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Abstract

Efficient programmable baseband processors are important in order to
enable true multi-standard radio platforms and software defined radio
systems. The ever changing wireless network industry also requires flex-
ible and versatile baseband processors to be able to adapt quickly to new
and updated standards. The convergence of mobile communication de-
vices and systems require multi-standard capabilities in the processing
devices. The processors do not only need the capability to handle differ-
ences in a single standard, often there is a great need to cover several
completely different modulation methods such as OFDM, CDMA and
single carrier modulation with the same processing device. All this re-
quires a programmable baseband processor because a pure fixed-function
ASIC solution is not flexible enough. Furthermore, ASIC solutions for
multi-standard baseband processing are less area efficient than their pro-
grammable counterparts since processing resources cannot efficiently be
shared between different operations and standards. This project was initi-
ated for the above mentioned reason as a continuation of a previous base-
band processor project at the research group. Accordingly, this thesis is
devoted to the design of area efficient, low clock rate, fully programmable
baseband processors. A reduction of the clock rate will simplify the de-
sign of the processor as well as save power in the application. Since most
multi-standard processing devices will be used in a mobile environment,
low power is essential. Normally, extra computing resources must be
added to a system designed for low clock rate operation compared to a
regular solution, resulting in a higher area and complexity of the chip.
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In this project effort has been made to create efficient base architectures
maintaining a low area and clock rate while also maintaining flexibility
and processing capability. At the same time design methods for the re-
quired DSP execution units within the processor have been developed.

Usually general baseband processing includes many tasks such as er-
ror control coding/decoding, interleaving, scrambling etc, however in
this thesis because of time and resource limitations, the focus is on the
symbol related processing, although the bit manipulation and forward
error correction tasks are also studied regarding acceleration.
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Chapter 1

Introduction

Baseband processing and baseband processors will become increasingly
important in the future because more and more devices will be connected
together by means of wireless links. Since the number of radio standards
grows increasingly fast and the diversity among the standards increases,
there is a need for a processing solution capable of handling as many
standards as possible at the same time not consuming more chip area
and power than a single-standard product. This trend is driven by the
convergence of mobile communication devices. In order to achieve the
required flexibility and to reach optimal solutions, programmable proces-
sors are necessary in contrast to other solutions such as accelerated stan-
dard processors and similar devices. A programmable solution will also
help companies to reduce the Time To Market (TTM) since they can reuse
the same hardware platform over several product generations and only
do software changes in between.

Programmable baseband processors are also required in order to ful-
fill the old dream of fully software defined radio (SDR) systems. In the
future, software defined radio systems will most certainly be used to
both enable truly worldwide usable products and to efficiently utilize the
scarce radio frequency spectrum available, for a wide consumer popu-
lation. Furthermore existing solutions based on ordinary digital signal
processors, do not have the computing power required to perform the
computations needed to handle most modern radio standards, and the
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4 Introduction

power consumption of such circuits is high due to their inherent flexibil-
ity. To enable programmable baseband processors, we need new proces-
sor structures which are optimized for this computing domain but still
very flexible within the frame of the same domain.

The goal of this research project is to create new such power- and area
efficient architectures, suitable for future multi-standard radio networks.
In this thesis the results of the research are presented. The results include
both a new processor architecture and design methods for this architec-
ture.

1.1 Scope of the thesis

The scope of this thesis is programmable baseband processors and how
they can be designed. Special attention has been paid to three distinct
areas of baseband processor design:

• Selection and design of execution units and accelerators.

• Multi-standard issues.

• Scheduling and instruction issue.

The over-all goal is to find low clock rate and low power solutions. Gen-
eral baseband processing includes many tasks such as error control cod-
ing/decoding, interleaving, scrambling etc, however in this thesis be-
cause of time and resource limitations, the focus is on the symbol related
processing, although the other tasks are also studied regarding accelera-
tion. Symbol related processing is defined as the operations performed
between the map/de-map operation and the radio interface. The thesis
presents both my current and recent research regarding these three areas
and also gives an introduction of programmable baseband processing.
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1.2 Organization

The thesis is divided into three parts; in Part I background about base-
band processing and related work is given. In part II, the unique prop-
erties of baseband processing are discussed in chapter 4. Chapter 5 de-
scribes the design methodology and Chapter 6 describes the processor ar-
chitecture, whereas chapters 7 - 8 highlight selected areas of the research
project. The research methodology and my achievements are presented in
chapters 9 - 10. Finally, a selection of my published papers are presented
in part III.

The purpose of Part I and II is to give an introduction to baseband
processing and to introduce the concepts discussed in the papers. The
research results are presented in the conference papers included in Part
III.

1.3 Included papers

The papers presented in this thesis are the result of research conducted
during the background investigations in the design of a new multi-
standard baseband processor architecture. The papers cover a wide range
of topics related to baseband processing and baseband processor design.
The papers cover:

• Overall processor architecture.

• Selection of accelerators.

• CDMA based channel equalization.

• An efficient OFDM processor architecture and scheduling.

The first paper presents an accelerator architecture for multi-standard
baseband processors. The paper includes accelerator selection methodol-
ogy as well as a proposal for accelerators and a base architecture to use in
a merged WLAN and 3G system. The second paper discusses the design
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and implementation of multi-standard rake receiver functions in a pro-
grammable baseband processor. It also presents a novel complex short
MAC (CSMAC) execution unit which delivers processing power enough
to run all rake functions in software with the same efficiency as in a fixed
function device. The third paper is devoted to a design methodology
for memory efficient baseband processors targeted at OFDM applications
such as WiMAX or WLAN systems. The paper presents both a design
methodology and a base architecture which yields both area and power
efficient processors for OFDM applications.



Chapter 2

Background

2.1 System perspective on baseband processing

A typical wireless communication system usually contains two to three
different processors as shown in Figure 2.1. The processors are:

• A baseband processor.

• A medium access control processor.

• An application processor.

MAC layer
processor

Link level
control

Application
processor

ADC

DAC 555−2581365
CALL 

Baseband
Processor

Radio sub−system Baseband sub−system Link/Application sub−system

Figure 2.1: Example of communication system.

The baseband processor is the processor closest to the radio-interface
in the processing hierarchy. The baseband processor is responsible for
modulating the bits received from a higher layer into a discrete wave-
form, sent to the DAC and then transmitted over the air. The baseband

7



8 Background

processor is also responsible for detecting a received waveform, to syn-
chronize to it and extract information bits from the received waveform.
These bits are then delivered to the higher layers which assemble the data
into user services such as wireless LAN packets or voice packets in a cel-
lular telephone.

If the application only requires a smaller amount of control functions,
the MAC layer functionality could be merged with application into a sin-
gle processor. However due to the nature of baseband processing, base-
band processing tasks are usually separated from the application proces-
sor.

2.1.1 Baseband processing tasks

The processing tasks within the baseband processor can be divided into
six distinct classes, three in the transmit path and three in the receive path
[1] [2]. In the transmit path the classes are:

• Channel coding.

• Modulation.

• Symbol shaping.

And in the receive path the classes are:

• Filtering, synchronization, gain-control.

• Demodulation, channel estimation and compensation.

• Forward error correction.

These processing tasks are illustrated in figure 2.2. In general, this
schematic view of baseband processing tasks is true for most radio sys-
tems. In the transmit path from the MAC layer to the radio, air interface
data are first sent to a channel coding step which adds redundancy to
the transmitted data, interleaves data both in time and in frequency and
scrambles the data to remove regularities in the data stream. The binary
data are fed to the modulator stage which converts the binary data into
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one or many symbols. A symbol can be represented as one or a series of
complex numbers representing a waveform or a single value. This stream
of complex numbers is then sent to the symbol shaping stage which fil-
ters and smooths the signal in order to remove unwanted spectral com-
ponents.

At the receiver side, all the operations are performed in reverse. The
stream of complex data values from the ADC is first fed to a digital front-
end stage which contains a digital filter, synchronization functions and
gain control functionality. The filtered and synchronized symbol stream
from the digital front-end is then fed into the demodulator which per-
forms demodulation and channel compensation on the received symbols.
Binary data are then extracted from the received symbols and fed to the
forward error correction unit, which utilizes the redundancy added by
the channel coder stage in the transmitter to correct for any transmission
errors encountered.

MAC/
Application
processor

ADC

DAC

MAC/
Application
processorcorrection

Forward error

Symbol
shapingModulation

Demodulation
Synch.

Decimation
Filtering

coding
Channel

Baseband processor

Baseband transmit path

I

Q

Q

I

Baseband receive path
I

Q

I

Q

Figure 2.2: Tasks of a baseband processor.
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2.2 Baseband processing devices

To implement a baseband processing algorithm, it is necessary to have a
suitable processing device. In general there are three different classes of
processing devices suitable for baseband processing. The devices range
from rigid but powerful devices to very flexible, less efficient devices and
everything in between the two extremes. In this research project the fol-
lowing classes of processing devices are identified:

1. General purpose DSP processors.

2. Fixed function ASICs.

3. Application specific DSP processors.

The general purpose DSP processors are most versatile and flexible
while the fixed function ASICs have the possibility to be completely opti-
mized for one single task. Application specific instruction set processors
are a trade-off between the flexibility of a general purpose DSP processor
and the processing power of fixed function hardware.

2.3 General purpose DSP processors

General purpose signal processors deliver unparalleled flexibility to a sig-
nal processing system. However, this flexibility consumes both chip area
and power. General purpose processors are also more complex to design
and implement as no limitations or other simplifications can be done on
the architecture, compared with other architectures. Furthermore, general
purpose DSPs are not optimized for complex computing. A single scalar
general purpose DSP with double accumulator registers requires at least
four cycles in order to complete a single complex-MAC operation. This
limits the usefulness of general purpose DSPs in baseband processing,
since most baseband processing is carried out in the complex domain.

Most common in baseband processing are general purpose fixed/float-
ing -point DSP processors from Texas Instruments [3] and Analog Devices
[4].



2.4 Fixed function ASICs 11

2.4 Fixed function ASICs

Fixed function ASICs are the opposite to general purpose DSPs, since they
lack flexibility. However the lack of flexibility enables the designers to
fully optimize the solution for the chosen task. Fixed function ASIC base-
band processing solutions can achieve very high performance and in the
same time have low power consumption. A drawback with this technol-
ogy is the excessive hardware overhead for multi-standard devices; since
most computing resources cannot easily be shared between different stan-
dards. Fixed function ASICs are often combined with a general purpose
RISC processor for control. Such WLAN solutions are for example avail-
able from Atmel, AT76C509 [5].

2.5 ASIP DSPs

Application specific instruction set processors can achieve maximum per-
formance and flexibility under limited area and power constraints since
they can be optimized for a certain application domain. In this research
project, only ASIP DSPs are considered for implementation since they can
provide an optimal trade-off between flexibility, power consumption and
performance.

2.6 The need for programmability

There are three main reasons for using programmable baseband proces-
sors. The most important reason is the processors inherent flexibility. This
flexibility allows the designer to implement diverse standards within the
same device. The device will also be more area efficient since computing
resources are reused between different standards.

The second important reason is the ability to allow standard updates
in existing wireless devices. This will not only extend the useful lifespan
of a product, it will also reduce the non-recurring engineering costs for
manufacturers of wireless equipment since they can reuse the same de-
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vice with only a different software for a longer time, thus extending the
hardware’s life span and at the same time reducing development costs.

The last but not the least reason is to provide dynamic allocation of
computing resources during operation of a wireless device. This could
be used to trade off mobility handling capability versus data rate. For
example, in severe channel conditions the mobile device could spend the
available processing power on channel compensation but when the chan-
nel condition are good it could use the resources on providing higher data
rate to the end user. The need for programmable baseband processors is
further discussed in Chapter 4.
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Chapter 3

Related work

3.1 Introduction

The programmable baseband processor research has only been around
for a few years even though the concept of SDR has been around for
much longer time than that. The dream of creating a true SDR system
has led to the creation of a number of different processing architectures,
everything from standard processors to specialized configurable execu-
tion units based on FPGA technology.

Unfortunately there are few publications in the area of programmable
baseband processing. Also, most academic work tend to focus on a small
part of a programmable baseband processing system or focus more on
design-tools rather then on new architectures.

Classical industrial solutions are often conservative and the instruc-
tion set of the processors is often not optimized for baseband processing.
Instead classical, well known processing solutions are modified to man-
age baseband processing tasks, resulting in inefficient solutions.

The most common baseband processing approach today is to combine
standard RISC processors, such as ARM [1] or MIPS [2] or a single scalar
DSP with ASIC baseband processing blocks. The drawback of this so-
lution is the lack of flexibility of the ASIC parts and the extra overhead
imposed by the superfluous flexibility of the general purpose processor
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core. Usually the lack of flexibility in the ASIC block cannot easily be
compensated for by extra processing capability in the controller proces-
sor.

3.2 Other architectures

In this section a short introduction of the different commercial solutions
is given. However, since only Atmel provides documentation of their
processors without a non-disclosure agreement, not many details of the
processor architectures are known.

