
R

C
 c

he
ck

F
P

5:
 I

P
 D

A

F
P

6:
 I

P
 S

A

F
P

7:
 T

C
P

 B
N

F
P

8:
 T

C
P

 Q
N

da
ta

 b
uf

fe
r 

re
gi

st
er

counter and controller

FP
0:

 f
as

t A
C

K

8xn bit shift in data

data to the micro controller

shift in

shift out



ACK. The FP for ACK is allocated in between the shift-in and shift-out. The
fast ACK packet can get TCP ACK, IP address and LAN address, for example
Ethernet address from the buffer.

The data flow is given in Fig. 2. The data coming from the physical level
has been converted to byte level format and data rate has been one eighth of
the bit rate. Control signals (single pins) are handover start-finish strobes from
the counter and controller. Control signals coming to the counter and controller
gives timing status. Shift in and out are 8 bits input-output data of SPSP. Other
width of data busses can be configured.

Functional Pages

Simple FP implementation can be done by custom design. Complicated FP
will be implemented using synthesis. The flags are outputs from the sythesised
logic using the configuration, the incoming data, and the control conditions as
inputs. As an example, the matching unit use configuration registers to save
the header pattern. When the shifted input data matches the pattern at a certain
clock, a matching flag is given as Y_match = & (data, configuration_register).

The active period of a FP is decided by its function. Most FP’s are active
only part of the time. Some FP’s are active all the time during a frame process,
e.g. the CRC check.

Counter and Controller

The counter and controller is a counter based state machine (FSM) adapted
by the configuration. A complete configuration will be written into a register

configurationregisters

Logic can be configured

Y_flag = f (data, configuration, control, logic, counter)

control

Fig. 3. FP structure

data



file. Each one or few lines in the register file are configured for the control of a
FP.

There are two levels of controls performed in the ”counter and controller”.
The upper level control is specified as the handover process. The lower level
control supports only the counting status. The upper level control is a kind of
interactive control. The lower level control is not interactive because the FP
uses the status as a control reference without giving feedback. The super
pipeline is scheduled inside each FP. The control of the super pipeline is given
by the lower level control from the ”counter and controller”. Status of the state
machine is configured according to the recognized protocol. A (group of)
control vector for a specific FP is selected (addressed) by the counter.
Therefore, the control procedure is scheduled following the configuration. The
super pipeline data path performs the protocol jobs in N+∆ cycles. Here N is
the number of bytes (or words, according to which protocol is used) and ∆ is
the number of cycles used for hand over one job from one FP to another FP.

The control is scheduled in the following way:

1. Start a FP
2. Let the FP run itself and
3. Monitoring flags coming from all active FP’s.
4. Make new control decision according to flags.
5. Monitor the control interface between the micro controller and the SPSP.
6. Change the control procedure if the micro controller gives a new request.
7. Inform the micro controller to access the available data.
8. Responde to the micro controller to accept data.
9. Send the accepted data to a FP responsible for the acknowlegement.

…...

configuration

address control of configuration

control logic

flags

handover control
configuration handover

Fig. 4. Counter and controller

counter states

FP handover control

configuration



CONCLUSION:

We have described a configuration based SPSP architecture as a platform
for network applications. The architecture implements the infrastructure of an
accelarator which gives the necessary framing and de-framing, and fast
acknowledgement. Most protocol processes can be supported by SPSP
architecture because of the flexible configuration. The configuration based
architecture can also support protocol recognition based on predefined
protocol preambles. As SPSP is a specific architecture for protocol processes,
it can accelarate protocol processing on the fly for high speed applications.

ACKNOWLEDGEMENT:

Authers thanks to the useful discussions with Dr. Kenny Ranerup
Switchcore, Sweden. The research is supported by the Center for Industrial
Technology at Linköping University (CENIIT) and Exellence Center in
Computer Science and Systems Engineering in Linköping (ECSEL).

REFERENCES:

[1]. Andrew S. Taanenbaum, Computer Networks, 3rd Edition, Printice Hall
PRT, ISBN 0-13-349945-6, 1996.

[2]. Jayant Kadambi et al, Gigabit Ethernet, Printice Hall PRT, ISBN 0-13-
913286-4, 1998.

[3]. Anders Edman, and Björn Rudberg, SDH 10Gb/s regenerator frame in
0.6µm CMOS, 97 IEEE ISSCC, pp 156-157, 1997.


