
Design methodology for memory-efficient
multi-standard baseband processors

Anders Nilsson, Eric Tell, Daniel Wiklund and Dake Liu
Div. of Computer Engineering at Department of Electrical Engineering,

Linkoping University, Linkoping, Sweden
E-mail: {andni,erite,danwi,dake}@isy.liu.se

Abstract— Efficient programmable baseband processors are
important in order to enable true multi-standard radio platforms
and software defined radio systems. In programmable processors,
the memory sub-system accounts for a large part of both the area
and power consumption. This paper presents a methodology for
designing memory efficient multi-standard baseband processors.
The methodology yields baseband processor micro-architectures,
which eliminate excessive data moves between memories while
still allowing true flexibility by utilizing SIMD clusters connected
to memory banks via an internal network.

The methodology has successfully been used to create a
multi-standard baseband processor for OFDM-based wireless
standards. This paper discusses the IEEE 802.16e (WiMAX),
DVB-H (Digital Video Broadcast - Handheld) and DAB (Digital
Audio Broadcast) standards. The architecture is truly scalable to
accommodate future OFDM systems. Scheduling and resource
allocation show that with the proposed memory structure and
architecture, the processor can manage the baseband functions
of the described standards operating at 80 MHz and using only
28k words of memory.

I. INTRODUCTION

In future radio systems, multi-standard signal-processing
capability will be increasingly important. To support a large
amount of different standards, programmable baseband pro-
cessors are necessary since ASIC solutions are not flexi-
ble enough. Furthermore, ASIC solutions for multi-standard
baseband processing are less area efficient than their pro-
grammable counterparts since processing resources cannot
easily be shared between different operations.

Generally the memory sub-system accounts for a large
portion of both the area and power consumption in digital
signal processing systems [1]. It is important that the memory
architecture balances bandwidth against the access rate to
reduce the overall power and area cost for the memory sub-
system. In order to reduce power consumption in the processor
it is also important to ensure that the data are accessible in
the right memory. This will eliminate unnecessary data moves
between memories.

This paper presents a design methodology for multi-
standard baseband processors and a base architecture, which
the methodology uses. The base architecture consists of a DSP
controller core, flexible SIMD execution units, and a memory
system interconnected by a memory crossbar switch.

The methodology and the base architecture are demon-
strated by mapping several OFDM-based radio standards to

this processor architecture. This paper considers three different
standards: IEEE 802.16e [2], DVB-H [3] and DAB [4].

All baseband functions such as synchronization, channel
compensation, and frequency/timing-offset cancellation have
also been taken into account when firmware tasks have been
analyzed and mapped to the processor.

The base architecture are optimized for vector oriented
baseband processing rather than single operations unlike other
programmable architectures [1], [5], [6]. This solution is based
on memory tiles, which are connected to the execution units
through a memory crossbar switch. Instead of moving data
between memories, data memories are reconnected to the
appropriate input port of the corresponding execution unit.

The paper is organized as follows: In section II the design
methodology are presented. The methodology utilizes a base
processor architecture, which is presented in section V. In
section VI the design methodology are applied to the discussed
standards, and results are presented in section VII. Conclusions
are drawn in section VIII.

II. DESIGN METHODOLOGY

In order to create an efficient baseband processor archi-
tecture, both in terms of memory usage, area, and power
efficiency, a methodology has been developed that consists
of the following steps:

1) Analysis and high-level modeling of the application and
algorithm selection.

2) Mapping of the selected algorithms to a base architec-
ture.

3) Benchmarking and analysis of the algorithms on the
architecture to find limiting factors on memory usage,
memory access rate, latency requirements and comput-
ing capacity.

4) Selection of memory sizes, memory organization and
width of the execution units.

5) Selection of accelerators (if needed).
All of the steps above must be performed for all considered

radio standards that should be supported by the architecture.
By creating an architecture that supports the worst load in
all corners of the design space, this will ensure architectural
support for new and diverse standards, which fall inside the
limitations imposed by the worst case. The goal of the design
methodology is to find parameters to the base architecture such
as:



• Required clock frequency.
• Memory size and number of memory banks.
• Required execution units. (E.g. ALU and CMAC)
• Number of lanes in the execution units. The memory

organization will follow the number of lanes in the execu-
tion units in order to fulfill memory access requirements.