3.2.1 Sandbridge Technologies Inc

Sandbridge Technologies [3] provide a processor architecture named “Sand-
blaster” [4]. The Sandblaster DSP contains a RISC based integer execution
unit and SIMD execution units.

3.2.2 SystemOnIC, now Philips research

Before SystemOnIC was acquired by Philips, they developed a
programmable baseband processor named Hipersonic I [5].
The Hipersonic processor contains three different parts:

• Hard-wired logic for computationally intensive processing.

• A flexible DSP (OnDSP).

• An optional protocol processor for scalar computations.

The OnDSP is a DSP based on SIMD execution units.

3.2.3 Morpho technologies

Morpho Technologies [6] provides a baseband processor architecture
named “M-rDSP architecture” which consists of a 32 bit RISC processor
and a reconfigurable cell array of 8 to 64 cells. Each reconfigurable cell has
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an ALU, MAC, and highly optimized specialized functional units that can
be used for different wireless applications.

3.2.4 Atmel mAgic DSP

With the mAgic DSP architecture, Atmel [7] claims to have the world’s
first complex domain, extended precision VLIW DSP core for SoC imple-
mentation. The mAgic core provides single-cycle execution of complex
arithmetic operations, such as FFT butterflies and arithmetic operations.
However, since the processor is based on VLIW technology, the program
memory cost is high and the control overhead is large.

3.3 Comparison

A comparison of the architecture presented in this thesis with the previ-
ously presented architectures yields several important differences. None
of the commercial solutions uses native complex data-paths nor has sup-
port for vector instructions according to our definition of vector instruc-
tions. Another main difference is the single-issue CSIMD technology used
in the presented architecture. The CSIMD architecture is presented in
Chapter 6, in Paper 2 and in [8]. The other solutions are based on con-
ventional pure VLIW, SIMD or array elements with its associated control
overhead. The closest architecture in terms of complex oriented comput-
ing is the mAgic VLIW architecture from Atmel. The mAgic architecture
can concatenate several real-valued data-paths to form a complex opera-
tion.

The presented architecture is similar to the architecture of the BBP1
chip [8] created earlier in this research project. Compared with publicly
available on-line resources from respective processor vendor, the BBP1
chip is both more powerful and area efficient than the other architectures.
However, the other presented architectures are generally more flexible
outside the baseband processing domain, then the architecture presented
in this thesis.
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Chapter 4

Baseband processing

4.1 Introduction

In this chapter some of the unique properties of baseband processing and
some of the challenges faced in a baseband processing system are de-
scribed. The system environment of the baseband processor in the re-
search papers is also described and clarified in this chapter. All radio and
channel impairments considered are also presented here.

4.2 Challenges

In this research project the following four demanding challenges for the
baseband processor to manage regardless of modulation methods and
standards are identified:

• Multi-path propagation and fading. (Inter-symbol interference)

• High mobility.

• Frequency and timing offsets.

• Radio impairments.

These four challenges impose a heavy computational load for the pro-
cessor. Besides the above mentioned challenges, baseband processing in
general also faces the following two challenges:

19
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• High dynamic range.

• Limited computing time.

4.2.1 Multi-path propagation and fading

In a wireless system data are transported between the transmitter and re-
ceiver through the air and are affected by the surrounding environment.
One of the greatest challenges in wide-band radio links is the problem of
multi-path propagation and inter-symbol interference. Multi-path prop-
agation occurs when there are more than one propagation path from the
transmitter to the receiver. Since all the delayed multi-path signal com-
ponents will add in the receiver, inter-symbol interference will be created.
Since the phases of the received signals depend on the environment, some
frequencies will add constructively and some destructively, thus destroy-
ing the original signal. Unless the transmitter and receiver sit within an
echo-free room or any other artificial environment the transmission will
usually be subjected to multi-path propagation. There is only one com-
mon communication channel which is usually considered echo-free viz.
satellite links. Multi-path propagation is illustrated in Figure 4.1.

Figure 4.1: Multi-path propagation.
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Multi-path propagation can be characterized by the channel impulse
response. From the channel impulse response several important param-
eters can be derived. The most important parameter is the RMS delay-
spread, στ , which describes the RMS distance in time between multi-path
components. The channel impulse response, also known as the Power
Delay Profile (PDF) of a channel is illustrated in Figure 4.2.
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Figure 4.2: Power Delay Profile

The delay-spread imposes a limit of the shortest symbol period us-
able. This will in turn restrict the data-rate of a transmission system. A
rule of thumb is to use symbol durations, which are at least 10 times the
delay spread (10 · στ ) if the system operates without advanced channel
equalizers.

In the example in Figure 4.2 the shortest symbol duration would be
limited to 420 ns, which give a symbol rate of 2381 symbols/sec. In this
example, a delay-spread of 42 ns was used, which corresponds to a max-
imum path-distance of about 12 meters. In outdoor systems the delay-
spread is often in the range of several micro-seconds, which further lim-
its the symbol rate. Common reference “channels” are specified by vari-
ous institutes and standardization organs to be used in benchmarking of
channel equalizers. In Table 4.1, two common channels are presented, the
ITU Pedestrian A and ITU Vehicular Channel Model B [1]. The channel
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models represent a user walking 3 km/h in an urban environment and
traveling in a car at 60 km/h respectively. The channel models specify
a number of multi-path components (taps) with their delay and average
power. The phase and amplitude of the multi-path component are as-
sumed to be Raleigh distributed.

Table 4.1: Power delay Profiles for common channels
ITU ITU

Pedestrian A Vehicle B
Average Average

Tap Delay (ns) power (dB) Delay (ns) power (dB)

1 0 0 0 -2.5
2 110 -9.7 300 0
3 190 -19.2 8900 -12.8
4 410 -22.8 12900 -10.0
5 - - 17100 -25.2
6 - - 20000 -16.0

The effects of multi-path-propagation and resulting inter-symbol in-
terference are referred to as fading. For narrow-band systems (with long
symbols), the effect of inter-symbol interference can be assumed to be
constant over the entire frequency of the channel used (flat fading). How-
ever, in wide-band systems the effects of inter-symbol interference will
cause frequency dependent fading, causing parts of the transmitted sig-
nal spectrum to be destroyed. To combat frequency selective fading in
wide-band systems, advanced equalizers must be used to compensate for
multi-path channels. Another solution to avoid the problem of wide-band
channels in multi-path environments is to divide the wide-band channel
onto many narrow-band channels and treat them as flat faded channels.
This is the basic principle of OFDM transmission systems [2]. However,
since it is not possible to use OFDM technology in all situations, advanced
equalizers must be employed for example in CDMA networks.
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4.2.2 Dynamic range

Another problem faced in practical systems is the large dynamic range
of received signals. Both fading and other equipment in the surrounding
will increase the dynamic range of the signals arriving in the radio front-
end. It is common with a requirement of 60-100 dB dynamic range hand-
ling capability in the radio front-end [3]. Since it is not practical to design
systems with such large dynamic range, automatic gain control (AGC)
circuits are used. This implies that the processor measures the received
signal energy and adjusts the gain of the analog front-end components to
normalize the energy received in the ADC. Since signals falling outside
the useful range of the ADC cannot be used by the baseband processor, it
is essential for the processor to continuously monitor the signal level and
adjust the gain accordingly. Power consumption and cost of the system
can be further decreased by reducing the dynamic range of the ADC and
DAC as well as the internal dynamic range of the number representation
in the DSP processor. By using smart algorithms for gain-control, range
margins in the processing chain can be decreased.

4.2.3 Mobility

Normally, the channel is assumed to be time invariant. However, if the
transmitter or receiver moves, the channel and its fading will be time
varying. Mobility in a wireless transmission causes several effects, the
most demanding effect to manage is the rate at which the channel changes.
If the mobility is low, e.g. when the channel can be assumed to be station-
ary for the duration of a complete symbol or data packet, the channel can
be estimated by means of a preamble or similar known sequence. How-
ever, if mobility is so high that the channel changes are significant during
a symbol period, this phenomenon is called fast fading. Fast fading re-
quires the processor to track and recalculate the channel estimation dur-
ing reception of user payload data. Hence, it is not enough to rely on an
initial channel estimation performed on a packet or frame start.

Mobility can be described by the channel coherence time, Tc, which is
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inversely proportional to the maximum Doppler shift of the channel. For
example, a WCDMA telephone operating at 2140 MHz will encounter a
Doppler shift of 118 Hz when the telephone travels at 60 km/h towards
the base-station. For a correlation of 0.5 of the current channel parame-
ters and the channel parameters after the time Tc, the following formula
applies:

Tc = 9
16πfm

Where fm is the maximum Doppler shift of the channel. This yields
the channel coherence time of the previous example to be 1.5 ms. For
WCDMA, there are modes specified for up to 250 km/h, corresponding
to a Doppler shift of 492 Hz and a channel coherence time of Tc = 363µs.

At 250 km/h the coherence time of the channel is less than half of the
slot-time, which implies that the processor must track channel changes
during the reception of a data slot. The Doppler shift will also create the
same effects as frequency offsets. However, the effects of frequency offsets
can easily be compensated by de-rotating the received data [2].

4.2.4 Radio impairments

Along with distortion and other effects added by the channel, the trans-
mission system can in itself also have impairments. Such impairments
could be:

• Carrier frequency offset.

• Sample frequency offset.

• DC-offset.

• I/Q non-orthogonality.

• I/Q gain mismatch.

• Non-linearities.



4.2 Challenges 25

The items listed above are all common impairments in radio-front
ends and they affect the performance of the whole system. Since the cor-
rection of the impairments require extra computing resources, it is essen-
tial to include the correction of the impairments as early as possible in the
project.

One common problem in direct up-conversion transmitters is the prob-
lem of non-orthogonality of the I and Q baseband branches. Often, the
quadrature-phase carrier is created by delaying the in-phase carrier to cre-
ate a 90◦ phase-shift. However, this phase-shift will be frequency depen-
dent and only provide 90◦ phase-shift at one frequency. Non-orthogonality
will create severe problems for QAM modulations of high order, and cre-
ate unwanted AM modulation of constant-envelope modulation schemes.
The effects of non-orthogonality on 64-QAM are illustrated in Figure 4.3.
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Radio impairments are discussed in the books [3] and [4] among oth-
ers.

4.2.5 Processing capacity challenges

Since baseband processing is a strict hard real-time procedure, all pro-
cessing tasks must be completed on time. This imposes a heavy work-
load for the processor during computationally demanding tasks such as
Viterbi-decoding, channel estimation and gain control calculations. In a
packet based system, the channel estimation, frequency error correction
and gain control functions must be performed before any data can be re-
ceived.

This may result in an over-dimensioned processor, since the processor
must be able to handle the peak work load, even though it may only occur
less than one percent of the time. Here, in this case programmable DSPs
have an advantage over fixed function hardware since the programmable
DSP can rearrange its computing resources to make use of the high avail-
able computing capacity all time.

4.3 System simulation environment

During this research project, all the above mentioned challenges and im-
pairments have been taken into consideration when benchmarking the
system and selecting algorithms. This is essential for guaranteeing the
quality of research results provided by this project.

4.4 Task chains

Another interesting property of baseband processing is its data flow struc-
ture. Analysis of baseband algorithms shows that the baseband algo-
rithms are very stable and have little data dependencies. It can also be
shown that baseband processing algorithms can be decomposed into task
chains with little backward dependencies between computing tasks.
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By utilizing this fact, very efficient computing hardware with flexibil-
ity within the domain of baseband processing can be developed. By op-
timizing an ASIP processor architecture for computations based on long
vectors of complex-based data, the processing power over other solutions
can be improved while reducing both chip area and power consumption
of such solution. Task chains can also be used to create task-level pipelines
in order to increase the processing parallelism. This is enabled by the few
backward dependencies between processing stages.

The base architecture used in this project relies on the decomposition
of most baseband tasks into task-chains.
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Chapter 5

Design methodology

5.1 Introduction

In this chapter, the processor design methodology and some of the tools
and evaluation methods applied are described. The overall design method
can be described by the following steps:

1. Analysis of covered standards.

2. Algorithm selection.

3. Analysis of processing tasks.

4. Selection of execution units.

5. Specification of the instruction set.

6. Benchmarking and profiling.

7. Scheduling and mapping onto selected architecture.

8. Implementation.

Between each of these stages in the methodology, the models used
are refined and the result of the previous stage is evaluated by means
of benchmarking and profiling. It is well known that good methods of
evaluation are essential for the method to be successful.
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5.1.1 Analysis of the covered standards

In this first stage of the method, the covered standards are analyzed in
terms of estimated memory usage, roughly which algorithms to use and
which precision of the executions units is needed. Then, this information
is used to determine a good starting point for the base architecture to use
in the later stages of the method. In this stage, high-level (system) models
are created in either Matlab or C++. The models are used to get further
knowledge and information about system and hardware requirements.

