
SoCBUS: The solution of high communication bandwidth on
chip and short TTM

Dake Liu, Daniel Wiklund, Erik Svensson, Olle Seger, and Sumant Sathe
 Computer engineering, Linköping University

58183, Linköping, Sweden, email: {dake, danwi, sumant}@isy.liu.se

Abstract – The paper is divided into two parts. The first part of the paper gives the
motivation to use SoC bus for system integration of a SoC as well as a brief review of
the SoC concept, IP reuse, and research on SoC bus and SoC interconnect network.
We define the SoC network as “classical SoC network” that delivers data packets on a
network. We point out in the paper that the classical SoC network introduces long
data latency and contributes to high silicon cost. In the second part of the paper, we
introduce the SoC bus research from Linköping University. We introduce a novel
concept, PCC: Packet Connected Circuit. Based on PCC, a data transaction is
initialized by packet routing. The rout is locked as a bus circuit after proving and
acknowledging the rout. Therefore, we reach fixed and low transfer latency based on
high bandwidth supporting multiple simultaneous data transfer. At the same time,
buffers in the nodes are eliminated so that the silicon cost of a SoC network becomes
feasible. MESA and MISA models are proposed for improving wrappers. A SoC
system designer’s methodology is proposed so that a short TTM (Time To Market)
SoC design is possible.

1. Introduction

Many challenges exist in SoC designs. In this paper, we discuss two of them. The first
challenge is the on chip communication with high bandwidth and high flexibility.
High bandwidth here means supporting multiple accesses simultaneously based on
high data rate and low latency. High flexibility here means open and scalable during
system design time and dynamically configurable during the system run time. The
second challenge is to design an ultra complex system within limited time (short
TTM). Design for short TTM is based on reuse methodology or IP (Intellectual
Property) based design; IP at the silicon level and the firmware level will be used as
the basic components in the design. The basic problem in IP based design is to
eliminate software and hardware glues between SIP (Silicon Intellectual Property),
memories, and other functional building blocks. Researchers have proposed a solution
to eliminate glue logic between IP by introducing another IP named SoC network.
The SoC network is used to configure and converge the custom port to an on chip
network standard. The ultimate goal is to plug IP instead of designing for IP
connections.

We review the current SoC network research and introduce our research. In the
second part, we give the background of IP and SoC design. The SoC network research
is reviewed in the third part of the paper. We introduced and evaluated our research in
detail in the fourth part. We finally describe the on going work and conclusion in parts
five and six.

2. SoC, IP reuse, and SoC BUS in general

There is no clear definition for a SoC (System-on-a-Chip). The basic concept on SoC
could be a kernel part of an embedded system. A SoC normally consists of a number
of processors including DSP processors, micro controllers, and other ASIP
(Application Specific Instruction Set Processor), memory blocks including scratch
pad memories and caches, and custom ASIC (Application Specific Integrated
Circuits) building blocks. An ASIC block could be a digital circuit or an analog or
analog-digital-mixed circuit. A gateway chip-set as a SoC example is given in the
following figure:

Figure 1. A voice over IP gateway SoC (one of our research project)

In the example above, the system supports PSTN (Public Switching Telephone
Network) lines to PSTN lines; PSTN to Voice over IP with A−law / u−law converter,
echo canceller with noise suppression, voice decompression for one subscriber, and
voice compression for another subscriber; Voice over IP to PSTN or another voice
over IP with both voice decompression and voice compression for different standards.
The chip set consists of hardware building blocks, such as A-law/u- law encoder and
decoder, and Ethernet PHY; DSP processors, such as echo cancellers, voice CODEC
(coder decoder) including voice quality enhancement process; micro controllers, such
as the controller for signaling and the controller supporting operating system; and
memories. A SoC interconnect network is necessary for the dynamic connections
including program loading, payload delivery, computing buffer passing, and controls.
Another SoC example is the car integrated electronics system. Three buses are
defined in the system, the IDB (), the proprietary bus, and the analog audio bus.