• Which accelerators to use.
In the first stage of the methodology, a high level model

is used to find all kernel functions used in the standards.
These kernel functions will then be mapped to components in
the base architecture framework. Information about processing
deadlines and maximum allowed latency is also extracted from
either the simulation models or the standard specification in
this stage.

III. ANALYSIS PHASE

To aid the analysis of the mapping of the selected baseband
processing algorithms onto the base architecture, two impor-
tant factors must be considered: MIPS cost and maximum al-
lowed computing latency. These two factors will be considered
for all kernel operations encountered during the first stage of
the methodology.

A. MIPS cost

In order to compare the computational load of a certain
algorithm, we define MIPS cost, which corresponds to how
many million instructions per second a regular DSP processor
would require in order to perform the specified function. The
MIPS cost is calculated as follows:

MIPSi = OPi·Ni

ti

where MIPSi is the associated MIPS cost, OPi the number of
clock cycles required by a standard DSP processor to perform
the operation, Ni the number of samples or bits to process and
ti is the maximum time allowed for the operation to complete.
The time to perform the operation is usually considered to be
one symbol time.

This metric indicates the approximate computing complex-
ity of an algorithm or operation. Since the time allowed for an
operation to complete is dependent on scheduling, the MIPS
cost analysis and scheduling must be iterated until a satisfying
solution is found.

B. Latency

In most OFDM based systems there are three factors limit-
ing the computing latency:

• Channel equalization. In a packet-based system, the
channel estimation performed on the preamble must
be complete before the processing of the user payload
symbols is started.

• High level acknowledge packets. In time division duplex
systems and TDMA systems such as WLAN and WiMAX
the standard stipulates the maximum allowed time from
the end of a received packet to the beginning of the
transmitted response packet.

• User delay. User protocols such as voice services limit
the overall latency in a communication system.

IV. COMPONENT SELECTION

When the baseband tasks have been analyzed both in terms
of latency requirements and MIPS cost, the results can be used
to select vector execution units, memories, and accelerators.

A. Vector execution units

To ensure efficient execution of all kernel functions, we
utilize vector execution units. Analysis of general OFDM
signal processing reveals that all associated kernel functions
are based on convolution, vector multiplication and FFT.
Convolution, vector multiplication and FFT can be performed
on a multi-lane MAC unit. As a response to this we need
flexible and efficient vector execution units mainly focused on
MAC functionality. To increase the processing parallelism and
maintain a high computing efficiency, we propose the use of
multi-lane MAC units. A multi-lane MAC unit can easily be
extended to perform a FFT butterfly each clock cycle [7].

The MIPS cost and memory access rate yielded from the
analysis of the worst-case load will be used to select the
number of lanes in the execution units. The width of the
execution units will be a trade-off between circuit area (more
memories are needed in higher radix circuits) and desired
clock rate. The total number of memory accesses must also be
taken into account when selecting execution units since this
has a large impact on power efficiency.

B. Memory organization

The number of memory banks is mainly determined by
the chosen task level parallelism whereas the width of each
bank is determined by the memory bandwidth required by the
execution units.

A radix-2 compatible MAC unit needs to read three complex
data items and write two complex data items each butterfly
operation during FFT calculations. A radix-4 unit will on the
other hand require a total of 11 memory accesses per butterfly
operation.

C. Accelerators

When deciding which functions to accelerate the following
must be must considered:

1) MIPS cost. A function with a high MIPS cost may have
to be accelerated if a regular processor cannot perform
the operation.

2) Reuse. A function that is performed regularly and is
used by several radio standards is a good candidate for
acceleration.

3) Circuit area. Acceleration of special functions is only
justified if there can be considerable reduction of clock
frequency or power compared to the extra area added
by the accelerator.

An operation that fulfills one or more of the previous points
is a good candidate for hardware acceleration.



V. BASE ARCHITECTURE

To aid the design methodology, a base architecture has
been used that serves as a framework to which we add
components such as memories and execution units. A complete
baseband processor consists of two main parts, one baseband
processing part that mainly operates on vectors of complex
numbers and one scalar part that operates on integers and
single bits. The latter part is mainly used for forward error
correction (FEC) and bit manipulation whereas the former part
is used to extract soft data symbols that can be de-mapped
into bits. However, since bit manipulation and FEC tasks are
so diverse from baseband processing we limit ourselves to
the baseband functionality in this paper. An efficient multi-
standard architecture for acceleration of bit manipulation and
FEC tasks is presented in [8]. The base architecture consists
of memory banks connected to execution units via a memory
crossbar switch. The architecture is shown in Figure 1.