5.1.2 Algorithm selection

When the covered standards have been analyzed and high-level models
have been created, it is time to do the detailed algorithm selection. In a
high level model, it does not make any difference how a correlation is per-
formed, but if the model is to be used to select and dimension hardware
resources it is important to know exactly how it is going to be imple-
mented. Algorithm selection is one of the most important tasks during
the design of a baseband processor since the result will have a great influ-
ence on the rest of the project. In general, telecommunication standards
are only specified on the transmitter side. Often no hints about suitable
receiving algorithms are given. This further complicates the algorithm
selection part and illustrates the importance of good algorithm choices.

5.1.3 Analysis of processing tasks and selection of execu-
tion units

Now, that the algorithms have been selected, the kernel functions are an-
alyzed and execution units are selected and dimensioned. Also special
execution units and accelerators are designed in this stage.

5.1.4 Scheduling and mapping

This is the final stage of the design method before the implementation
stage and release of the Instruction Set Architecture (ISA). Now the algo-
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rithms and hardware are scheduled in detail to ensure full architectural
support for the desired standards and operations.

5.1.5 Instruction set specification

When the algorithms and execution units have been selected, the instruc-
tion set of the processor is fixed. The instruction set is based on bench-
marking done in the earlier stages of the methodology. The instruction
set architecture acts as a interface between software and hardware sub-
projects in the research project. When instructions are selected careful in-
vestigation of benchmark results is necessary since excessive instructions
will increase the necessary width of the instruction word. The number of
instructions is a trade-off between ease of software implementation and
hardware complexity.

5.2 Evaluation

No method can be implemented and executed as a straight list shown
above; in reality there are a lot of dependencies between the stages of the
method. Also both benchmarking results and knowledge must be passed
between the stages. Often several iterations must be performed in order
for the project to converge towards a good solution. To help the project
converge, it is of greatest importance to have good evaluation methods to
help and guide the design process towards “a better solution”. Good eval-
uation methods are also important in order to produce comparable results
between different baseband processor vendors and architectures. In the
area of programmable baseband processor it is extremely hard to com-
pare two different solutions with each other. In general there are only
three practical metrics, which could be used in a comparison:

1. Required clock frequency.

2. Chip area.

3. Power consumption.
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One problem which was faced during the design process, was to accu-
rately estimate the above mentioned properties from a high level design.
The earlier in the design stage, the less accurate results can be tolerated,
however many of the design choices made early in the design phase re-
lies on these estimations. Since the effects of early architectural decisions
are large on the rest of the project, it is crucial to know the effects of an
early design decision. The three metrics mentioned above however can
be accurately estimated using results from simulations. When the system
has been scheduled, the required clock frequency of the design can be es-
timated with good accuracy. This frequency can then be used to calculate
memory access rates, access power and power of execution units. By us-
ing all available data from the simulation environment and commercially
available memory generators and similar tools, power and area figures
can be estimated with good accuracy. These figures can then be checked
with known data from previously manufactured chips with roughly the
same topology. Lastly, the area of the chip can be estimated fairly accu-
rately by modern design tools without having to run the complete place-
and-route stage. Actually this approach yields fairly accurate estimations
which could be used both as comparisons with other solutions and as
guidance when improving the design.

5.3 Modeling

In order to achieve correct benchmark results, it is also necessary that the
input stimuli used in simulations are correct. When selecting algorithms
for implementation of a specific standard, it is not just enough to consider
precision requirements, it is also important to consider what other effects
the surrounding components of the baseband processor have on both per-
formance and signal quality. One of the main tasks in the specification
stage of the requirement specification is to decide what impairments of
the actual radio front-end to include compensation for, and what chan-
nel conditions to include in the models. In section 4.2.4 of this thesis, a
comprehensive list of both radio and channel impairments is discussed.



Chapter 6

Processor architecture

6.1 Introduction

Traditional methods of addressing the baseband processing requirements
for advanced wireless terminals use an architecture based on the combi-
nation of DSPs and complex custom ASICs. This combination of general-
purpose DSPs and custom ASICs has become an expensive and cumber-
some approach because of its lack of cost-effective scalability and flexi-
bility to meet the next generation wireless device requirements. There is
clearly a need for architectures providing enough flexibility while main-
taining low cost and complexity. As a response to this challenge, a new ar-
chitecture is presented which also serves as a foundation for the research
in this thesis. Over the course of the research project, the architecture has
been changed, transformed and continuously been improved to facilitate
even lower area and higher power efficiency as well as standard support.

6.2 Functional specification

Before the design of a DSP processor is started, it is important to formalize
the functionality of the hardware. It is also important to extract the kernel
functions. However, kernel functions alone are not enough to start the
design of a processor. Care must also be taken to plan for roughly how
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many clock cycles there will be available per data symbol. This figure
is directly related to the symbol period and the desired clock frequency
of the processor. Based on the available number of clock cycles during a
symbol and the “cycle cost” of the kernel-functions a good start for the
architecture can be selected [1].

6.3 Top-level architecture

Since baseband processing consists of both symbol related computations
in the complex domain and bit-manipulation, it is preferable to use a
processor architecture which is divided into two separated parts. One
part is based on complex valued computing elements and memories and
one part contains scalar computations and bit manipulation. This will
increase the over-all efficiency of the baseband processor.

These two parts are both controlled from the same controller and data
are transmitted between the two parts by a network bridge or a map/de-
map-unit. In this research project, the architecture is noted a Clustered
SIMD, CSIMD architecture, since the architecture consists of several SIMD
computing clusters connected to memory banks through a memory cross-
bar and an on-chip interconnect network.
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Figure 6.1: Top level architecture of a baseband processor system.
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The CSIMD architecture is a completely new processor architecture
which drastically reduce the control overhead in baseband processors. A
CSIMD based processor can achieve the same processing performance as
a VLIW-machine with the control overhead and program memory width
of a simple RISC controller [3]. Another feature of the CSIMD architecture
is the “single issue” concept which is described in section 6.6.

By connecting memory blocks and execution units to a crossbar switch,
the architecture can perform all baseband processing tasks without mov-
ing any data between memories. Instead memory blocks are reconnected
between execution units. Compared to traditional solutions, this scheme
saves many memory operations and allows the clock frequency of the
processor to be lowered significantly.

6.4 Execution units

The processor contains four classes of execution units:

1. One scalar DSP processor core.

2. Complex MAC SIMD units.

3. Short complex MAC SIMD units. (Complex ALUs)

4. Accelerators

The scalar DSP core is a small controller core, containing only a real
valued MAC and ALU together with other controller functionality [3]
[4]. All other execution units within the baseband processor utilizes fixed
point complex numbers as their native representation. The DSP core’s
main task is to coordinate the SIMD execution clusters and to maintain
quality control of the processed data (such as gain control and similar
functions). The SIMD clusters can execute different tasks simultaneously
while every data-path within the cluster performs the same instruction
on different data.



36 Processor architecture

6.5 Vector instructions

Analysis and benchmarking of baseband-processing tasks shows that most
operations are performed on long vectors of complex numbers. To uti-
lize this property of baseband processing and to use task-chains, the new
processor architecture has been designed to perform vector operations
efficiently. The processor has a special class of instructions, namely vec-
tor instructions that operate on a vector of data using memories as direct
operand buffers. In this architecture vectors can be of any length between
2 and 128 elements long. By using vector instructions both processing ef-
ficiency and code-density can be significantly increased [3] [2]. Address
generation for data vectors will be discussed in Section 6.7.

6.6 Instruction issue

The difference between this processor architecture and a VLIW proces-
sor is the way instructions are issued to the execution units. By further
utilizing the fact that baseband algorithms can be decomposed into task
chains, the control-path can be further simplified by only allowing a sin-
gle instruction to be issued every clock cycle. In a VLIW processor an in-
struction word is issued to each execution unit each clock cycle. However,
since the execution units employed in this architecture are designed to ex-
ecute long vector operations without any intervention from the controller
core, it is not necessary to be able to issue a new instruction to all exe-
cution units each clock cycle. To reduce the complexity and improve the
efficiency of the control path, the architecture only allows one instruction
to be issued every clock cycle. However since most vector instructions
operate on long vectors, many RISC instructions can be executed during
the vector operation [2]. This is illustrated in Figure 6.2.

The single issue concept and vector operations are discussed in Paper
2 [2] and in [4]. Unlike VLIW-machines, this architecture will allow con-
current vector operations and control flow instructions without the large
control overhead and memory usage of a pure VLIW machine.
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Figure 6.2: Instruction issue in a CSIMD processor

6.7 Memory system

To be able to use vector instructions it is important to have an efficient
data movement mechanism to transport data between computing clus-
ters. In the presented architecture an on-chip interconnect network is
utilized which connects the execution units to the memory banks. The
network consists of a crossbar switch which connects a port of a memory
bank to a corresponding port on an execution unit [3]. No addresses are
transfered over the network since the architecture relies on de-centralized
addressing. This implies that every memory bank contains its own ad-
dress generator units (AGU). The AGU supports a number of different ad-
dressing modes, such as modulo addressing, bit-reversed addressing and
special addressing modes used in channel equalization (Rake finger ad-
dressing). To support the high memory bandwidth required by execution
units such as a radix-4 operation running on a 4-way CMAC unit, each
memory bank is divided into several parallel memories. To ensure that
data are available according to the access pattern of transforms and simi-
lar operations, a special reordering crossbar is used to permutate the data
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order between the network interface and the internal memory banks. The
design of memory efficient multi-standard baseband processors is further
discussed in Paper 3 [5].
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Memory 1Memory 0 Memory 2

ADDR ADDR ADDR ADDR

DIDO DO DO DODI DI DI

Memory n

Figure 6.3: Overview of memory banks.

An overview of a memory bank is shown in Figure 6.3.

6.8 Scheduling

By statically schedule the complete processor, further simplifications can
be made. This implies that the processor core statically schedules both
the on-chip network and the memory crossbar. As a result of this, perfect
predictability is achieved which allows the processor hardware to be op-
timized and simplified. Also, since the program and data flow is known
in advance, memory resources can be allocated and memory bandwidths
can be guaranteed thus making program and data cache memories un-
necessary. Scheduling of OFDM reception tasks is examplified in Paper 3
[5].
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Chapter 7

Acceleration

7.1 Introduction

As described in earlier chapters, modern wide-band modulation schemes
require tremendous computing capacity, ruling out regular implementa-
tions in general purpose processors. The key to further increased process-
ing capacity and still maintained flexibility is to introduce acceleration in
the processor. An accelerator is extra hardware added to a programmable
processor, which in itself performs a certain class of pre-configured tasks
while the processor could perform other operations. Acceleration could
also be used to extend the functionality of single instructions of the pro-
cessor. However, every extra accelerated function will increase the hard-
ware cost, so selecting the right accelerators to cover most processing
needs over the multiple standards is essential. Acceleration can be per-
formed on many different levels and on different types of functions:

• Function level acceleration.

• Instruction level acceleration.

– Complex instructions.

– Addressing support, etc

41
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7.1.1 Function level acceleration

This class of acceleration accelerates a complete function such as a Viterbi-
decoder or a complete FFT transform. This kind of acceleration is usually
implemented as a stand-alone accelerator. In this case, an accelerator is
defined as an execution unit connected to the processor’s internal com-
munication network, which can perform processing tasks independently
of the processor core.

7.1.2 Instruction level acceleration

Instruction level acceleration is the other form of acceleration employed
by the baseband processor architecture. Instruction level acceleration im-
plies that the processor is equipped with powerful special instructions,
which accelerate a special task. This could for example be an FFT instruc-
tion, which performs one FFT butterfly operation in a single clock cycle.
Other instruction level accelerators could be addressing support for dif-
ferent cycle consuming addressing modes such as modulo, bit-reversed
and rake finger addressing.

7.2 Accelerator selection method

Since accelerators add extra hardware and complexity to the design, it is
also important that the choice of what to accelerate is made right.

In order to make good design choices and achieve an optimal design
we need a method of benchmarking the selected algorithms and a method
of deciding what to accelerate. In order to compare the computational
load of a certain algorithm, a “MIPS cost” is defined. The MIPS cost corre-
sponds to how many million instructions-per-second a regular processor
would require in order to perform the specified function. The MIPS cost
is calculated as follows:

MIPSi = OPi·Ni
ti
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whereMIPSi is the associated MIPS cost,OPi the number of clock cycles
required by a standard DSP processor to perform the operation, Ni the
number of samples or bits to process and ti is the maximum time allowed
for the operation to complete. For symbol related operations the time to
perform the operation is considered to be the symbol duration. Here it is
very important that the scheduling of the tasks is done correctly since the
latency requirements are important to consider.

By analyzing all standards in term of processing operations and kernel
functions, similar operations in different standards can be found. These
operations are then used as acceleration candidates. When the MIPS cost
has been calculated for all kernel functions; silicon usage must be esti-
mated for all functions considered for acceleration.

Finally, when all kernel functions have been identified and their asso-
ciated silicon area has been estimated the following three points must be
considered:

1. MIPS-cost. A function with a very high MIPS cost must be acceler-
ated since the operation cannot be performed by a regular processor.

2. Reuse. A function that is performed regularly and is used by several
radio standards is a good candidate for acceleration.