PSTPSTPSTVoIP enhancemeenhancemeenhancemeVoice-Decoder DSP

PSTPSTPSTPSTN PSTPSTPSTPSTN

PSTPSTPSTVoIP

MCU1: Signaling

DS
P

DS
P

DSP
echo

DS
P

DS
P

HW
a/u

PSTPSTPSTPSTN
SoC Switching network DMA PSTPSTPSTPSTN

MCU2: ROTS

e
n
h

 e
n
hVo

ic
e

en
co

de
r

D
SP

DSDSMEM Memory extension bus

Figure 2. Another SoC example: Integrated Car Electronics

It is not realistic to design a SoC including all sub-systems in house. Too long design
time and excessive knowledge needs to be collected. Design a SoC as an IC should be
based on IP based design methodology (or reuse design methodology). IP based
design was proposed during the middle of 90’s thanks to the possibility supplied by
the silicon technology. Different from RTL (Register Transfer Level) design, the IP
based design releases the functional design and verification on IP level instead of on
RTL. The basic concept is good because we can release the functional design and
verification on higher level to save the design time. As soon as the IP based design
was proposed, researchers and engineers found two problems. One is how to design
qualified IP to support IP based design. Another is how to eliminate glues between IP.

Many designs as RTL codes or silicon layout files were available when the IP based
design was proposed. Seldom, designs can be used as IP because of the low
reusability. When we analyze and evaluate an available design for reuse, we found the
legacy RTL code, the confusing specification documents or no supporting document,
the not adaptable custom interface, no debugging environment or no qualified
debugging environment, unusable firmware development tools, unusable synthesis
and backend reference, and many more problems popping up. Engineers spent even
more time to understand, adapt, and debug an available design than the time they can
design the IP themselves. The conclusion was, an IP could never be just an available
design. An IP must the available design based on regulated design methodology with
qualified and readable code, enough debug supporting environments, enough
firmware development environment, and even supports for integration from the IP
vendor. Therefore, in later 90’s, reuse design methodology was deeply investigated
and developed. Design for reusable IP has been formally regulated for designing an IP
[1] and SoC design experiences are accumulated both from research and in industries.

Car radio

Controll button on
steering whell

Instrument pannel

Doors

Lights

Vehical info

Sensor info

Gateway
Safty warning system

Pager

Cellular phone

Audible file generator

Voice I/O

Navigation

Radio frequency ID

Internet interface

Proprietary bus
IDB BUS

Source: IDB Forum

Audio mixer

A SoC consists of many IP cores or blocks. To design a SoC embedded system, we
needs to connect all hardware interfaces of IP cores and blocks together as well as
integrate all interface related firmware together. During the integration or the design
phase of a SoC, we generate functional hardware connecting IP and customize port
protocol software and hardware interfaces. We therefore generate a lot of glue circuits
and interface drivers. The verification of glue between cores and blocks is not easy.
First, it is difficult to define how much IP function should be involved while verifying
glue logic connecting IP ports. Second, A deep understanding of an IP core may be
required to support the glue verification. Moreover, the deep knowledge of an IP core
may not be available because of legal reasons. A classical way of verification for a
SoC is based on running applications. We either need a test chip or an emulator; we
therefore suffer from the long iteration time and high cost.

Custom glue logic design for inter IP connection gives another problem; the limited
flexibility based on high throughputs. We may need a high connectivity from any port
of an IP to any other port of another IP. Custom connection cannot give the flexibility
required in the future. Only a knockout switch [2] can give enough flexibility and
high throughputs, but no one will accept the high interconnection and fan-out fan- in
cost when the number of ports is high. There is a proposed SoC bus based on TDM
(Time Division Multiplexing) and arbitration, for example the VSI bus [3]. The
problem is the one-D TDM bus cannot support multiple data transfers simultaneously
so that the throughput is low.

Researchers realized the problem and are tring to find solutions supporting multiple
data transfer simultaneously with low latency and reasonable cost, therefore defined
the expected solution as a SoC interconnection network as a SoC bus [4], [5], [6], and
[7]. Except for the high throughput, low latency, and reasonable cost, other basic
expectations from the SoC interconnection network should be based on open and
scalable structure during SoC design phase, flexible and configurable dynamic
connection during the run time, easy to learn and easy to use, supporting design with
short time to market and longer time in market. Researchers define this SoC on chip
interconnection network as a kind of two-dimensional network.