Memory crossbar

M M M

On chip network

EX EX EX

M M M M

EX ACCACCV
ec

to
r/

sc
al

ar
 b

ri
dg

e

Execution units

Complex oriented baseband part

Complex valued "vector" memory banks

...

...

Execution units and accelerators

Scalar memory banks

Bit/Scalar oriented part
(FEC, Scrambling, et.c)

Fig. 1. Base architecture.

The crossbar allows any memory to be connected to any
execution unit. Execution units span the range from a DSP
controller core, to multi-lane complex MAC and ALU SIMD
data-paths. Accelerators such as an analog front-end and
mapper/de-mapper together with a network bridge to the scalar
part of the processing system are also attached to the memory
crossbar.

The base architecture relies on the observation that most
baseband processing tasks operate on a large set of complex-
valued vectors (such as auto-correlation, dot-product, FFT and
convolution). This allows us to use vector instructions, i.e.
a single instruction that triggers a complete vector operation
such as a complex 128-sample dot product.

To support this kind of vector instructions, the execution
units must be able to process large data chunks without any
intervention from the processor core. This in turn requires
the execution unit and memory sub-system to have automatic
address generation and efficient load/store subsystems. As a
response to this, the base architecture utilizes de-centralized
memories and memory addressing together with vector exe-
cution units.

A. Memory banks

Since the architecture relies on de-centralized memory
addressing, each memory bank has an associated address
generator unit (AGU). The controller core configures this

unit before a vector instruction is issued and then operates
autonomously during the vector operation. The AGU of each
memory bank can either operate in normal, bit-reversed or
modulo mode. The memory bandwidth can be increased by
dividing each memory bank into several parallel memories.
To enable the possibility to access all individual memories
from a single port of the memory bank, we introduce a
reordering crossbar switch. This crossbar switch allows any
single memory to be accessed from any of the ports. This
feature is especially useful when the memories are written by
a single port device such as the mapper or the analog interface.
Later, the memory content can be accessed in parallel in order
to facilitate higher radix based algorithms and transforms.

Reordering crossbar

Memory 1Memory 0 Memory 2 Memory 3

ADDR ADDR ADDR ADDR

DIDO DO DO DODI DI DI

AGU / Memory control

control
Mux 

Control busMemory bank #n

4 complex data out ports 4 complex data in ports

Fig. 2. Example of a 4-way memory bank.

B. Task level pipelines

By using several memory banks connected to the memory
crossbar switch, all execution units can operate in parallel.
This allows the architecture to support “task level pipelines”.
Task level pipelining is a method of increasing the processing
parallelism by running several independent jobs simultane-
ously and passing data between the jobs at specific times.

This technique is also used to store incoming samples in
one memory while other execution units operate concurrently.
When a processing task is finished the memory banks are
reconnected so that the output memory buffer from an execu-
tion unit is connected to the input port of the next execution
unit in the processing chain. This memory arrangement allows
the base architecture to perform all OFDM reception and
transmission tasks without any data moves between memories.

VI. APPLICATION OF THE METHODOLOGY

Following this methodology, high-level models of the dis-
cussed standards have been developed and kernel functions
have been derived. The kernel functions have been analyzed
both in terms of resource usage and latency requirements
according to the methodology. To be able to correctly account
for all memory accesses, operations and data dependencies,
the reception algorithms of OFDM systems have been ana-
lyzed with respect to memory usage, memory access rates,
latency requirements, and memory access patterns according
to the methodology. Since reception is more computationally
demanding than transmission, we only consider reception tasks
in this paper. Baseband reception tasks of OFDM data consist
of the following steps[9]:



• Packet/frame detection.
• Synchronization.

• Frequency error estimation/tracking.
• Frequency error correction and decimation/filtering.
• Channel estimation/tracking.

• Guard period removal.
• FFT.
• Phase tracking and correction.
• Channel correction.
• De-map.