3. Circuit area. Acceleration of special functions is only justified if
there can be considerable reduction of clock frequency or power
compared to the extra area added by the accelerator.

Any kernel function or operation fulfilling one or more of the previ-
ous points is a good candidate for hardware acceleration. Acceleration is
further discussed in the Paper 1 [1].

7.3 Configurability and flexibility

Since it is desirable that the chosen accelerators can be used by as many
standards as possible, flexibility and especially configurability of the ac-
celerators is important. However, as an increased flexibility can increase
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area and power consumption it is important to analyze different degrees
of configurability of the unit. Examples of flexibility and configurability
of accelerators are:

• Selectable decimation ratio in a digital front-end.

• Configurable filter coefficients in the front-end.

• Changeable polynominial in bit manipulation units based on LFSR
structures.

• Interleavers with flexible interleaving depth.

• Map/de-map accelerators with up-dateable gain and constellations.

The same method to choose which functions to accelerate, based on
function reuse and circuit area, can be used within the actual design to
find the optimal balance between circuit performance and flexibility.
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Chapter 8

Channel equalization for
CDMA systems

8.1 Introduction

In this chapter channel equalization for CDMA systems is described. Since
many new systems such as the 3G networks are based on CDMA tech-
nology, it was natural to include CDMA processing functionality in a
multi-standard processor design project. Usually channel equalization for
CDMA systems is performed by using a rake receiver [1] structure. The
rake receiver has been used for a long time in classical CDMA modems,
however it has normally been implemented as fixed function hardware
since it has been considered to be too computationally demanding for im-
plementation in any other way.

However, as the convergence of mobile communication devices in-
creases there is a huge need for more and more standard coverage in
communication devices. This has been a problem for implementors of
fixed function rake units since the implementation of certain key parts of
the rake unit differs significantly from standard to standard even though
the basic principle is the same. Currently there are four more or less con-
nected 3G standards:

• WCDMA-FDD, Frequency division duplex WCDMA.
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• WCDMA-TDD, Time division duplex WCDMA.

• WCDMA-HSDPA, High speed data packet access.

• TD-SCDMA, Chinese 3G

In Western Europe WCDMA-FDD is currently deployed and in operation.
Nowadays the networks are being upgraded to support HSDPA in order
to provide the users with data rates in the 2-10 Mbit/s range [2]. The
design of a multi-standard rake receiver architecture is described in Paper
2 [3].

8.2 Rake receivers

A rake receiver is a time-domain equalizer which in principle identifies
the strongest multi-path components and align them constructively. In-
ternally, the rake receiver contains two different parts:

• A channel estimator.

• Channel compensation units.

The channel estimator identifies both the delay, phase and the ampli-
tude of a limited number of multi-path components. The delay, phase
and amplitude of the multi-paths forms the channel estimate. The channel
estimate is used in the channel compensation stage. Each of the multi-
path components is assigned to a channel compensation unit, noted a
rake finger. If the rake receiver consists of four rake fingers, only the four
strongest multi-paths are used in the process. A schematic view of a rake
receiver is presented in Figure 8.1,

In most papers regarding flexible rake receivers, such as the classi-
cal FlexRake [1], only how to implement the channel compensation part
is discussed. However, benchmarking and resource allocations [3] show
that in reality, channel estimation is more computationally demanding
than channel compensation.

The use of so called multi-code transmission [2] and soft hand-over com-
plicates the channel estimation and compensation.
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Figure 8.1: Rake receiver.

8.3 Multi-code transmission

To further improve the data-rate to a user in a CDMA network, the user
can be assigned several spreading codes. This will allow the user to re-
ceive each of the codes in parallel. Since the de-spread operation is in-
cluded in the classical rake finger, one rake finger is needed for each
multi-code used. If the number of rake fingers is limited, the system
must trade-off channel compensation capability and data-rate. Multi-
code transmission is necessary to achieve the higher data-rates used in
the WCDMA and HSDPA systems.

8.4 Soft handover

Since CDMA networks can be built as single-frequency networks, han-
dover between base-stations can be done by soft handover. Soft handover
can be explained as: when a user is on the border between two base-
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stations, the handover is performed gradually by transmitting data from
both base-stations instead of switching base-stations instantly. This is
possible due to multi-code transmission; a further development is softer
handover where the mobile terminal is handed over between sectors in
the same base-station. Then the same code-set is used so that the user
cannot distinguish the new transmitter from a strong echo. The 3GPP
WCDMA standards require mobile stations to handle up to 6 simultane-
ous base-stations during soft handover. A soft handover scenario with 3
base-stations and three multi-codes is illustrated in Figure 8.2. Here, the
same code-set is not reused during the handover phase. In this example,
at least nine rake fingers are necessary in the mobile terminal in order to
de-spread the data.
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Symbol 1
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Figure 8.2: Soft handover with three base-stations and three multi-codes
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8.5 Programmability

By providing a programmability to a rake receiver, computation resources
can easily be redistributed dynamically among receiver tasks and allow
the processor to trade multi-code capability with soft handover capabil-
ity in real-time. Paper 2 [3] is devoted to the design of such processor
architectures.

8.6 WLAN

The same principle of channel compensation for 3G networks can also be
used on CDMA based WLAN systems such as IEEE802.11b [4]. The main
difference between 3G systems and CDMA based WLANs is the higher
chip-rate of WLAN systems (11 Mcps versus 3.84 Mcps for 3G). However,
since the mobility requirement of WLAN systems is much less than in 3G
systems, the computational load is roughly the same. To fully understand
all aspects of rake receivers in practice, a test system was built and real
IEEE802.11b data were recorded in the baseband domain. The data were
used as input stimuli to the rake receiver models to further verify the
accuracy of the used models. The results of a measured channel estimate
for IEEE 802.11b is presented in Figure 8.3. Each sample corresponds to
45µs or 13.6 meters.
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Chapter 9

Research methodology

This chapter briefly describes the research methodology used in this project.
The research methodology can be summarized by the following steps:

1. Study and analysis of general baseband processing and the associ-
ated technology.

2. Survey of other research projects and related work within the same
field.

3. Formalization of project goals and scope.

4. Formulation of a design and evaluation methodology for
programmable baseband processors.

5. Developement and refinement of a processor architecture according
to the previously mentioned methodology.

6. Implementation of the created processor.

7. Evaluation.

All details of how to model, design and evaluate baseband processors
are presented in Chapter 5. As with any research project, many itera-
tions are performed during the research work. However, it is important
to remember the research methodology in order to ensure a high quality
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of the research results and findings. During the initial phases of a re-
search project, both the scope and goal of the project will most certainly
change. However, at some time early in the project a decision must be
made, clearly defining what to include and what to leave out. This is es-
sential to keep the project going, since there is no limit on how much time
a researcher can spend on an interesting problem.



Chapter 10

Achievements and future
work

10.1 Introduction

The main achievements in this research project can be divided into five
different topics all aiming at giving a solid background for designing the
next generation of baseband processors:

• Specification and design of accelerators.

• Design of execution units and memory systems for rake processing.

• Algorithm selection.

• Specification and implementation of simulation environment.

• Instruction issue and memory architectures.

10.2 Achievements

As stated earlier, the goal of this research project was to create design
methods and hardware for power and area efficient, low clock rate multi-
standard baseband processors. All achievements presented below are the
result of research with this high level goal.
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10.2.1 Accelerators

A large part of the research effort has been spent on accelerator selec-
tion and design. In this area I have formulated guidelines for algorithm
and accelerator selection and have specified, designed and implemented
multi-standard accelerators for IEEE802.11a/b/g and WCDMA systems.
Special care has been taken to ensure multi-standard support and flexibil-
ity in the designed and implemented accelerators. A number of accelera-
tors have been designed and implemented in the BBP1 processor [1].

10.2.2 Digital front-end

Effort has also been put on specification, design and implementation of
multi-standard digital front-ends used in the baseband processor for fil-
tering / symbol shaping and decimation/interpolation purposes.

Multi-standard digital front-ends are necessary to off-load the previ-
ous mentioned tasks from the processor, however it is most important
that the front-end fulfills all requirements imposed by all modes in all
conceivable standards. Since the filter requirements vary from system to
system, careful design of the front-end is necessary to ensure support for
a wide range of filter specifications with very low area.

A versatile multi-standard front-end has been designed and imple-
mented as part of the BBP1 processor. The front-end includes digital fil-
ters, a decimator and a frequency error compensator unit. During the
design of the digital front-end research and modeling of filter require-
ments, required precision, scheduling and energy efficiency have been
performed. In addition to the digital filter and the decimator, a frequency
error compensator has been designed and implemented in the same unit.

10.2.3 Rake channel equalization

Another main part of the project was to understand and create a process-
ing architecture capable of performing channel equalization of WCDMA
and similar CDMA based systems in software. During this part of the
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project all steps from high level simulation and system specification to
RTL coding of several execution units have been taken. Examples of de-
signs are a small but versatile short-complex-MAC unit and a memory
scheme, which will allow a programmable baseband processor to run the
Rake receiver algorithms smoothly. Moreover, both system simulation
models and bit-true models have been created for WCDMA transmission,
reception and channel compensation.

10.2.4 Algorithm selection and development

Along the other activities in the project, much research effort has been
spent on gaining an understanding of how to select algorithms suitable
both for a certain type of problem, but also suitable for a certain architec-
ture. Here the result of this algorithm research has been incorporated in
the design and implementation of all hardware and all architectures pre-
sented in this thesis. Algorithms have been studied, selected, designed
and implemented for both OFDM and CDMA transmission, reception
and channel compensation.

10.2.5 Models

To be able to create correct and realistic models of baseband processing
systems and transmission channels, much effort has been spent on un-
derstanding both the properties of the radio front-end and the channel,
but also the requirements imposed on the system by the MAC layer. Here
I have created high-level models as well as bit- and cycle-true models,
which embody all relevant impairments and constraints imposed by the
system environment. These models have been used as a foundation for
the design of the processor architecture. Furthermore, the results of the
algorithm related research have been incorporated in all models.
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10.2.6 Instruction issue

A fundamental property of the baseband processor architecture is the
single-issue concept that has been refined since the first BBP generation.
The concept has been extended and transformed into a new architecture
with many clustered SIMD execution units. Together with this research
scheduling methods have also been created.

10.3 Future work

All the research presented in this thesis constitutes a solid background
for designing a new generation of programmable baseband processors.
The next step is to start the implementation phase of the BBP2 baseband
processor chip based on the knowledge accumulated during the first part
of the research project.

From the implementation and tape-out of the BBP2 chip, valuable in-
formation regarding implementation aspects can be learned and used to
improve both the architecture itself and the design methodology. The ul-
timate goal of the baseband processor research is to create a flexible, area
efficient and low-power baseband processor solution capable of handling
all standards from single-carrier systems to OFDM, CDMA and MIMO
systems.

Another important part of the research project is to do further quanti-
tative comparisons and analyses of performance and silicon efficiency of
other design-choices and possible architectures to back design decisions
made during the research project.
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Chapter 11

Introduction

In this part of the thesis, a selection of my research results and papers
are presented. The three papers presented are the result of background
investigations performed in the design of a new baseband processor ar-
chitecture designed within the research project.

Each of the papers covers a part of the research used as foundation for
this new design. The papers cover:

• Overall processor architecture.

• Selection of accelerators.

• CDMA based channel equalization.

• An efficient OFDM processor architecture and scheduling.

The new processor will be used as a demonstrator for low power, true
multi-standard baseband processing. In Paper 1, an accelerator architec-
ture for multi-standard baseband processors is presented, later, in Paper
2, a multi-standard Rake-receiver architecture is presented and lastly in
Paper 3, a design methodology for memory-efficient multi-standard base-
band processors is presented.
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Chapter 12

Paper 1

An accelerator architecture for

programmable multi-standard baseband

processors

Anders Nilsson, Eric Tell and Dake Liu
Department of Electrical Engineering

Linkoping University
Linkoping, Sweden
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ABSTRACT
Programmability will be increasingly important in future multi-standard
radio systems. We are proposing an architecture for fully programmable
baseband processing, based on a programmable DSP processor and a
number of configurable accelerators which communicate via a config-
urable network. Acceleration of common cycle-consuming DSP jobs is
necessary in order to manage wide-band modulation schemes. In this
paper we investigate which jobs are suitable for acceleration in a pro-
grammable baseband procsessor supporting a number of common Wire-
less LAN and 3G standards. Simulations show that with the proposed
set of accelerators, our architecture can support the discussed standards,
including IEEE 802.11a 54 Mbit/s wireless LAN reception, at a clock fre-
quency not exceeding 120 MHz.

KEY WORDS
CDMA, OFDM, DSP, SDR

12.1 Introduction

Programmable baseband processors are necessary to support multiple ra-
dio standards, since a pure ASIC solution will not be flexible enough.
ASIC solutions for multi-standard baseband processors are less area ef-
ficient than their programmable counterparts since processing resources
cannot be shared between different operations.