The classical way of thinking for a SoC switch fabric is limited within OSI (Open
System Interconnection), an open network concept. The main tasks or applications
supported by OSI- layer based classical SoC network are backbone bus related
applications.

The network proposed by most researchers is based on two-dimensional mesh of
switches [4] to [10]. The source IP initializes a requirement packet; the requirement
packet is sent to and delivered to the destination IP port according to the destination
ID following routing algorithms; the destination IP decides to accept or reject the
requirement packet and sends an acknowledgement packet; the source IP receives the
acknowledgement packet and a data packet transfers start. Not many researches are
reported related to routing algorithms. The network quality, capacity, bottlenecks, and
possible deadlocks a not yet investigated in detail or not much reported from
researchers.

A node is the essential component in the SoC network. Nodes connect nets and IP
ports setting up the SoC network. A node could be based on four [10] or five ports

[6]. As packet based switching in a classical SoC network, buffers have to be built in
a node. The buffer size defines the packet size including the packet header. The
number of buffers in a node will be decided according to the capacitance analysis and
requirements on performance. Around four buffers are necessary for every port so that
there are about 16 to 20 buffers required in a node.

Wrappers are used in a SoC network to connect the SoC network to IP ports and off
chip interface. A wrapper has its standard interface toward the network and a
configurable interface to an IP port. Buffers and control circuits are required in a
wrapper. SoC network given in the following figure is an example with 2D-mesh net
and 12 nodes:

Figure 3. An overview of a SoC network

3. Review of classical SoC network research

The classical SoC network based on packet routing cannot support timing–critical real
time embedded system design. Let us define embedded systems into timing–critical
system and timing–not–critical system. In timing–critical system, jobs are scheduled
into cycle accurate firmware and a critical cycle count or cycle count margin must fit!
Communication systems, voice and image systems, and most embedded DSP are
timing–critical systems. Ethernet or Internet is not a timing critical system because no
exact arrival time can be expected. Based on packet routing, the classical SoC
network buffers packet on every node and waits for a chance to deliver the packet.
Time consumed for delivering a packet includes routing time, buffering time in every
node, sending time in every node, receiving time in every node, and wrapper sending
and receiving time. If a packet delivery fails, even longer time will be required for
retransmission. Another problem from packet based SoC network is the out of order
arrival time. A long data packet must be divided into more packets because of the

DSP
Wrapper

MCU
Wrapper

DSP
Wrapper

IP
Wrapper

ASIC
Wrapper

MEM
Wrapper

IP
Wrapper

MEM
Wrapper

MEM
Wrapper

IP
Wrapper

MEM
Wrapper

DSP
Wrapper

A node

limitation of the size of buffers in nodes and in the receive wrapper. It further
increases the network delay and enlarges the receiver buffer size because the data
cannot be used until all data packets are received. In a-10X10 2D mesh network, the
minimum average delay even in a small data package could be 10,000 cycles.

Buffer size in a node cannot be too small because applications are unknown when
defining a SoC network for formal designs. In our research, we analyzed buffer sizes
according possible applications. 240 words seem on average as a reasonable size.
Including the header, a data packet of 256 words is the minimum acceptable size for
data transfer. Suppose four buffers are required for a port in a node, in a five-port
node, the buffer size will be 5X4X256X16bits = 81920 bits or 82k bits. In 10X10 2D
mesh network, 100 nodes are required and 8.2 megabits SRAM will be required just
for intra-chip communication. Using 0.13micron technology, in the most advanced
foundry silicon available in the year 2002, less than 8 megabits SRAM can be
integrated in a chip for a memory dominant application with acceptable yields.

Except for the silicon cost by buffers, Professor Dally estimated the silicon cost by the
network logic and interconnections. Less than 6.6% of the area cost was estimated
based on available silicon technology in 2000.

Therefore, the SoC on chip network proposed are either redundant, or low throughput
with long latency. The authors realize that the open network concept is not necessary
for SoC switch fabric when designing an embedded system. Our paper will bring in a
Synthesis based design for switch fabric based on our library of macro cells.