Tasks such as packet/frame detection and synchronization
are only performed when the receiver initially searches for
a valid OFDM packet or frame. The second task group is
preformed on every received sample whereas the last group
is performed on every received data symbol. Analysis and
implementation of the reception tasks in the table above reveal
three kernel operations which are frequently used:

• Complex FFT is used to transform time domain data into
frequency domain data. The FFT is also used for cyclic
correlation when performing synchronization.

• Complex MAC is used for dot-product calculations.
• Complex vector multiplication is used for channel

compensation and cyclic correlation.

A. Vector execution units

To ensure the efficiency of a baseband processor, all kernel
functions need to run as efficiently as possible. Since the base
architecture assumes execution units which can sustain one
operation per clock cycle, the memory access rate can be used
as a measure of the MIPS cost. In Table I the number of
memory accesses are listed together with each operation. Since
the discussed standards have many different modes, the most
demanding has been used for this analysis.

TABLE I

OVERVIEW OF MEMORY ACCESS RATES AND PARAMETERS

Operation IEEE 802.16e DVB-H DAB
FFT 6144 op 147456 op 67584 op
Channel comp. 768 op 12288 op 6144 op
De-map 256 op 4096 op 2048 op

Symbol length: 320 pts 5120 pts 2560 pts
(incl. max GI):
Symbol duration: 23.15µs 462µs 1246µs
(incl. GI):
Avg. access rate: 309 MHz 354 MHz 60 MHz

In the previous table, a radix-2 based FFT calculated in
a single multiplication unit is assumed. In practical signal
processing circuits there are a few different efficient methods
of calculating a FFT (or its inverse). Most common are
techniques utilizing hardware which could perform a radix-2
or radix-4 butterfly in one clock cycle. As described in section
IV-A the radix of the execution units is a trade off between area
and access rate. By using a radix-4 FFT butterfly, the memory

access rate for FFT operations can be significantly reduced.
Since the dynamic power consumption of CMOS circuits and
memories is proportional to the clock frequency and access
rate, it is beneficial to increase the processing parallelism to
reduce the required clock frequency and lower the memory
access rate. One way to increase the processing parallelism
is to utilize Radix-4 butterflies in the FFT. A Radix-2 FFT
of length N uses N

2 log2N butterflies compared to N
4 log4N

butterflies for Radix-4. When single cycle Radix-4 butterflies
are used to increase the processing parallelism, the memory
sub-system needs to manage eleven memory transactions each
clock cycle for the FFT in addition to the memory transactions
needed for other concurrent operations.

B. Memory banks

By analyzing the kernel operations required in OFDM
reception and all data dependencies, it can be shown that four
memory banks of the same size as the received data symbol
including guard period are sufficient in a flexible baseband
processor. Latency requirements for all the discussed standards
impose a limit, which requires all symbol processing tasks to
be executed within a symbol period. A mapping of the IEEE
802.16e OFDM standard onto the architecture described in
Figure 4 is presented in Figure 3.

Reception of symbol #n

Reception of symbol #n+1

������

������

������

������

������

������

��������

������ ������

��������

������

������ ������

������

������ ������

DM0

DM1

CM

DM2

Symbol #n Symbol #n+1Memory

FFT and correction
Phase tracking 

Channel compensation

Demap

Fig. 3. Memory scheduling for OFDM reception.

The memories are scheduled as follows:
1) DM0: Used to store incoming symbols.
2) DM1: Used as source for calculations.
3) DM2: Used as destination of calculation results.
4) CM: Used as coefficient memory for calculations and

for storage of constant vectors.
This scheme and the memory crossbar switch eliminate the

need for memory moves. A possible design alternative is to
use a dual-port memory instead of the two data memories
that are reserved for computations. However, since the power
consumption and the area for a double-port memory is roughly
twice of a single port memory, we are only considering single
port memories. The overhead due to many small memories
must also be considered against both the required memory
access rate and data access patterns.

C. Accelerators

Of the symbol processing tasks, four tasks are selected to be
implemented as accelerators: The packet detector, frequency
error compensation, filtering/decimation, and mapping/de-
mapping. These four tasks fulfill all requirements for imple-
mentation as an accelerator. They are also used among all



Vector load/store unit

CMAC CMAC CMAC CMAC ALSU MAC

RF

demap
Map/ Network

Interface

Memory cross−bar switch (5 x 4 port groups)Port groups

Sample
Memory

AGU Sample
Memory

AGU Sample
Memory

AGU Sample
Memory

AGU

Filter and
pulse−shaping cancellation

Frequency error

Controller unit Network bridge

To/From
scalar
on−chip
networkCMAC SIMD Data pathAnalog front−end

Memory bank 0 Memory bank 1 Memory bank 2 Memory bank 3

Fig. 4. Resulting processor architecture

discussed standards and can be efficiently implemented in
hardware.