In this paper we present an approach to combining baseband process-
ing of multiple radio standards into an area efficient and versatile base-
band processor. The key to increase processing capacity and still main-
tain flexibility is to introduce accelerators in the processor. An accelerator
is extra hardware added to a programmable processor which performs a
certain pre-configured task while the processor is free to perform other
operations. However, every extra accelerated function will increase the
hardware cost, so selecting the right accelerators to cover most process-
ing needs over multiple standards is essential. In this paper we identify
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key accelerators and present an architecture for a programmable proces-
sor which is aimed at the following radio standards:

Table 1.

Standard Modulation Type
WCDMA CDMA 3G
TD-SCDMA CDMA 3G
IEEE 802.11b DSSS/CCK Wireless LAN
IEEE 802.11a OFDM Wireless LAN

We prove our accelerator concept by using the most demanding algo-
rithm in every accelerator. By using 54 Mbps IEEE 802.11a [1] and 3.84
Mchip/s WCDMA [1] in our calculations we ensure architectural support
for less demanding communication standards.

The paper is organized as follows. In section 13.2, we survey four
different communication standards and provide an overview of the oper-
ations associated with each standard. In section 12.3, we discuss the pro-
posed accelerators. In section 12.4 an accelerator interconnect network
proposal is presented. In section 14.7 our results are presented. Finally
conclusions are drawn in section 14.8.

12.2 Survey of communication standards

To be able to decide which functions to accelerate we survey the differ-
ent communication standards listed in Table 1. The communication stan-
dards have been analyzed focusing on sample rates, required function-
ality of a baseband processor, and cycle cost/latency requirements. We
have chosen to restrict ourselves to only focus on reception in this paper,
since the receiver is more computation demanding than the transmitter
where all data are known in advance. The maximum data rate of each
standard has been used in our calculations. The analysis is divided into
several processing tasks:

• Radio front-end processing.
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• Symbol processing.

• Data recovery.

• Forward error correction and channel coding.

In order to compare the computational load of a certain algorithm, we
define “MIPS cost” which corresponds to how many million instructions-
per-second a regular processor would require in order to perform the
specified function. The MIPS “cost” is calculated as follows:

costi = OPi·Ni
ti

where costi is the associated MIPS cost, OPi the number of clock cycles
required by a standard DSP processor to perform the operation, Ni the
number of samples or bits to process and ti is the maximum time allowed
for the operation to complete. For symbol related operations the time
to perform the operation is considered to be one symbol time. Latency
requirements imposed by the standards [1],[7],[1],[7] has also been taken
into account when calculating the required MIPS cost.

12.2.1 Radio front-end processing

The first task for a baseband processor is to filter and decimate the input
signal, in order to reduce interference from adjacent channels and to relax
requirements on the analog-to-digital converter.

The occupied bandwidth, the over-sampling rate (OSR) and the re-
quired sampling rate are presented in the following table:

Standard Bandwidth OSR Sample rate
IEEE 802.11a 20 MHz 2 40 MHz
IEEE 802.11b 11 MHz 2 22 MHz
W-CDMA 3.84 (5) MHz 4 15.36 MHz
TD-SCDMA 3.84 (5) MHz 4 15.36 MHz

As stated in the table above, the maximum sample rate the processor
needs to process is 40 MHz.
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As decimation filter, we use a raised-cosine FIR filter, which maintains
the phase of the received signal. Raised-cosine filters have a symmetrical
impulse response with N/2-1 zero taps for a filter length of N.[13] This
property will reduce the computation load significantly since the proces-
sor does not need to calculate those taps.

The number of taps in the FIR filter is determined by the smallest roll-
off factor. The roll-off factor determines the transition band of the filter.
A lower roll-off factor yields better filter performance since the transition
band is small, however the length of the filter increases accordingly. IEEE
802.11a [1] requires a roll-off factor of r = 3/64 = 0.0468. Well known
FIR filter design formulae [13] give the required number of taps from the
roll-off factor. An r = 3/64 yields a filter of length 21 taps.

For comparison, we have asserted a cycle cost of 30 operations per
processed input sample. This cycle cost also includes control flow in-
structions. Normally all 21 complex filter taps are processed. However
since at most every second output sample is used, savings can be made.
30 operations per sample is a moderate estimation for such a large filter.
The resulting required MIPS cost is:

Standard Required MIPS

IEEE 802.11a 1200
IEEE 802.11b 440
W-CDMA 600
TD-SCDMA 600

12.2.2 Symbol processing

Since synchronization and channel estimation schemes in all four com-
munication standards are diverse, algorithms and functions cannot easily
be shared between the different standards. Initial channel estimation and
synchronization cost has been estimated to:
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Standard Required MIPS

IEEE 802.11a 108
IEEE 802.11b 12
W-CDMA 25
TD-SCDMA 25

In Direct Sequence Spread Spectrum (DSSS) and CDMA systems, chan-
nel estimation is performed by using a matched filter (correlator) to esti-
mate the channel impulse response. The channel estimate is only calcu-
lated for as many points as RAKE (see below) fingers used.

Since synchronization and channel estimation is only performed at the
beginning of IEEE 802.11a packets and the processing power requirement
is acceptable, the synchronization tasks are run completely in software.
However for CDMA and DSSS modulation schemes, the matched filter
correlator is run continuously. The associated MIPS cost of continuous
channel estimation is included in the MIPS cost for the RAKE unit.

For DSSS and CDMA systems, channel compensation and de-spread
is performed by a RAKE receiver [3]. The RAKE unit has a certain num-
ber of taps (often referred to as “fingers”), which correspond to taps in
the channel impulse response. By using four “fingers”, up to 90% of the
received signal energy can be used to recreate the transmitted signal in an
office environment.[4] The maximum delay in the delay element τ is 127
chips to accommodate a delay of 33 µs at 3.84 Mchip/s. A Rake finger is
shown in Figure 13.2.

τ dt

Spreading sequence Channel estimate

Input To sum

Channel estimate

Figure 12.1: Rake finger.

However in OFDM systems, the symbols are recreated in the frequency
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domain. The conversion from time domain to frequency domain is per-
formed by an FFT. The cost of a 64 point Radix-4 FFT is approximately
430 clock cycles in a regular processor. The associated processing cost for
reconstructing the transmitted symbols is presented in the following ta-
ble:

Standard Type Req. MIPS

IEEE 802.11a FFT 108
IEEE 802.11b RAKE 550
W-CDMA RAKE 384
TD-SCDMA RAKE 384

12.2.3 Data recovery

When the data-symbols have been recreated the de-mapper extracts bi-
nary information from the received symbol. De-mapping is tedious work.
For each 64 QAM symbol (6 bits worth of data in IEEE 802.11a) 6 compar-
isons and 6 loads must be made. This yields a total of two operations
per received bit. In higher data rate modes of IEEE 802.11b the data are
partly processed by using a Modified Walsh Transform. (MWT) [7] The
computation of a MWT is similar to a FFT. The cost of de-mapping and
data recovery is summarized in the following table:

Standard Required MIPS

IEEE 802.11a 108 MHz
IEEE 802.11b 160 MHz
W-CDMA 8 MHz
TD-SCDMA 8 MHz

12.2.4 Forward error correction

Forward error correction and channel coding are the most computation
demanding functions performed in a baseband processor and are neces-
sary in order to improve data rate over noisy channels.
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Several different encoding schemes are often combined to further re-
duce the bit error rate (BER).

• Interleaving. Data are reordered to spread neighboring data bits in
time and in the OFDM case among different frequencies.

• Convolutional codes. This class of error correcting codes includes
regular convolutional codes as well as turbo codes. Turbo codes
and regular convolutional codes is very similar. Decoding of convo-
lutional codes is performed by the Viterbi algorithm [11], whereas
Turbo codes are decoded by utilizing the Soft output Viterbi algo-
rithm. [12].

• Scrambling. In several standards data are scrambled with pseudo-
random data, to ensure an even distribution of ones and zeros in the
transmitted data-stream.

Since all these schemes operate on bits, and since bit operations and irreg-
ular execution is very inefficient in a signal processor, the required MIPS
cost is very high. Interleaving for IEEE 802.11a costs 5 op/bit whereas
interleaving for WCDMA and TD-SCDMA costs 32 op/bit. The costs of
interleaving for the different standards are:

Standard Required MIPS
IEEE 802.11a 270
IEEE 802.11b –
W-CDMA 122
TD-SCDMA 122

Viterbi and Turbo codes are considered large research areas by them-
selves. We acknowledge the MIPS cost for Viterbi and Turbo decoding
according to the following table.[11][12]
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Standard Required MIPS

IEEE 802.11a 4000
IEEE 802.11b –
W-CDMA 1964
TD-SCDMA 1964

Scrambling is also a very cycle consuming task for a programmable DSP
since it requires many bit-operations. We have asserted 3 op/bit for scram-
bling in IEEE 802.11a/b. This yields the following MIPS costs:

Standard Required MIPS

IEEE 802.11a 162
IEEE 802.11b 33
W-CDMA –
TD-SCDMA –

TD-SCDMA uses Reed-Solomon codes as extra data protection in packet
transfer mode. An estimated MIPS cost of 20 MIPS is required for Reed-
Solomon (RS) decoding. However, since RS is only used in TD-SCDMA
and the cost is low, it will not be considered for acceleration.

12.3 Proposed accelerators

In Figure 12.2 a summary of all MIPS costs are presented. The method of
selecting functionality to accelerate must consider:

1. MIPS cost. A function with a very high MIPS cost must be acceler-
ated since the operation cannot be performed by a regular processor.

2. Reuse. A function that is performed regularly and is used by several
radio standards is a good candidate for acceleration.

3. Circuit area. Acceleration of special functions is only justified if
there can be considerable reduction of clock frequency or power
compared to the extra area added by the accelerator.
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Figure 12.2: Breakdown of operations and MIPS cost for various stan-
dards.

We propose acceleration of operations circled together in Figure 12.2.
As shown in the figure operations common to most standards are grouped
together. By accelerating the selected functions we ensure support for the
communication standards listed in the figure. The accelerators we sug-
gest are:

• A configurable decimator and filter.

• A four “finger” RAKE accelerator for use in CDMA and DSSS mod-
ulation schemes.

• A Radix-4 FFT/Modified Walsh transform accelerator. This accel-
erator is used in OFDM modulation schemes and in IEEE 802.11b
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which uses MWT.

• A Turbo/Viterbi decoder.

• A configurable block interleaver.

• A configurable scrambler.

A brief description of the properties required by the proposed accelerator
follows:

12.3.1 Decimator

As described earlier IEEE 802.11a requires a FIR filter with a roll-off of
∼ 0.05. This implies a FIR filter length of 21 taps. By allowing the filter
to be reconfigured, decimation and filtering can be accommodated for
all other communication standards covered by this processor. Since the
required MIPS for filtering and decimation is very high and the operations
are performed on every input sample this function is accelerated.

12.3.2 RAKE unit

By using four rake fingers up to 90% [3] of the received signal energy can
be used to recreate the signal in an pedestrian/office environment. We
propose a four finger rake accelerator utilizing an accumulator unit and
a simple complex multiplier capable of multiplying samples with ±1± i.
The accelerator also contains 512 words of complex memory for delay
path storage, de-spread code generators and a matched filter which per-
forms multipath search and channel estimation. Since the input signal is
oversampled 4 times, a fractional delay stage is not necessary to provide
sub-chip resolution. An overview of the RAKE unit is presented in figure
12.3.
A more detailed description of a flexible RAKE unit is presented in [10].
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12.3.3 Radix-4 FFT/MWT

By using a Radix-4 butterfly and flexible address generators a config-
urable FFT/Walsh transform accelerator can be built. The structure of
such an accelerator is described in [7]. The structure can perform a 64
point FFT in 54 clock cycles and a modified walsh transform for IEEE
802.11b in 18 clock cycles.

12.3.4 Viterbi/Turbo decoder

The Viterbi/Turbo decoder is the most demanding block to implement
without acceleration. Since Viterbi and Turbo decoders are frequently
used, several implementations exist in the research community.

In [12] a reconfigurable 54 Mbps Viterbi decoder and a 2 Mbps Turbo
decoder are presented. The required clock frequency is 60.5 MHz for 2
Mbps Turbo decoding.

12.3.5 Interleaver

In [3] a multi-mode block interleaver accelerator for IEEE 802.11a has been
implemented. Following results have been achieved: Interleaving of 288
bits of data consume 34 clock cycles. The estimated area for the complete
block interleaver including memories is 0.0270 mm2 in a 0.18µm process.
Since block interleaving in TD-SCDMA and WCDMA is similar, the same
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structure with a memory block that is written column-wise and read row-
wise can be used. Convolutional interleaving for WCDMA/TD-SCDMA
is performed by using flexible address generators and regular memory.

12.4 Network

The network is a kind of bus connecting accelerators to the baseband core
and to each other. The accelerator network is essential in the baseband
processor. We are using a passive network since the network configu-
ration is static during operation. The actual network consists of two sub-
networks, one used for sample based transfers and a serial network for bit
based transfers. The division of the two networks is essential to improve
the throughput of the networks since bit based transfers require tedious
framing and de-framing of data chunks not equal to the data width of the
network.