4. Linköping SoC BUS

The basic starting point is to design our SoC bus for formal design of an embedded
system. The basic feature of an embedded system is the “known application” during
the system design phase. We need configure-ability while running applications and
never need scalability when the system is designed. The scalability of our SoC bus is
given only to the system designers during the system synthesis phase. The topology
and the network capacity will be fixed during the system design phase. The hardware
configuration for IP connection is fixed during the system design phase.

The flexibility or configure ability of the SoC bus is limited and related to setting up
of dynamic connections. Flexible and high performance is only specified for routing
during the run time because dynamic setting and connecting a bus will give high
bandwidth and short latency whenever a transaction is required.

4.1 Network and routing

We define that our SoC bus will be used for supporting both timing–critical
embedded systems and other embedded systems. The average time for setting up and
acknowledge should be less than 15 machine clock cycles and the data latency should
be less than 8 clock cycles when the network is based on a 10X10 2D mesh. The
timing requirements we gave is based on two most critical DSP applications, the 1024
PSTN channel + 256 IP channel VoIP gateway and high-end MPEG 4 encoder plus
other videoconference applications.

Two-dimensional mesh topology is decided after investigation and comparing the
cost-performance with other topologies, such as 2D-hexagon, knockout, fat-tree, and
omega. 2D mesh network has the relative low wire cost and high throughput. The
topology of our SoC bus is therefore based on figure 3. We carefully investigated the
difference between four-port and five-port topology.

Figure 4. The difference between 4-port and 5-port topologies

The four-port topology gives lower performance and low connectivity because four-
way switching is degenerated to three-way switching when a source-drain port is
required. In most applications, a node of four-way switch without source-drain to an
IP is only used to further enhance the switching capacity and a node with an IP is the
normal case. Using five-port in (a) of figure 4, we need 3 bits for port coding; one
more bit comparing to four-port node in (b).

Circuit switching or packet switching is compared in our research. Packet switching
gives high utility of the network and packet switching does not need a central
controller as an arbiter. To handle multiple transactions simultaneously, we can never
use centralized control or arbitration because any centralized control-arbitration can
only manage a transaction at a unit time. Therefore, a real circuit switching should not
be considered for the SoC network. There are drawbacks within packet based
switching. A packet-based switch cannot give quality data transfer because of the
asynchronous transfer gives no certain arrival time. A packet based switching need
buffers in each node to keep the data packet and wait for another hop. A buffer gives
reliable transfer and extra silicon cost as well as long latency. Therefore, the
conclusion here is that we cannot use circuit switch because of the multiple and
simultaneously transaction is required; we cannot use packet switching because the
cost is too high! The novel solution proposed by our research is then the trade off
between circuit switching and packet switching. We use packet switching to set up the
connection between IP and we lock the set up as a circuit for data transmission. We
define the technology PCC, Packet Connected Circuit. Using PCC, high reliability
transfer with high throughput and fixed short latency is reached from any IP to
another IP without central arbitration control. The only drawback is relative low
routing flexibility when many circuits are running when using PCC technology for
SoC network. We are managing this drawback in our research on our SoC bus
synthesizer.

IP
Wrapper

IP
Wrapper

(a). A Five-port node (b). A Four-port node

Application software in the source IP initializes the routing for a data transaction. The
port driver compiles a routing packet in the source IP. The source wrapper sends the
packet to the network. Package rout ing algorithm is investigated for setting up a bus
circuit delivering only a small packet with highest priority. It is different from any
routing algorithm based on OSI for an unknown network. When investigating routing
algorithm, we analyze the requirements or environments and found; a routing in a
node is knowledge based routing because the topology was fixed during synthesis and
the routing is on a known hardware! This is the fundamental difference and that is
why we do not use OSI seven- layer concept, it is simply not necessary. The shortest
rout is given directly by the switching node if it is available. The first alternative is
suggested based on the fixed network topology. The deadlock routing is simply
avoided and cancelled by checking the current node name, which is given when
topology was synthesized.

The size of a routing packet must be minimum to minimize the routing time. A packet
carries the source ID, the destination ID, and the source HW information. The
destination ID arrives at the first cyc le receiving the packet so that a routing starts
during the packet receiving time thus the routing time reaches the minimum. If no
congestion is present, a routing finishes while still receiving a packet.