VII. RESULTS

Application of the presented methodology on the three dis-
cussed standards yields the following architecture parameters:

1) Four memory banks of totally 28k words of memory.
2) A radix-4 compatible CMAC unit.
3) Acceleration of front-end tasks and mapping/de-

mapping.
4) A controller core with scalar data-paths.
The resulting multi-standard OFDM processor architecture

is presented in Figure 4 and the memory requirements are
presented in Table II. The maximum performance figures are
related to the IEEE 802.16e standard whereas the maximum
memory requirement is derived from the most memory de-
manding standard, DVB-H, which uses up to 5120 samples
per symbol that are stored alternately in DM0 and DM1.

TABLE II

ORGANIZATION OF MEMORY BANKS

Bank Amount Organization Total area

DM0: 4 2048x32 0.92 mm2

DM1: 4 2048x32 0.92 mm2

DM2: 4 1024x32 0.51 mm2

CM: 4 2048x32 0.92 mm2

In Table III peak memory power consumption and access
statistics are presented for main receiving tasks in IEEE
802.16e implemented on this architecture.

TABLE III

CYCLE AND MEMORY ACCESS COSTS

Clock Accesses Memory
Operation cycles per cycle power Energy
256 pts FFT 256 11 48 mW 154 nJ
Ph. tracking 264 1 4 mW 14 nJ
and comp.
Ch. comp. 256 3 12 mW 42 nJ
De-map 64 4 16 mW 13 nJ

Area and power figures are collected from commercially
available memory generators for a standard 0.13µm digital

CMOS process. Mapping and simulations yield a maximum
required clock rate of only 80 MHz when the presented
architecture runs reception tasks of the discussed standards.
This maximum operation frequency is a result of latency
requirements of the IEEE 802.16e standard which specifies
the longest turnaround time between two packets.

VIII. CONCLUSIONS

The main focus of this paper has been to present a de-
sign methodology together with an efficient base architecture
which yields memory efficient programmable multi-standard
OFDM baseband processors. The proposed base architecture
increases the memory efficiency and reduces the memory
power consumption by using de-centralized addressing and
vector execution units. By eliminating unnecessary moves
between memories and reducing the required clock frequency
of the processor, power can be saved while maintaining
full flexibility. This architecture is also scalable to easily
accommodate future standards such as IEEE 802.20 Mobile
Broadband Wireless Access (MBWA) systems.

REFERENCES

[1] T. Fujitsawa et al., A Single-Chip 802.11a MAC/PHY with a 32b RISC
Processor, ISSCC Dig. Tech. Papers, pp. 144-145, Feb. 2003.

[2] IEEE Standard for local and metropolitan area networks, Part 16: Air
Interface for Fixed Broadband Wireless Access Systems. WirelessMAN-
OFDM

[3] ETSI EN 300 744, Digital Video Broadcasting. DVB-T/DVB-H
[4] ETSI EN 300 401, Radio broadcasting systems: Digital Audio Broadcast-

ing to mobile, portable and fixed receivers.
[5] J. Kneip et.al. Single Chip Programmable Baseband ASSP for 5 GHz

Wireless LAN Applications, IECICE Trans. Electron., vol.E85-C, N0.2
February 2002.

[6] J. Glossner et al, A Software-Defined Communications Baseband Chip,
IEEE Communications Magazine, January 2003.

[7] Eric Tell, Olle Seger and Dake Liu; A Converged Hardware Solution for
FFT, DCT and Walsh Transform; Proc. of the International Symposium
on Signal Processing and its Applications (ISSPA), Paris, France, Vol. I,
pp. 609 - 612, July 2003

[8] Anders Nilsson, Eric Tell and Dake Liu, An Accelerator Structure for
Multi-Standard Programmable Baseband Processors, Proc. of IASTED
Intl. Multi-Conf. on Wireless and Optical Com., pp 644-649, July 2004

[9] H Heiskala and J T Terry, OFDM Wireless LANs: A Theoretical and
practical guide, Sams Publishing, 2002