Each sub-network consists of a crossbar switch which is configured
from the processor. The switch allows related accelerators to be connected
with each other and system memories. This crossbar approach enables
the data to flow seamlessly between accelerator units without the inter-
vention of the DSP core. The processor is only involved during creation
and destruction of network connections.

By allowing several accelerators to communicate with each other, sev-
eral accelerated functions can run in parallel and thus lower the computa-
tion time further. The functionality of the network is illustrated in Figure
12.5.

12.5 Results

The main focus of this paper has been to identify accelerators needed for
a programmable baseband processor capable of receiving WCDMA, TD-
SCDMA and IEEE 802.11a/b. The different communication standards
have been analyzed in terms of required functionality of the baseband
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processor, cycle cost and the added area of acceleration. We have identi-
fied the following accelerators:

• Filer and decimator.

• RAKE accelerator.

• FFT/MWT accelerator.

• Demapper.

• Viterbi/Turbo decoder.

• Interleaver.

• Scrambler.

The proposed accelerators provide functional coverage for the most de-
manding job in a wide range of radio standards. Combined with the flex-
ibility of a programmable DSP core, this architecture is well equipped for
future standard updates.
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A complete programmable baseband processor architecture is presented
in Figure 12.6. Simulation of a processor with an accelerator network as
shown in Figure 12.4 has shown that the processor can be run at a clock
frequency not exceeding 120 MHz while receiving 54 Mbit/s IEEE 802.11a
data. The clock frequency constraint is derived from latency requirements
found in IEEE 802.11a. Since the memories are connected to the config-
urable network, memories can easily be “moved” between different accel-
erators and the core, without the need of costly memory move operations
by the processor.
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Figure 12.6: Top architecture of the programmable baseband processor.

To estimate the area used by accelerators, we have synthesized all but
the Viterbi/Turbo decoder using Synopsys Design Compiler for a UMC
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0.18 µm library. The synthesis result is presented in the following table:

Without Req. acc.
Operation acceleration frequency Area

MIPS MHz mm2

Decimator 1200 40 0.17

RAKE 384 16 0.190

FFT/MWT 160 13.5 0.28

Demapper 108 12 0.016

Viterbi 4000 60 1.1

Interleaver 270 8.5 0.047
Scrambler 162 54 0.011

Network - - 0.126

All MIPS requirements except the RAKE and FFT unit correspond to IEEE
802.11a. The maximum MIPS requirement on the RAKE unit originate
from WCDMA, and the requirement on the FFT/MWT unit originate
from IEEE 802.11b. The area of the Viterbi/Turbo decoder is estimated
from gate count given in [12].

A complete accelerator architecture except Viterbi/Turbo decoder but
including the accelerator network occupies 0.84 mm2 in a 0.18 µm pro-
cess. The total area including core, accelerators, network and memories
occupies approximately 2.5 mm2.

12.6 Conclusion

Programmability is essential for multi-standard baseband processors. In
order to be able to process high bandwidth communication standards in a
programmable processor, acceleration is necessary. As a response to this,
we have presented an accelerator architecture for programmable base-
band processors targeted at software defined radio applications. We have
also presented a selection of functions to accelerate for a CDMA/OFDM
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baseband processor. Our architecture is versatile and area efficient since
we ensure maximum utilization of each accelerator.
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ABSTRACT
Programmability will be increasingly important in future multi-standard
radio systems. We are presenting a fully programmable and flexible DSP
platform capable of efficiently performing channel estimation and Max-
imum Ratio Combining (MRC) based channel equalization for a large
number of wireless transmission systems in software. Our processor is
based on a programmable DSP processor with SIMD-computing clusters.
We also map Rake receiver kernel functions supporting a large number of
common Wireless LAN and 3G standards to this micro-architecture. The
use of the inherit flexibility for future standards is also discussed. Bench-
marking show that with the proposed instruction set architecture, our ar-
chitecture can support channel estimation, equalization and decoding of:
WCDMA (FDD/TDD-modes), TD-SCDMA and the higher data rates of
IEEE 802.11b (CCK) at clock frequency not exceeding 76 MHz.

KEY WORDS
CDMA, Rake, MRC, DSP, SDR

13.1 Introduction

The ever changing wireless network industry requires flexible and versa-
tile baseband processors to be able to quickly adapt to new and updated
standards. This requires programmable baseband processors in order to
support multiple radio standards, since a pure ASIC solution will not be
flexible enough. ASIC solutions for multi-standard baseband processors
are also less area efficient than their programmable counterparts since
processing resources cannot be efficiently shared between different op-
erations.

In this paper we present a micro-architecture which combines several
SIMD computing clusters into a processor core. (Clustered SIMD) Unlike
other flexible Rake architectures [2], this architecture will run both the
multi-path search, Rake fingers and Maximum Ratio Combining (MRC)
in software. A clustered SIMD machine is defined as a processor core
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with several heterogeneous SIMD-data path clusters (i.e. a 4-way ALU
and a separate 4-way CMAC). In a clustered SIMD micro-architecture,
only one instruction is issued every clock cycle. Unlike VLIW-machines,
this micro-architecture will allow concurrent vector operations and con-
trol flow instructions without the drawbacks and memory usage of a pure
VLIW machine. The combination of SIMD units and an efficient memory
architecture allows us to drastically improve the processing parallelism
without adding extra complexity of VLIW machines. We have chosen to
map channel estimation and correction of the following communication
standards to our architecture:

Standard Modulation Type
WCDMA CDMA/FDD 3G
WCDMA-TDD CDMA/TDD 3G
TD-SCDMA CDMA/TDD 3G
IEEE 802.11b DSSS/CCK Wireless LAN

Our processor architecture is proven by mapping the most demand-
ing algorithms to the architecture. We both include Frequency Division
Duplex (FDD) and Time Division Duplex (TDD) CDMA-modes[1][4] in
order to fully prove the architecture. Time Division Duplex mode is the
most demanding mode since it requires very short computing latency on
the channel estimation compared to the FDD mode where a pilot channel
is transmitted simultaneously with the data channel. By proving the TDD
mode, we can ensure architectural support for the less demanding modes.

The paper is organized as follows. In section 13.2, we survey four dif-
ferent communication standards and provide an overview Rake based
channel equalization. In section 13.3, we discuss the proposed architec-
ture. Then in section 13.4 SIMD clusters are discussed. In section 13.7
scheduling is discussed. In section 14.7 our results are presented. Finally
conclusions are drawn in section 14.8.
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13.2 Background

13.2.1 Survey of communication standards

The chip rate, the over-sampling rate (OSR) and the required sampling
rate for the investigated standards are presented in the following table:

Standard Chip rate OSR Sample rate

IEEE 802.11b-DSSS 11 Mcps 2 22 MHz
IEEE 802.11b-CCK 11 Mcps 2 22 MHz
WCDMA-FDD/TDD 3.84 Mcps 4 15.36 MHz
TD-SCDMA 1.28 Mcps 4 5.12 MHz

By using an OSR of 4 for WCDMA/TD-SCDMA, the multi-path searcher
will provide sub-chip resolution without fractional delay filters.

13.2.2 Rake based channel equalization

Rake receivers are often used in CDMA systems to cancel inter-symbol in-
terference resulting from multi-path propagation and to utilize the multi-
path diversity.

The idea of a Rake receiver is to identify a number of different multi-
path components and align them constructively, both in time and phase,
thus utilizing the created multi-path diversity. The combination of the dif-
ferent components is performed by Maximum-Ratio Combining (MRC).

The function of delaying a certain transmission path and correct its
phase is often referred to as a “Rake finger”.

A Rake finger is illustrated in Figure 13.1, and the principle of a Rake
receiver is presented in Figure 13.2.

The number of Rake fingers needed is determined by the multi-path
environment. In a Rayleigh fading outdoor environment (ITU Pedestrian
B) [3] up to 93% of the scattered energy could be utilized by a four finger
Rake.
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13.2.3 Flexibility requirement

In 3G standards (WCDMA/TD-SCDMA) de-spreading is accomplished
by first de-scrambling the data by a scrambling sequence (Gold code),
then by separating each data channel by multiplication with an Orthogo-
nal Variable Spreading Factor (OVSF) code.

User data rates can be varied by either reducing the spreading factor
or by assigning multiple OVSF codes to a user. Traditional Rake receivers
are usually implemented as pure ASIC solutions or as rigid accelerators to
processor cores. However, this diversity among CDMA based standards
including multi-code transmission requires large flexibility in the receiver.
In contrast, conventional Rake-receivers de-spread each of the multi-path
components by a single compound code. This obstructs the use of multi-
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code transmission. However, by reordering the operations performed in
a Rake receiver and running them in a programmable environment, it is
possible to facilitate multi-code de-spread without any significant hard-
ware overhead. In the CDMA based Wireless LAN systems such as IEEE
802.11b[7], data symbols are either spread by a sequence having good
auto correlation function, or modulated by Complementary Code Keying
(CCK). In this case the Rake receiver only performs MRC on chip level.

13.2.4 Multi-path search

Channel estimation can be divided into several tasks: Packet/Frame de-
tection, multi-path search and symbol synchronization. Multi-path search
is performed by using matched filters. However the diversity of the dif-
ferent standards render fixed matched filters inefficient. Since transmis-
sion delays for the different multi-path components can be large (greater
than a number of symbol times), the channel estimator must not only
search for synchronization on chip level, it must also search for symbol
synch on all multi-paths.

In our processor the multi-path search is completely performed by
software running on a 4-way complex ALU and a 2-way complex multi-
plication and accumulation (CMAC) unit. The hardware micro-architecture
is discussed in section 13.4.

13.3 Architecture overview

The processor is constructed as a DSP processor with multiple SIMD-
execution units. The data paths are grouped together into SIMD clus-
ters. Each cluster has it’s own load/store unit and vector controller. The
clusters can execute different tasks while every data path within a cluster
performs a single instruction on multiple data. The processor architecture
is illustrated in Figure 14.4.

The processor core consists of five main blocks:

• A 4-way complex ALU.
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• A 2-way CMAC.

• A memory sub-system with address generators.

• A RISC-type controller.

• A partial interconnect network.

The SIMD units are the 4-way complex ALU, and the 2-way complex
MAC. The main difference between this processor and a VLIW processor
is the instruction issue process. By only allowing one instruction issue per
clock cycle, excessive hardware could be saved. The SIMD clusters can si-
multaneously run independent tasks. When a task is finished, data are
transfered between the SIMD units and the processor core by a memory
swap[8]. Hence costly memory moves are avoided. Memory manage-
ment is further discussed in section 13.5.

13.3.1 Instruction set

The instruction set architecture of the processor consists of three classes
of compound instructions.

1. RISC instructions, operating on 16 bit integers.



86 Paper 2

2. DSP instructions, operating on complex numbers.

3. Vector instructions, running vector operations on a particular SIMD-
cluster.

The RISC-instruction class contains most control oriented instructions
and this instruction class is executed on the controller unit of the pro-
cessor. (Control ALSU and MAC-unit). The DSP-instructions operate on
complex-valued data and are executed on one of the SIMD-clusters. Vec-
tor instructions are extensions of the DSP instructions since they operate
on large data-sets and utilize advanced addressing modes and vector loop
support.

13.3.2 Instruction issue

Analysis of baseband algorithms shows that the receiving algorithm can
be decomposed into task-chains with little backward dependencies be-
tween tasks. This allows different tasks to be performed in parallel on
SIMD execution units. However, these tasks normally operate on large
data sets, such as de-scramble or de-spread of a whole memory block. In-
stead of using a VLIW-scheme, this property of baseband processing is
used in the design of the instruction set architecture. To reduce the com-
plexity and improve the efficency of the control path, only one instruction
can be issued every clock cycle. However since vector (SIMD) instructions
run on long vectors, many RISC instructions can be executed during the
vector operation. This is illustrated in Figure 13.4.

Unlike VLIW-machines, our architecture will allow concurrent vec-
tor operations and control flow instructions without the drawbacks and
memory usage of a pure VLIW machine.

13.3.3 Task synchronization

In a micro-architecture containing several vector execution units, data
synchronization is important. In our architecture, we provide special
instructions for control flow synchronization. As shown in Figure 13.4,
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Figure 13.4: Instruction issue.

several vector operations can be executed in parallel. By using idle in-
structions, the control flow can be halted until a certain vector operation
is completed.

13.4 SIMD processing clusters

This processor contains three execution units: the controller unit and two
SIMD clusters. Common to the two SIMD computing clusters are the
Vector controller and Vector load/store unit. (VLU/VSU). The VLU is the
interface towards the memory blocks and the network interface. The VLU
can load data in two different ways. In one mode, multiple data items are
loaded each clock cyckle from a bank of memories. In the other mode,
data are loaded one item at a time and then distributed to the SIMD-data
paths in the cluster. This later mode is used to reduce the number of mem-
ory accesses when consecutive data are processed by the SIMD cluster.
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13.4.1 Vector-ALU unit

The complex vector ALU along with address and code generators are the
main components used for Rake finger processing.