We define our SoC bus a full duplex network. Physical specification of the net for our
SoC bus is based on 22 bits wires. 11 bits as a bundle for one direction including 8
bits data plus one bit network clock plus one bit forward control and one bit
acknowledge control. The critical path in a node must be less than 10 of unit gate
delay time. Including clock uncertainty, we can reach at least four times higher speed
than a system clock because a system clock should support a critical path of 40 of unit
gate delay time (a minimum critical path in a 16X16 multiplier). Therefore, every four
SoC bus clock is equal to or less than one system clock. Much higher bus clock rate
gives much less routing time and data latency. Later in the benchmarking section, we
will describe that the average time consumption on set up and acknowledge is about
40 bus clock cycles, which equals to or less than 15 machine clocks. The network
connection between nodes are specified and given in the following figure.

Figure 5. Full duplex net connections between two nodes

Data
Fwd ctlr
Rev ctlr

Clock

Switch node Switch node

To carry clock together with sending data, data synchronization can be managed in an
easy way. Mesochronous signaling is used for data recovery in our SoC bus [11].

4.2 Nodes

A node is a connector switching packages to the shortest or optimized rout toward its
destination. We do not use any buffer in a node so that the silicon cost can be
minimum. The functional schematic is given in the following figure 6.

Figure 6. Node functional block diagram

There are five groups of routing circuits in a node. In figure 6, the routing circuit from
in port 1 to out port 3 is illustrated. The “packet in buffer” saves the current in packet
and gives the destination and source ID to the routing logic. The “knowledge-based
table” gives routing suggestions according to the destination ID and the synthesized
network. The output from the “in port 1 routing logic” gives multiplexing control to
“port locking logic” to lock the port and send packet out if there is no occupied signal.
The “port locking logic” gives occupied signal when the output port is locked. When
two in ports apply both the output to one port, the “port locking logic” will give a
hardware-based arbitration. A watchdog timer is built in the port locking logic to wait
the acknowledgement and rout locking procedure. From every in port to any out port,
the circuit is the same as described above.

4.3 Wrappers

A wrapper is the custom interface between the switching network and an IP port. An
IP port could be based on any interface standard and it must be connected to the
network with a formal connection and minimum design time. Two groups of
configurations need to be done during the time for the system integration and
synthesis, the physical layer configuration link the IP physical interface to the

Packet in buffer

Knowledge
based table

Port
locking
logic

In port 1

Out port 1

In port 1
routing
logic

Out port 2 In port 2

Out port 3

In port 3

In port 4 Out port 4

In and out port 5

From port 2
From port 4
From port 5

From in port 2, 3,
4, 5 routing logic

Occupied

network including matching the clock rate, the way of synchronization, the bus width,
and the control signaling. The data link layer configuration gives data format
matching, data transparence control if there is any, data buffering, and adaptation to
the IP port driver program in the IP.

While executing an application, the port driver program sends a data frame or request
to get a data frame from the network via the port wrapper with source ID and
destination ID. The source port wrapper in this case is responsible for the packet
compiling and buffering and the destination port wrapper in this case is responsible
for decoding and buffering the received packet.

The definition for capacity–cost trade off can be divided into, and based on, two
groups of applications to save silicon area as well as keeping high capacity. We define
the first group of application as “MESA – Memory cost sensitive application” and the
second group of application “MISA – MIPS cost sensitive application”. MESA
requires the minimum memory cost so that there is minimized buffer in the wrapper
connecting to the IP. At the same time, certain MIPS will be required to adapt the
communication and the size of the port driver firmware is relatively large and the run
time cost for a data transaction is relatively long. It is just good if the job load in the
IP is not high and of course the buffering memory in the wrapper can be eliminated to
decrease the silicon cost. MISA requires minimized MIPS from the connected IP so
that the related wrapper has to support enough size of the memory buffer and the
memory cost will be relatively high. Following the definition, we will implement
different wrappers in the cell library supporting the SoC bus synthesis.