By implementing a 4-way complex ALU unit with an accumulator, we
can perform either four parallel correlations or de-spread four different
codes at the same time. These operations are enabled by adding a “short”
complex multiplier capable of only multiply by {0,±1; 0,±i}. The short
complex multiplier can be controlled from either the instruction word, a
de-scrambling code generator or from a OVSF code generator. All sub-
units are controlled from a vector controller which manages load and
store order, code generation and hardware loop counting.

To relax the memory interface, a special vector load/store unit is em-
ployed. The VLU/VSU contains registers to reduce the number of mem-
ory data fetches over the network. If a consecutive data items are pro-
cessed the load unit can reduce the number of memory fetches by 3/4. A
part of the micro-architecture of the Vector ALU is shown in Figure 13.5.

13.4.2 Vector-CMAC unit

The control and load/store structures for the vector CMAC unit are iden-
tical to the control structures of the Vector ALU. The vector CMAC con-
tains two full complex data paths which can be run separately or together
as a Radix-2 FFT butterfly. [6]

13.5 Memory sub-system

Memory management and allocation are critical in order to efficiently use
SIMD architectures. The data memory consists of several small memory
blocks with its associated Address Generator Unit (AGU). These memo-
ries are in turn connected to a partial interconnect network[8] where they
can be connected to several different computing engine ports. The mem-
ory sub-system design can be divided into two different areas, address
generation for Rake finger processing and data movement architecture.
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13.5.1 Rake finger addressing

The length of memory buffers used for delay equalization is determined
by the maximum delay-spread (∆t), the chip-rate (1/Tc) and the OSR. The
minimum memory length is:

N = ∆t · OSRTc

N = 184 when ∆t = 12µs[3], OSR=4 and 1/Tc = 3.84 Mcps. Delay
equalization in the Rake fingers is performed by using a circular memory
buffer and a number of configurable address generators. Each physical
memory contains it’s own address generator capable of performing mod-
ulo addressing and FFT addressing.
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Only one memory is used by all Rake fingers. This memory serves as
a circular buffer where one sample is written and four samples are read
for each input sample. To reduce the complexity of the memory architec-
ture, the memory accesses are time interleaved. For WCDMA Rake finger
processing the memory access rate is:

Access rate=
OSR·(1+Nf )

Tc
= 76.8 [Mop/s]

Where Nf = 4 is the number of Rake fingers.

The use of a circular memory buffer with configurable address gen-
erators allows us to handle transmission delays many times greater than
one symbol time. The maximum transmission delay which is acceptable
is only limited by memory length.

13.5.2 Data movement architecture

In a clustered SIMD processor it is important to have an efficient data
movement mechanism to transport data between computing clusters. In
our micro-architecture we use memories connected to a partial network.
These memories can be connected to different ports on the different com-
puting clusters. Since it is not necessary to connect all memories to all
computing elements, the network is optimized to only allow certain mem-
ory configurations, hence “partial network”. In order to transfer data
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between these partial networks, several memory blocks are assigned to
both sub-networks. These memory blocks are used as ping-pong buffers
between tasks. They are illustrated in Figure 13.7.

Costly memory moves are avoided by “swapping” memory blocks be-
tween computing elements. This strategy provides an efficient and pre-
dictable data flow without costly memory move operations.

MEM1 MEM2 MEM3 MEM4 MEM5

Connected to both sub−networks

Partial network #1

Partial network #2

Figure 13.7: Ping-Pong memory blocks.

13.6 Functional mapping

The four main kernel functions performed by a rake receiver are:

1. Delay equalization.

2. Multi-Path search.

3. De-scramble and de-spread.

4. Maximum Ratio Combining.

By separating the de-scrambling (using Gold codes) operation from the
de-spread operation (using OVSF codes), the same hardware can be re-
used between operations in WCDMA and TD-SCDMA systems. The map-
ping of the Rake finger functionality to hardware blocks is shown in Fig-
ure 13.8. First the 4-way complex ALU unit are used to de-scramble the
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received data. By later feeding each accumulator with the correspond-
ing OVSF-code the architecture can run de-spread on four simultaneous
OVSF codes.

dt

Channel estimate

... Σ
τInput

Scrambling
codeChannel estimate

CMAC

Circular buffer

code
OVSF

AGU
Complex

ALU
Complex

ALU

Figure 13.8: WCDMA Rake mapping.

The channel estimation task is also mapped to the same SIMD units
as the Rake finger processing. Correlation with the spreading/pilot se-
quence is performed by the Complex ALU, whereas peak detection and
absolute maximum search is performed by the CMAC unit.

13.7 Scheduling

In packet based systems such as IEEE802.11b, the frame is so large that
it cannot be stored entirely in memory. This requires the channel estima-
tion process to be completed before the reception of the payload data. As
a result of this, the required processing performance is huge during the
preamble stage. This is illustrated in Figure 13.9.

The processor architecture must have a peak performance matching
the worst case computational load encountered.

In this case all hardware resources are allocated to the channel estima-
tion process during the preamble. However, in WCDMA systems, chan-
nel estimation can be performed at the same time as the reception of data
since a pilot channel is always transmitted.

Furthermore, the communication network and memory resources are
statically scheduled in order to reduce the complexity of the memory ar-
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Time

detection
Frame Payload processing and channel tracking

Channel estimate required here!

MIPS Cost

Channel estimation / Multipath search

Figure 13.9: Worst case scheduling, IEEE802.11b

chitecture while maintaining a predictable worst case timing. To achieve
optimal resource utilization, the number of computing elements is bal-
anced between SIMD clusters so that each subtask consumes approxi-
mately the same number of clock cycles.

13.7.1 Power considerations

The processor architecture is designed with low power techniques in mind.
The control paths are minimized due to the inherit control locality of the
CSIMD architecture. Furthermore, single port memories are used to re-
duce the power consumption due to memory accesses. Also, when an
execution unit is not used, it’s inputs are masked to reduce unnecessary
activity on internal logic.

13.8 Results

The main focus of this paper has been on a flexible and efficient micro-
architecture capable of performing MRC-based channel equalization for
common and future CDMA based communication standards in software.

We have presented a system architecture, a memory sub-system and
we have mapped Rake kernel functions to this architecture. The kernel
functions used by Rake receiving algorithms are benchmarked on the
hardware and the result is listed below. Benchmarks illustrate the fol-
lowing cycle cost for different Rake kernel functions:
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Kernel Cycle
function Length cost
vabsqr 64 66 |xi|2
vmul 16 18 ci · xi
vmac 256 132

∑
ci · xi

vmac2 256·2 260 2||∑ ci · xi
vsmac 64 18

∑
(±1± i) · xi

vsmac4 64·4 70 4||∑ (±1± i) · xi

Limitations on the interconnect network restrict the data alignment
for data used in parallel vector instructions such as vmac2 and vsmac4.
Complete receiver algorithms, including multi-path search and Rake fin-
ger processing are also benchmarked. The following results were achieved:

Standard Required operating frequency

WCDMA 76 MHz
WCDMA-TDD 76 MHz
TD-SCDMA 65 MHz
IEEE 802.11b 72 MHz

As shown in the table above, this architecture is capable of perform-
ing all kernel functions associated with a rake receiver for the standards
discussed at a clock rate not exceeding 76 MHz. This limit is given by the
memory access rate for WCDMA. The cycle cost of control code execution
is masked by vector operations running in parallel.

13.9 Conclusion

Programmability is essential for multi-standard baseband processors. In
order to be able to process high bandwidth communication standards in a
programmable processor new architectures are necessary. As a response
to this, we have presented a micro-architecture for programmable base-
band processors targeted at software defined radio applications. We have
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also presented a mapping of Rake kernel functions to our programmable
baseband processor. Our architecture is versatile and area efficient since
we ensure maximum utilization of each execution unit.
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ABSTRACT
Efficient programmable baseband processors are important in order to
enable true multi-standard radio platforms and software defined radio
systems. In programmable processors, the memory sub-system accounts
for a large part of both the area and power consumption. This paper
presents a methodology for designing memory efficient multi-standard
baseband processors. The methodology yields baseband processor micro-
architectures which eliminates excessive data moves between memories
while still allowing true flexibility by utilizing SIMD clusters connected
to memory banks via an internal network.

The methodology has successfully been used to create a multi-standard
baseband processor for OFDM-based wireless standards. This paper dis-
cusses the IEEE 802.16e (WiMAX), DVB-H (Digital Video Broadcast -
Handheld) and DAB (Digital Audio Broadcast) standards. The architec-
ture is truly scalable to accommodate future OFDM systems. Scheduling
and resource allocation shows that with the proposed memory structure
and architecture, the processor can manage the baseband functions of the
described standards operating at 80 MHz and using only 28k words of
memory.

14.1 Introduction

In future radio systems, multi-standard signal-processing capability will
be increasingly important. To support a large amount of different stan-
dards, programmable baseband processors are necessary since ASIC so-
lutions are not flexible enough. Furthermore, ASIC solutions for multi-
standard baseband processing are less area efficient than their
programmable counterparts since processing resources cannot easily be
shared between different operations.

Generally the memory sub-system accounts for a large portion of both
the area and power consumption in digital signal processing systems [1].
It is important that the memory architecture balances bandwidth against
the access rate to reduce the overall power and area cost for the memory
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sub-system. In order to reduce power consumption in the processor it is
also important to ensure that the data is accessible in the right memory.
This will eliminate unnecessary data moves between memories.

This paper presents a design methodology for multi-standard base-
band processors and a base architecture which the methodology uses. The
base architecture consists of a DSP controller core, flexible SIMD execu-
tion units, and a memory system interconnected by a memory crossbar
switch.

The methodology and the base architecture are demonstrated by map-
ping several OFDM-based radio standards to this processor architecture.
This paper considers three different standards: IEEE 802.16e [2], DVB-H
[3] and DAB [4].

All baseband functions such as synchronization, channel compensa-
tion, and frequency/timing offset cancellation have also been taken into
account when firmware tasks have been analyzed and mapped to the pro-
cessor.

The base architecture are optimized for vector oriented baseband pro-
cessing rather than single operations unlike other programmable archi-
tectures [1], [5], [6]. This solution is based on memory tiles which are
connected to the execution units through a memory crossbar switch. In-
stead of moving data between memories, data memories are reconnected
to the appropriate input port of the corresponding execution unit.

The paper is organized as follows: In section 14.2 the design methodol-
ogy are presented. The methodology utilizes a base processor architecture
which is presented in section 14.5. In section 14.6 the design methodol-
ogy are applied to the discussed standards, and results are presented in
section 14.7. Conclusions are drawn in section 14.8.

14.2 Design methodology

In order to create an efficient baseband processor architecture, both in
terms of memory usage, area, and power efficiency, a methodology has
been developed that consists of the following steps:
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1. Analysis and high-level modeling of the application and algorithm
selection.

2. Mapping of the selected algorithms to a base architecture.

3. Benchmarking and analysis of the algorithms on the architecture to
find limiting factors on memory usage, memory access rate, latency
requirements and computing capacity.

4. Selection of memory sizes, memory organization and width of the
execution units.

5. Selection of accelerators (if needed).

All of the steps above must be performed for all considered radio stan-
dards that should be supported by the architecture. By creating an archi-
tecture that supports the worst load in all corners of the design space, this
will ensure architectural support for new and diverse standards which
fall inside the limitations imposed by the worst case. The goal of the de-
sign methodology is to find parameters to the base architecture such as:

• Required clock frequency.

• Memory size and number of memory banks.

• Required execution units. (e.g. ALU and CMAC)

• Number of lanes in the execution units. The memory organization
will follow the number of lanes in the execution units in order to
fulfill memory access requirements.

• Which accelerators to use.

In the first stage of the methodology, a high level model is used to find
all kernel functions used in the standards. These kernel functions will
then be mapped to components in the base architecture framework. In-
formation about processing deadlines and maximum allowed latency is
also extracted from either the simulation models or the standard specifi-
cation in this stage.
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14.3 Analysis phase

To aid the analysis of the mapping of the selected baseband processing
algorithms onto the base architecture, two important factors must be con-
sidered: MIPS cost and maximum allowed computing latency. These two
factors will be considered for all kernel operations encountered during
the first stage of the methodology.

14.3.1 MIPS cost

In order to compare the computational load of a certain algorithm, we
define MIPS cost which corresponds to how many million instructions
per second a regular DSP processor would require in order to perform
the specified function. The MIPS cost is calculated as follows:

MIPSi = OPi·Ni
ti

where MIPSi is the associated MIPS cost, OPi the number of clock cy-
cles required by a standard DSP processor to perform the operation, Ni

the number of samples or bits to process and ti is the maximum time al-
lowed for the operation to complete. The time to perform the operation is
usually considered to be one symbol time.

This metric indicates the approximate computing complexity of an al-
gorithm or operation. Since the time allowed for an operation to complete
is dependent on scheduling, the MIPS cost analysis and scheduling must
be iterated until a satisfying solution is found.

14.3.2 Latency

In most OFDM based systems there are three factors limiting the comput-
ing latency:

• Channel equalization. In a packet based system, the channel es-
timation performed on the preamble must be complete before the
processing of the user payload symbols is started.
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• High level acknowledge packets. In time division duplex systems
and TDMA systems such as WLAN and WiMAX the standard stip-
ulates the maximum allowed time from the end of a received packet
to the beginning of the transmitted response packet.

• User delay. User protocols such as voice services limit the overall
latency in a communication system.

14.4 Component selection

When the baseband tasks have been analyzed both in terms of latency
requirements and MIPS cost, the results can be used to select vector exe-
cution units, memories, and accelerators.

14.4.1 Vector execution units

To ensure efficient execution of all kernel functions, we utilize vector exe-
cution units. Analysis of general OFDM signal processing reveals that all
associated kernel functions are based on convolution, vector multiplica-
tion and FFT. Both convolution, vector multiplication and FFT can be per-
formed on a multi-lane MAC unit. As a response to this we need flexible
and efficient vector execution units mainly focused on MAC functionality.
To increase the processing parallelism and maintain a high computing ef-
ficiency, we propose the use of multi-lane MAC units. A multi-lane MAC
unit can easily be extended to perform a FFT butterfly each clock cycle [7].

The MIPS cost and memory access rate yielded from the analysis of
the worst case load will be used to select the number of lanes in the exe-
cution units. The width of the execution units will be a trade-off between
circuit area (more memories are needed in higher radix circuits) and de-
sired clock rate. The total number of memory accesses must also be taken
into account when selecting execution units since this has a large impact
on power efficiency.
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14.4.2 Memory organization

The number of memory banks is mainly determined on the chosen task
level parallelism whereas the width of each bank is determined by the
memory bandwidth required by the execution units.

A radix-2 compatible MAC unit needs to read three complex data
items and write two complex data items each butterfly operation during
FFT calculations. A radix-4 unit will on the other hand require a total of
11 memory accesses per butterfly operation.

14.4.3 Accelerators

When deciding which functions to accelerate the following must be must
considered:

1. MIPS cost. A function with a high MIPS cost may have to be accel-
erated if the operation cannot be performed by a regular processor.

2. Reuse. A function that is performed regularly and is used by several
radio standards is a good candidate for acceleration.

3. Circuit area. Acceleration of special functions is only justified if
there can be considerable reduction of clock frequency or power
compared to the extra area added by the accelerator.

An operation which fulfills one or more of the previous points is a good
candidate for hardware acceleration.

14.5 Base architecture

To aid the design methodology, a base architecture has been used that
serves as a framework to which we add components such as memories
and execution units. A complete baseband processor consists of two main
parts, one baseband processing part which mainly operates on vectors of
complex numbers and one scalar part which operates on integers and sin-
gle bits. The latter part is mainly used for forward error correction (FEC)
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and bit manipulation whereas the former part is used to extract soft data
symbols that can be de-mapped into bits. However, since bit manipu-
lation and FEC tasks are so diverse from baseband processing we limit
ourselves to the baseband functionality in this paper. An efficient multi-
standard architecture for acceleration of bit manipulation and FEC tasks
is presented in [8]. The base architecture consists of memory banks con-
nected to execution units via a memory crossbar switch. The architecture
is shown in Figure 14.1.
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Figure 14.1: Base architecture.

The crossbar allows any memory to be connected to any execution
unit. Execution units span the range from a DSP controller core, to multi-
lane complex MAC and ALU SIMD data-paths. Accelerators such as an
analog front-end and mapper/de-mapper together with a network bridge
to the scalar part of the processing system are also attached to the memory
crossbar.

The base architecture relies on the observation that most baseband
processing tasks operate on a large set of complex-valued vectors (such
as auto-correlation, dot-product, FFT and convolution). This allows us
to use vector instructions, i.e. a single instruction that triggers a complete
vector operation such as a complex 128 sample dot-product.

To support this kind of vector instructions, the execution units must
be able to process large data chunks without any intervention from the
processor core. This in turn requires the execution unit and memory
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sub-system to have automatic address generation and efficient load/s-
tore subsystems. As a response to this, the base architecture utilizes de-
centralized memories and memory addressing together with vector exe-
cution units.

14.5.1 Memory banks

Since the architecture relies on de-centralized memory addressing, each
memory bank has an associated address generator unit (AGU). This unit
is configured by the controller core before a vector instruction is issued
and then operates autonomously during the vector operation. The AGU
of each memory bank can either operate in normal, bit-reversed or mod-
ulo mode. The memory bandwidth can be increased by dividing each
memory bank into several parallel memories. To enable the possibility to
access all individual memories from a single port of the memory bank,
we introduce a reordering crossbar switch. This crossbar switch allows
any single memory to be accessed from any of the ports. This feature is
especially useful when the memories are written by a single port device
such as the mapper or the analog interface. Later, the memory content can
be accessed in parallel in order to facilitate higher radix based algorithms
and transforms.

Reordering crossbar

Memory 1Memory 0 Memory 2 Memory 3

ADDR ADDR ADDR ADDR

DIDO DO DO DODI DI DI

AGU / Memory control

control
Mux 

Control busMemory bank #n

4 complex data out ports 4 complex data in ports

Figure 14.2: Example of a 4-way memory bank.
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14.5.2 Task level pipelines

By using several memory banks connected to the memory crossbar switch,
all execution units can operate in parallel. This allows the architecture to
support “task level pipelines”. Task level pipelining is a method of in-
creasing the processing parallelism by running several independent jobs
simultaneously and passing data between the jobs at specific times.

This technique is also used to store incoming samples in one memory
while other execution units operate concurrently. When a processing task
is finished the memory banks are reconnected so that the output memory
buffer from an execution unit is connected to the input port of the next
execution unit in the processing chain. This memory arrangement allows
the base architecture to perform all OFDM reception and transmission
tasks without any data moves between memories.

14.6 Application of the methodology

Following this methodology, high level models of the discussed standards
have been developed and kernel functions have been derived. The ker-
nel functions have been analyzed both in terms of resource usage and la-
tency requirements according to the methodology. To be able to correctly
account for all memory accesses, operations and data dependencies, the
reception algorithms of OFDM systems have been analyzed with respect
to memory usage, memory access rates, latency requirements, and mem-
ory access patterns according to the methodology. Since reception is more
computationally demanding than transmission, we only consider recep-
tion tasks in this paper. Baseband reception tasks of OFDM data consist
of the following steps[9]:

• Packet/frame detection.

• Synchronization.

• Frequency error estimation/tracking.
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• Frequency error correction and decimation/filtering.

• Channel estimation/tracking.

• Guard period removal.

• FFT.

• Phase tracking and correction.

• Channel correction.

• De-map.

Tasks such as packet/frame detection and synchronization are only
performed when the receiver initially searches for a valid OFDM packet
or frame. The second task group is preformed on every received sample
whereas the last group is performed on every received data symbol. Anal-
ysis and implementation of the reception tasks in the table above reveal
three kernel operations which are frequently used:

• Complex FFT is used to transform time domain data into frequency
domain data. The FFT is also used for cyclic correlation when per-
forming synchronization.

• Complex MAC is used for dot-product calculations.

• Complex vector multiplication is used for channel compensation
and cyclic correlation.

14.6.1 Vector execution units

To ensure the efficiency of a baseband processor, all kernel functions need
to run as efficiently as possible. Since the base architecture assumes exe-
cution units which can sustain one operation per clock cycle, the memory
access rate can be used as a measure of the MIPS cost. In Table 14.1 the
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number of memory accesses are listed together with each operation. Since
the discussed standards have many different modes, the most demanding
has been used for this analysis.

Table 14.1: Overview of memory access rates and parameters
Operation IEEE 802.16e DVB-H DAB

FFT 6144 op 147456 op 67584 op
Channel comp. 768 op 12288 op 6144 op
De-map 256 op 4096 op 2048 op

Symbol length: 320 pts 5120 pts 2560 pts
(incl. max GI):
Symbol duration: 23.15µs 462µs 1246µs

(incl. GI):
Avg. access rate: 309 MHz 354 MHz 60 MHz

In the previous table, a radix-2 based FFT calculated in a single multi-
plication unit is assumed. In practical signal processing circuits there are
a few different efficient methods of calculating a FFT (or its inverse). Most
common are techniques utilizing hardware which could perform a radix-
2 or radix-4 butterfly in one clock cycle. As described in section 14.4.1 the
radix of the execution units is a trade off between area and access rate. By
using a radix-4 FFT butterfly, the memory access rate for FFT operations
can be significantly reduced. Since the dynamic power consumption of
CMOS circuits and memories are proportional to the clock frequency and
access rate, it is beneficial to increase the processing parallelism to reduce
the required clock frequency and lower the memory access rate. One way
to increase the processing parallelism is to utilize Radix-4 butterflies in
the FFT. A Radix-2 FFT of length N uses N

2 log2N butterflies compared
to N

4 log4N butterflies for Radix-4. When single cycle Radix-4 butterflies
are used to increase the processing parallelism, the memory sub-system
needs to manage eleven memory transactions each clock cycle for the FFT
in addition to the memory transactions needed for other concurrent oper-
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ations.

14.6.2 Memory banks

By analyzing the kernel operations required in OFDM reception and all
data dependencies, it can be shown that four memory banks of the same
size as the received data symbol including guard period are sufficient in
a flexible baseband processor. Latency requirements for all the discussed
standards impose a limit which requires all symbol processing tasks to be
executed within a symbol period. A mapping of the IEEE 802.16e OFDM
standard onto the architecture described in Figure 14.4 is presented in
Figure 14.3.
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Figure 14.3: Memory scheduling for OFDM reception.

The memories are scheduled as follows:

1. DM0: Used to store incoming symbols.

2. DM1: Used as source for calculations.

3. DM2: Used as destination of calculation results.

4. CM: Used as coefficient memory for calculations and for storage of
constant vectors.

This scheme and the memory crossbar switch eliminate the need for
memory moves. A possible design alternative is to use a dual-port mem-
ory instead of the two data memories that are reserved for computations.
However, since the power consumption and the area for a double-port
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Figure 14.4: Resulting processor architecture

memory is roughly twice of a single port memory, we are only consid-
ering single port memories. The overhead due to many small memories
must also be considered against both the required memory access rate
and data access patterns.

14.6.3 Accelerators

Of the symbol processing tasks, four tasks are selected to be implemented
as accelerators: The packet detector, frequency error compensation, fil-
tering/decimation, and mapping/de-mapping. These four tasks fulfill
all requirements for implementation as an accelerator. They are also used
among all discussed standards and can be efficiently implemented in hard-
ware.

14.7 Results

Application of the presented methodology on the three discussed stan-
dards yields the following architecture parameters:

1. Four memory banks of totally 28k words of memory.

2. A radix-4 compatible CMAC unit.

3. Acceleration of front-end tasks and mapping/de-mapping.

4. A controller core with scalar data-paths.



14.7 Results 111

The resulting multi-standard OFDM processor architecture is presented
in Figure 14.4 and the memory requirements are presented in Table 14.2.
The maximum performance figures are related to the IEEE 802.16e stan-
dard whereas the maximum memory requirement are derived from the
most memory demanding standard, DVB-H, which uses up to 5120 sam-
ples per symbol that are stored alternatingly in DM0 and DM1.

Table 14.2: Organization of memory banks
Bank Amount Organization Total area

DM0: 4 2048x32 0.92 mm2

DM1: 4 2048x32 0.92 mm2

DM2: 4 1024x32 0.51 mm2

CM: 4 2048x32 0.92 mm2

In Table 14.3 peak memory power consumption and access statistics
are presented for main receiving tasks in IEEE 802.16e implemented on
this architecture.

Table 14.3: Cycle and memory access costs
Clock Accesses Memory

Operation cycles per cycle power Energy

256 pts FFT 256 11 48 mW 154 nJ
Ph. tracking 264 1 4 mW 14 nJ
and comp.
Ch. comp. 256 3 12 mW 42 nJ
De-map 64 4 16 mW 13 nJ

Area and power figures are collected from commercially available mem-
ory generators for a standard 0.13µm digital CMOS process. Mapping
and simulations yield a maximum required clock rate of only 80 MHz
when the presented architecture runs reception tasks of the discussed
standards. This maximum operation frequency is a result of latency re-
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quirements of the IEEE 802.16e standard which specifies the longest turnaround
time between two packets.

14.8 Conclusions

The main focus of this paper has been to present a design methodol-
ogy together with an efficient base architecture which yields memory ef-
ficient programmable multi-standard OFDM baseband processors. The
proposed base architecture increases the memory efficiency and reduces
the memory power consumption by using de-centralized addressing and
vector execution units. By eliminating unnecessary moves between mem-
ories and reducing the required clock frequency of the processor, power
can be saved while maintaining full flexibility. This architecture is also
scalable to easily accommodate future standards such as IEEE 802.20 Mo-
bile Broadband Wireless Access (MBWA) systems.
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