To connect as many kinds of ports as possible, BVCI, Basic Virtual Component
Interface and AVCI, the Advanced Virtual Component Interface were proposed by
VSI [12]. BVCI defines 13 control signals and 7 buses to support the configuration
and AVCI defines 20 control signals and 14 buses to support the configuration. It is
too complicated for a system designer to design and configure all interface
parameters. Actually, it is not necessary to leave all complex and tough issues to
system designers. Because the principle of reused based design is to decrease design
time, we need to move the complexity for wrapper adaptation into the SoC bus
synthesis. In our research, we propose a way to classify ports based on two-
dimensional features. One dimension has been discussed from MESA and MISA.
Another dimension is defined according to the bandwidth and the performance of a
port. The classification is given in the following figure 7.

Figure 7. Wrapper classification

Following the definition in Figure 7, we will specify a group of wrappers, 12 kinds of
wrappers in this case, to support different kinds of applications. Therefore, the custom
configuration will be much simplified when system designers use the SoC bus as an
IP core. Notice that we actually only need to design 4 wrappers instead of 12
wrappers because the difference from MESA to MISA is only the buffer size.

4.4 A transaction handling process

The port driver in the source IP initializes a SoC bus data transaction. It sends a
request to the network via the source wrapper. The source wrapper compiles a packet,
buffer it and send to the network. The packet in the source wrapper will be kept until
the accepted acknowledge is received. The source wrapper resends the packet either
receiving a rejection or time out (after a basic wait time plus a random time if the
acknowledge is not received). Keeping and resending a packet in the wrapper instead
of in the IP, we can down load and distribute unnecessary jobs from the IP.

When a packet is in the SoC network, a node close to the wrapper sends the packet to
the neighbor node following the shortest distance to the destination. If the packet
cannot be delivered, the network rejects the packet and acknowledges rejection to the
source wrapper. If the destination wrapper accepts the packet, the destination wrapper
sends an acknowledgement to the network and the acknowledgement packet goes
back via the forward rout and locks the rout from the destination wrapper to the
source wrapper. An accepted forward rout in a node will temporally be locked for
certain clock cycles waiting for its acknowledgement. As soon as the rout locked, a
circuit is set up for the data transmission and data is on the circuit bus instead of
sending to the network.

MESA MISA

B
uf

fe
r s

iz
e

Throughput

Serial port

Host and debug interface

Memory extension

High bandwidth short cut

The destination wrapper first coordinates the source hardware and configures for the
data transaction. The destination wrapper informs the connected IP port and send
acknowledgement.

Both nodes and the destination wrapper monitor the data transfer via the control wire.
The source wrapper sends finish signal on the control wire in parallel with the data
bus. The lock will be released as soon as the finish is detected. Finally, a FSM (Finite
State Machine) in a node is given in the following figure to improve the description
on a data transaction.

Figure 8. A FSM in a node

4.5 User’s design flow

System designers cannot use the SoC bus without a design methodology and a strong
synthesis environment. Our research and demonstrator will contribute also the
integrated design environment for SoC bus users. We will first generate the network
library including the sub set of topology, the sub set of nodes, and the sub set of
wrappers. For extensive timing critical system, we may even include physical
implementation of library cells. We are now developing the behavioral simulator for
debugging and benchmarking. The α version of the behavior simulator is now in use
for the benchmarking research. We will investigate and develop the network
synthesizer. The synthesizer is a behavior synthesis tool generating RTL code and C
based port driver program as reference. The input of the synthesizer is the port related
specification and the synthesizer analyzes the requirements on performance and cost.
The synthesizer generates both RTL codes and C-based port driver to the simulator.
The simulator gives benchmarking to match the requirement specification. Iteration is
necessary and re-synthesis will be performed to follow up the requirements.

Idle Try
route

Lock

Unlock

Wait
ACK

Transfer

Pass
params

(Unlock)
NACK

ACK

NACK

Fail

Ok

Send
ACK

Cancel

The designer’s design flow is given in the following figure 9. System SoC designers
start from partition the interface related specification to the related port hardware and
related port driver in IP. After the behavior job partition on paper, a step of writing C-
based behavior model is necessary for starting the synthesis. The synthesis will be
performed based on iterations until the requirements are satisfied. The iteration cannot
be automatic according to the project plan. As a hardware research team, we only give
the infrastructure of the design environment. The integration on CAD might be given
by other SW based research teams.

Figure 9. The designers design flow

4.6 Capacity analysis and Benchmarking

The benchmarking is based on a predicted chip set, which could be a possible product
after 10 years. The data traffic loads on a ga teway chip are 1024 PSTN channels with
electronic echo cancellation plus 256 VoIP channels with voice CODEC of G.723 and
G.729. The benchmarking is simulated based on 8X8 2d-mesh network. The SoC bus
clock is 1GHz and the system clock is 250MHz. It means that we have to manage at
least 16 mega packets per second and each packet is about 0.5k words. Simulation is
undergoing and there is no congestion has been found until now. We are increasing
the job load and the congestion point of the SoC bus will be recognized soon.

5. On going work

The project became a demonstration project sponsored by socware of Invest Sweden
Agency, ISA, since 2002. The project has been also financed by SSF, the Swedish
Strategic Research Foundation since 2000. Acreo AB might joint in the project soon.
If Acreo joins the project, we will speed up the implement for a demonstration chip.
Related research on physical layer of our SoC bus is also going well and low power
lowlatency interconnect circuit was investigated. [11]

SW

protoc
HW

port
Synthesis: Generate network,

wrappers, and communications

Behavior Simulation
Debugging Benchmarking

SoC BUS RTL code SoC BUS
programs

System specification

SoC designer’s job
Available from us

Physical design

Network
library and
constraints

6. Conclusion

We have described our SoC bus and our related research based on detailed analysis of
other current on going research projects. We define the so-called “classical SoC
network” by delivering data packet on network. We point out that the classical SoC
network is not feasible because of the excessive silicon cost and long data latency. We
introduce a novel concept, PCC: Packet Connected Circuit. Based on PCC, a data
transaction is initialized by packet routing. The rout is locked as a bus circuit after
proving and acknowledging the rout. Therefore, we reached fixed and low transfer
latency based on high bandwidth supporting multiple simultaneously data transfer. At
the same time, buffers in nodes are eliminated so that the silicon const of a SoC
network becomes feasible. MESA and MISA model are proposed for improving
wrappers. Benchmarking is discussed base on the predicted heaviest integration for
complex functions. A SoC system designer’s methodology is proposed.

7. Acknowledgement

Socware of Invest Sweden Agency (ISA) and SSF the Swedish Strategic Research
Foundation are acknowledged for financing the project. Authors would thank to
Professor Christer Svensson for his cooperation.

References

[1]. Michael Keating and Pierre Bricaud, Reuse Methodology Manual for System-
on-a-Chip designes, KAP, 1998, ISBN 0792381750.

[2]. Andrew S. Tanenbaum, Computer networks, third edition, PTR, 1996, ISBN
0133499456.

[3]. www.vsi.org

[4]. Dake Liu and Daniel Wiklund, SoC BUS, EAD träfa 2000, April-2000.
Stockholm, Sweden.

[5]. Daniel Wiklund and Dake Liu, Switched interconnect for System-on-a-Chip
design, in proceeding of the IP2000 Europe conference, 2000.

[6]. Daniel Wiklund and Dake Liu, Design of a system on chip switched network
and its design support, IEEE ICCCAS02, 2002.

[7]. William J. Dally and Brian Towles, Route Packets, Not wires: On chip
interconnection network, DAC 2001, Las Vegas.

[8]. M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, A.
Sangiovanni-Vincentelli, Addressing the System-on-a-Chip Interconnect Woes
Through Communication-Based Design, DAC 2001, Las Vegas, NV, USA.

[9]. Luca Benini, and Giovanni De Micheli, Networks on Chips: A New SoC
paradigm, IEEE Computer, January, 2002.

[10]. Ilkka Saastamoinen, et al, Interconnect IP node for future System-on-Chip
Deigns, IEEE int. workshop on Electronic design, Test, and Applications, 2002.

[11] Peter Caputa and C. Svensson, Low-power, Low-latency global interconnect,
15th international ASIC/SOC conference, Rochester, NY. 2002.

[12]. VSIA: On Chip Bus Development Working Group, Virtual Component
Interface Standard Version 2 (OCB 2 2.0) April 2001.

